Dosen Pengampu : Prof. Dr. Suhartono, M.Kom

Mata Kuliah : Linier Algebra

Prodi : Teknik Informatika

Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Pendahuluan

Bank Indonesia (BI) merupakan Bank sentral Republik Indonesia dan satu-satunya lembaga yang berwenang untuk mencetak serta mengedarkan uang rupiah kepada masyarakat. Dalam kapasitasnya sebagai bank sentral, BI mempunyai satu tujuan tunggal, yaitu mencapai dan memelihara kestabilan nilai rupiah.Adapun salah satu tugas dari BI adalah mengatur dan menjaga kelancaran sistem pembayaran. Dalam rangka mengatur dan menjaga kelancaran sistem pembayaran, BI berwenang untuk melakukan pengelolaan uang rupiah yang meliputi tahapan perencanaan, pencetakan, pengeluaran, pengedaran, pencabutan dan penarikan, serta pemusnahan uang rupiah (Bank Indonesia, 2012). Perencanaan tersebut dapat dilakukan dengan melakukan peramalan untuk inflow dan outflow uang kartal. Inflow merupakan uang yang masuk ke BI melalui kegiatan penyetoran, sedangkan outflow merupakan uang yang keluar dari BI melalui kegiatan penarikan.

Visualisasi

Berikut prediksi data Inflow-Outflow Uang Kartal di Bengkulu dan contoh penerapan visualisasi menggunakan bahasa pemrograman R.

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
inflowBI <- read_excel("~/inflowBI.xlsx")
## New names:
## * `` -> ...1
## * `` -> ...3
inflowBI
## # A tibble: 11 x 14
##     ...1 Tahun ...3  Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dbl> <dbl> <lgl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>
##  1     1  2011 NA      57900.  2308.           23238.            9385.  3012.
##  2     2  2012 NA      65911.  2620.           25981.           11192.  4447.
##  3     3  2013 NA      98369. 36337.           18120.           14056.  8933.
##  4     4  2014 NA      86024.  4567.           30503.           14103.  6358.
##  5     5  2015 NA      86549.  4710.           30254.           13309.  7156.
##  6     6  2016 NA      97764.  5775.           34427.           14078.  8211.
##  7     7  2017 NA     103748.  5514.           35617.           15312.  8553.
##  8     8  2018 NA     117495.  5799.           41769.           15058. 10730.
##  9     9  2019 NA     133762.  7509.           47112.           14750. 10915.
## 10    10  2020 NA     109345.  6641.           36609.           10696.  9148.
## 11    11  2021 NA      89270.  3702.           31840.           10748.  7769.
## # ... with 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
plot(inflowBI$Tahun,inflowBI$`Bengkulu`,type = "l", col= "dark red")

\[Visualisasi Prediksi Data Inflow Uang Kartal di- Bengkulu Setiap Periode\]

library(readxl)
outflowBI <- read_excel("~/outflowBI.xlsx")
## New names:
## * `` -> ...2
outflowBI
## # A tibble: 11 x 13
##    Tahun ...2  Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dbl> <lgl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>
##  1  2011 NA      80092.  6338.           22176.            5300. 12434.
##  2  2012 NA      85235.  6378.           22495.            6434. 13014.
##  3  2013 NA     103288. 23278.           19235.            6511. 15460.
##  4  2014 NA     102338.  8630.           26391.            7060. 15158.
##  5  2015 NA     109186.  9637.           27877.            7471. 15789.
##  6  2016 NA     121992. 11311.           31959.            9198. 17645.
##  7  2017 NA     133606. 11760.           35243.           10754. 18128.
##  8  2018 NA     135676. 11450.           36908.            8447. 17926.
##  9  2019 NA     153484. 13087.           44051.            9465. 19277.
## 10  2020 NA     140589. 12874.           39758.            8763. 19139.
## 11  2021 NA      86627.  5770.           23453.            5941. 12631.
## # ... with 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
plot(outflowBI$Tahun,outflowBI$`Bengkulu`,type = "l", col= "salmon")

\[Visualisasi Prediksi Data Outflow Uang Kartal di -Bengkulu Setiap Periode\]

plot(inflowBI$Tahun,inflowBI$`Bengkulu`,type = "l", col= "dark red")
lines(outflowBI$Tahun,outflowBI$`Bengkulu`,col="salmon")
legend("top",c("inflow","outflow"),fill=c("dark red","salmon"))

\[Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di -Bengkulu Setiap Periode\]

Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Bengkulu Setiap Bulan

library(readxl)
inflowPerBulan <- read_excel("~/inflowPerBulan.xlsx")
## New names:
## * `` -> ...2
inflowPerBulan
## # A tibble: 128 x 13
##    Bulan               ...2  Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`
##    <dttm>              <lgl>    <dbl> <dbl>            <dbl>            <dbl>
##  1 2011-01-01 00:00:00 NA       4164.  124.            2068.             545.
##  2 2011-02-01 00:00:00 NA       3338.  115.            1826.             450.
##  3 2011-03-01 00:00:00 NA       4878.  154.            2028.             849.
##  4 2011-04-01 00:00:00 NA       3157.  122.            1429.             539.
##  5 2011-05-01 00:00:00 NA       3821.  123.            1539.             692.
##  6 2011-06-01 00:00:00 NA       3686.  151.            1637.             592.
##  7 2011-07-01 00:00:00 NA       4370.  107.            1791.             800.
##  8 2011-08-01 00:00:00 NA       3668.  184.            1256.             586.
##  9 2011-09-01 00:00:00 NA      12875.  606.            4172.            2176.
## 10 2011-10-01 00:00:00 NA       4777.  158.            1941.             787.
## # ... with 118 more rows, and 7 more variables: Riau <dbl>, Kep. Riau <dbl>,
## #   Jambi <dbl>, Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
library(readxl)
outflowPerBulan <- read_excel("~/outflowPerBulan.xlsx")
## New names:
## * `` -> ...2
outflowPerBulan
## # A tibble: 128 x 13
##    Bulan               ...2  Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`
##    <dttm>              <lgl>    <dbl> <dbl>            <dbl>            <dbl>
##  1 2011-01-01 00:00:00 NA       3442.  350.             941.             307.
##  2 2011-02-01 00:00:00 NA       3989.  193.             990.             228.
##  3 2011-03-01 00:00:00 NA       4229.  230.            1209.             347.
##  4 2011-04-01 00:00:00 NA       6721.  529.            1653.             336.
##  5 2011-05-01 00:00:00 NA       5787.  523.            1465.             328.
##  6 2011-06-01 00:00:00 NA       7395.  406.            2167.             399.
##  7 2011-07-01 00:00:00 NA       7154.  958.            1695.             449.
##  8 2011-08-01 00:00:00 NA      16043. 1046.            4104.            1376.
##  9 2011-09-01 00:00:00 NA       1915.  124.             824.             148.
## 10 2011-10-01 00:00:00 NA       5174.  634.            1392.             299.
## # ... with 118 more rows, and 7 more variables: Riau <dbl>, Kep. Riau <dbl>,
## #   Jambi <dbl>, Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
plot(inflowPerBulan$`Bengkulu`, type = "l", col = "gold")
lines(outflowPerBulan$`Bengkulu`,col="coral")
legend("top",c("Inflow","Outflow"),fill=c("gold","coral"))

Bengkulutimeseries <- inflowPerBulan$`Bengkulu`
plot.ts(Bengkulutimeseries , type = "l", col = "sky blue")

logBengkulu <- log(inflowPerBulan$`Bengkulu`)
plot.ts(logBengkulu, type = "l", col = "dark green")

library(TTR)
## Warning: package 'TTR' was built under R version 4.1.2
BengkuluSMA3 <- SMA(inflowPerBulan$`Bengkulu`,n=5)
plot.ts(BengkuluSMA3 )

library(TTR)
BengkuluSMA3 <- SMA(inflowPerBulan$`Bengkulu`,n=12)
plot.ts(BengkuluSMA3 )

Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Bengkulu

Bengkuluinflowtimeseries <- ts(inflowPerBulan$`Bengkulu`, frequency=12, start=c(2011,1))
Bengkuluinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  122.17640   42.56978   56.79831   27.06372   33.27979   25.84131
## 2012  229.63010  125.41615   65.93120   27.71178   17.46938   17.46938
## 2013  225.33676  240.39147  247.97928  232.80433  158.28819   99.59913
## 2014  708.02522  269.13089  173.04810  221.13003  102.52019  131.58252
## 2015  644.62293  221.83713  163.04665  105.55613   96.35064   84.34825
## 2016  702.39709  293.29774  185.31632   73.73894  119.25824   76.02947
## 2017  705.34454  296.38089  218.07302  108.20777  124.26259   38.37514
## 2018  885.45535  277.07756  207.05547  156.74029  120.71976  669.85657
## 2019  902.06334  384.59633  283.98631  340.23492  256.59610 1294.68991
## 2020  983.83714  517.87037  322.68228  295.68625  330.78731  594.49286
## 2021 1134.14469  507.34820  410.99660  309.79568  798.17998  293.65593
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011   98.70596   64.44523  430.67254  100.84602  111.67560   39.03351
## 2012   74.43659  207.95245  172.87088  104.67443  134.41372   23.27873
## 2013  135.59282  392.32979  166.69236  194.90184  165.05959  118.56169
## 2014   83.35252  899.76893  204.79900  245.78856  146.50267   75.86238
## 2015  662.75459  223.16428  168.84114  212.90720  127.31721   80.51677
## 2016  661.14587  110.45568  243.85150  175.18164  136.70141  111.48900
## 2017  919.91900  300.75244  296.76196  275.01659  201.18931  135.31315
## 2018  423.32742  286.78781  368.53402  286.96586  286.34575  181.12197
## 2019  381.33964  428.71096  432.36290  498.97557  330.91527  254.67978
## 2020  289.77418  409.26120  438.92378  281.96995  320.24937  185.53660
## 2021  350.87090  355.37500
plot.ts(Bengkuluinflowtimeseries, type = "l", col = "sky blue")

Bengkuluoutflowtimeseries <- ts(outflowPerBulan$`Bengkulu`, frequency=12, start=c(2011,1))
Bengkuluoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   43.00021   82.23542  143.53922  246.22066  202.80478  265.84634
## 2012   77.67069  136.45409  214.08931  230.04005  343.95133  343.95133
## 2013  150.23670  309.92998  431.93072  314.02314  742.58906  664.43864
## 2014  184.84757  233.07711  359.39862  524.14915  447.54582  377.69263
## 2015  103.40197  176.91637  236.82757  435.72702  510.20743  474.21976
## 2016   59.75611  134.50325  206.17499  355.34003  506.32330 1581.42961
## 2017  156.75645  191.46206  341.51406  410.43977  612.92546 1597.77779
## 2018  104.78294  200.91583  399.37190  498.39520  866.36789 1137.64484
## 2019  136.77104  354.05007  432.66657  755.79629 1646.68269  168.74806
## 2020  256.84547  331.85653  442.42736  531.24172  969.68490  209.58637
## 2021   95.04035  340.25426  457.19172  920.71828 1096.04779  629.30605
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  263.31558  497.98805   73.97831  188.67118  175.22115  377.68102
## 2012  205.01716  360.89097  153.25346  209.32113  202.05658  482.63553
## 2013 1563.65149  783.20289  262.44591  260.53121  382.27823  624.35333
## 2014  949.04614  161.37331  247.44909  317.04213  292.98312  488.31758
## 2015 1085.06420  246.35914  274.35432  250.71305  309.02593  748.71687
## 2016  212.21523  567.18382  238.44064  187.43127  384.85065  729.08792
## 2017  110.49356  216.10078  248.63583  249.51486  472.84165  838.28091
## 2018  233.48894  261.42442  225.52806  344.89425  470.11011  752.32699
## 2019  653.94175  479.32908  380.83854  386.78029  650.26438  795.78060
## 2020  680.85829  483.37874  506.16610  625.26947  575.95459  950.75046
## 2021  676.14611  466.14904
plot.ts(Bengkuluoutflowtimeseries, type = "l", col = "dark green")

Bengkuluintimeseriescomponents <- decompose(Bengkuluinflowtimeseries)
Bengkuluintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2012  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2013  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2014  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2015  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2016  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2017  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2018  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2019  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2020  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2021  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2012   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2013   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2014   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2015   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2016   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2017   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2018   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2019   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2020   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2021   99.818044   52.992951
Bengkuluouttimeseriescomponents <- decompose(Bengkuluoutflowtimeseries)
Bengkuluouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2012 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2013 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2014 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2015 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2016 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2017 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2018 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2019 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2020 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2021 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2012  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2013  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2014  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2015  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2016  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2017  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2018  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2019  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2020  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2021  169.42047  -21.85756
plot(Bengkuluintimeseriescomponents$seasonal,type = "l", col = "sky blue")
lines(Bengkuluouttimeseriescomponents$seasonal,col="dark green")
legend("top",c("Inflow","Outflow"),fill=c("sky blue","dark green"))

plot(Bengkuluintimeseriescomponents$trend,type = "l", col = "sky blue")
lines(Bengkuluouttimeseriescomponents$trend,col="dark green")
legend("top",c("Inflow","Outflow"),fill=c("sky blue","dark green"))

plot(Bengkuluintimeseriescomponents$random,type = "l", col = "sky blue")
lines(Bengkuluouttimeseriescomponents$random,col="dark green")
legend("top",c("Inflow","Outflow"),fill=c("sky blue","dark green"))

plot(Bengkuluintimeseriescomponents$figure,type = "l", col = "sky blue")
lines(Bengkuluouttimeseriescomponents$figure,col="dark green")
legend("top",c("Inflow","Outflow"),fill=c("sky blue","dark green"))

