#########################################################################################
## The script below documents the statistical analysis for the 823 project
## Completed at Fleming College-Lindsay Ontario, A collaborative project with
##  The Ministry of Environment and Climate Change as Client, and Andrew Millar as Project head. 
   # Written by Alexand Jick Neba - GIS Cartographic Specialist.
##    

## R is an Open source powerful statical environment. Downlaod here  http://mirror.fcaglp.unlp.edu.ar/CRAN/
## http://cran.r-project.org/manuals.html
###########################################################################################
getwd() # Get working directory
## [1] "E:/BayofQuinte2"
setwd("E:\\BayofQuinte2") # Set working directory
list.files()                # Which are the files in the working directory
##  [1] "AAFC_Crop_Mapping_2011_v1_Metadata_EN.xml"
##  [2] "AAFC_Crop_Mapping_2011_v1_Metadata_FR.xml"
##  [3] "AESB-EOS_2011_CI_ON_30m_v1.tif"           
##  [4] "AESB-EOS_2011_CI_ON_30m_v1.tif.aux.xml"   
##  [5] "AESB-EOS_2011_CI_ON_30m_v1.tif.ovr"       
##  [6] "Collab_R.md"                              
##  [7] "Collab_R.R"                               
##  [8] "Collab_R.Rmd"                             
##  [9] "ExposedLandUrban.pdf"                     
## [10] "figure"                                   
## [11] "FinalStat1.csv"                           
## [12] "FinalStat2.csv"                           
## [13] "FinalStat3.csv"                           
## [14] "FinalStats.csv"                           
## [15] "FinalStats.xlsx"                          
## [16] "FinalStats4.xlsx"                         
## [17] "FinalStats5.csv"                          
## [18] "NormalityUrbanExposedLand.pdf"            
## [19] "Project_New.mxd"                          
## [20] "R_with vegetation Indices.Rhistory"       
## [21] "ResidualUrbanExposedLand.pdf"             
## [22] "Rplot.pdf"                                
## [23] "Rplot01.pdf"                              
## [24] "SalamanderIn R.txt"                       
## [25] "Vegetation Inventory.docx"
mydata <- read.csv("FinalStat3.csv", header=TRUE,  # Read data into R Programming Environment.
                     sep=",")
mydata # Take a look of the data
##    OBJECTID_1.. Shape.. OBJECTID    Year gridcode WatershedI      Area
## 1             1 Polygon        1    2013        1          1   22.2131
## 2             2 Polygon        2    2013        0          2 3593.6400
## 3             3 Polygon        3    2013        3          3   63.6132
## 4             4 Polygon        4    2013        0          4 2784.3400
## 5             5 Polygon        5    2013        0          5