Bengkuluintimeseriesseasonallyadjusted <- Bengkulutimeseries - Bengkuluintimeseriescomponents$seasonal
plot(Bengkuluintimeseriesseasonallyadjusted)

Bengkuluseriesforecasts <- HoltWinters(Bengkulutimeseries, beta=FALSE, gamma=FALSE)
Bengkuluseriesforecasts
## Holt-Winters exponential smoothing without trend and without seasonal component.
## 
## Call:
## HoltWinters(x = Bengkulutimeseries, beta = FALSE, gamma = FALSE)
## 
## Smoothing parameters:
##  alpha: 0.07206601
##  beta : FALSE
##  gamma: FALSE
## 
## Coefficients:
##       [,1]
## a 436.0149
Bengkuluseriesforecasts$fitted
## Time Series:
## Start = 2 
## End = 128 
## Frequency = 1 
##          xhat     level
##   2 122.17640 122.17640
##   3 116.43947 116.43947
##   4 112.14137 112.14137
##   5 106.01016 106.01016
##   6 100.76877 100.76877
##   7  95.36905  95.36905
##   8  95.60953  95.60953
##   9  93.36364  93.36364
##  10 117.67215 117.67215
##  11 116.45956 116.45956
##  12 116.11480 116.11480
##  13 110.55986 110.55986
##  14 119.14077 119.14077
##  15 119.59301 119.59301
##  16 115.72582 115.72582
##  17 109.38300 109.38300
##  18 102.75915 102.75915
##  19  96.61266  96.61266
##  20  95.01452  95.01452
##  21 103.15350 103.15350
##  22 108.17776 108.17776
##  23 107.92529 107.92529
##  24 109.83420 109.83420
##  25 103.59649 103.59649
##  26 112.36983 112.36983
##  27 121.59584 121.59584
##  28 130.70379 130.70379
##  29 138.06177 138.06177
##  30 139.51941 139.51941
##  31 136.64251 136.64251
##  32 136.56686 136.56686
##  33 154.99868 154.99868
##  34 155.84140 155.84140
##  35 158.65633 158.65633
##  36 159.11778 159.11778
##  37 156.19507 156.19507
##  38 195.96327 195.96327
##  39 201.23617 201.23617
##  40 199.20477 199.20477
##  41 200.78483 200.78483
##  42 193.70329 193.70329
##  43 189.22649 189.22649
##  44 181.59658 181.59658
##  45 233.35240 233.35240
##  46 231.29467 231.29467
##  47 232.33919 232.33919
##  48 226.15329 226.15329
##  49 215.32242 215.32242
##  50 246.26040 246.26040
##  51 244.50031 244.50031
##  52 238.63027 238.63027
##  53 229.04015 229.04015
##  54 219.47774 219.47774
##  55 209.73950 209.73950
##  56 242.38649 242.38649
##  57 241.00122 241.00122
##  58 235.80093 235.80093
##  59 234.15107 234.15107
##  60 226.45198 226.45198
##  61 215.93501 215.93501
##  62 250.99240 250.99240
##  63 254.04117 254.04117
##  64 249.08845 249.08845
##  65 236.45171 236.45171
##  66 228.00604 228.00604
##  67 217.05370 217.05370
##  68 249.05765 249.05765
##  69 239.06916 239.06916
##  70 239.41380 239.41380
##  71 234.78485 234.78485
##  72 227.71636 227.71636
##  73 219.34032 219.34032
##  74 254.36471 254.36471
##  75 257.39265 257.39265
##  76 254.55904 254.55904
##  77 244.01208 244.01208
##  78 235.38222 235.38222
##  79 221.18470 221.18470
##  80 271.53970 271.53970
##  81 273.64494 273.64494
##  82 275.31089 275.31089
##  83 275.28968 275.28968
##  84 269.94957 269.94957
##  85 260.24686 260.24686
##  86 305.30314 305.30314
##  87 303.26903 303.26903
##  88 296.33531 296.33531
##  89 286.27525 286.27525
##  90 274.34433 274.34433
##  91 302.84732 302.84732
##  92 311.52984 311.52984
##  93 309.74678 309.74678
##  94 313.98334 313.98334
##  95 312.03630 312.03630
##  96 310.18488 310.18488
##  97 300.88383 300.88383
##  98 344.20844 344.20844
##  99 347.11904 347.11904
## 100 342.56931 342.56931
## 101 342.40108 342.40108
## 102 336.21746 336.21746
## 103 405.29075 405.29075
## 104 403.56469 403.56469
## 105 405.37688 405.37688
## 106 407.32165 407.32165
## 107 413.92679 413.92679
## 108 407.94448 407.94448
## 109 396.89930 396.89930
## 110 439.19757 439.19757
## 111 444.86721 444.86721
## 112 436.06183 436.06183
## 113 425.94552 425.94552
## 114 419.08785 419.08785
## 115 431.72859 431.72859
## 116 421.49850 421.49850
## 117 420.61660 420.61660
## 118 421.93593 421.93593
## 119 411.84914 411.84914
## 120 405.24791 405.24791
## 121 389.41419 389.41419
## 122 443.08395 443.08395
## 123 447.71522 447.71522
## 124 445.06905 445.06905
## 125 435.32044 435.32044
## 126 461.47028 461.47028
## 127 449.37657 449.37657
## 128 442.27766 442.27766
plot(Bengkuluseriesforecasts)

library(forecast)
## Warning: package 'forecast' was built under R version 4.1.2
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
dftimeseries.hw <- HoltWinters(Bengkulutimeseries, gamma=FALSE)
Bengkulutimeserieforecasts2  <-forecast(dftimeseries.hw,h=20)
Bengkulutimeserieforecasts2
##     Point Forecast       Lo 80     Hi 80      Lo 95     Hi 95
## 129       444.6501  129.234885  760.0654  -37.73587  927.0362
## 130       445.4646  125.338420  765.5908  -44.12615  935.0554
## 131       446.2791  119.293907  773.2642  -53.80158  946.3597
## 132       447.0935  110.811212  783.3759  -67.20590  961.3930
## 133       447.9080   99.678566  796.1374  -84.66296  980.4790
## 134       448.7225   85.767151  811.6778 -106.36979 1003.8147
## 135       449.5369   69.027118  830.0467 -132.40261 1031.4765
## 136       450.3514   49.476525  851.2263 -162.73381 1063.4366
## 137       451.1659   27.186092  875.1456 -197.25524 1099.5870
## 138       451.9803    2.262952  901.6977 -235.80304 1139.7637
## 139       452.7948  -25.164129  930.7537 -278.18029 1183.7699
## 140       453.6092  -54.956702  962.1752 -324.17525 1231.3937
## 141       454.4237  -86.975375  995.8228 -373.57474 1282.4222
## 142       455.2382 -121.085615 1031.5620 -426.17300 1336.6493
## 143       456.0526 -157.161187 1069.2665 -481.77698 1393.8823
## 144       456.8671 -195.085870 1108.8201 -540.20893 1453.9431
## 145       457.6816 -234.753996 1150.1171 -601.30724 1516.6704
## 146       458.4960 -276.070262 1193.0623 -664.92617 1581.9182
## 147       459.3105 -318.949113 1237.5701 -730.93486 1649.5559
## 148       460.1250 -363.313927 1283.5638 -799.21614 1719.4661
plot(Bengkulutimeserieforecasts2)

Bengkulutimeseriesdiff1<-diff(Bengkulutimeseries, difference=1)
plot.ts(Bengkulutimeseriesdiff1)

acf(Bengkulutimeseriesdiff1, lag.max=20) # plot correlogram

acf(Bengkulutimeseriesdiff1,lag.max=20, plot=FALSE) #to get the partial autocorrelation values
## 
## Autocorrelations of series 'Bengkulutimeseriesdiff1', by lag
## 
##      0      1      2      3      4      5      6      7      8      9     10 
##  1.000 -0.499  0.013 -0.071 -0.009  0.030  0.074  0.061 -0.077 -0.012 -0.106 
##     11     12     13     14     15     16     17     18     19     20 
## -0.151  0.585 -0.339 -0.007 -0.024 -0.058  0.054  0.104  0.027 -0.099
pacf(Bengkulutimeseriesdiff1,lag.max=20) #plot partial correlogram

Penutup

Referensi

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://rpubs.com/suhartono-uinmaliki/861286

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiU4MDX4fz1AhU4SWwGHVoxCCsQFnoECAQQAQ&url=https%3A%2F%2Frepository.its.ac.id%2F63217%2F2%2F1312030072-Non_Degree.pdf&usg=AOvVaw1m8_VJUrSbsDtRUDWgJ4nf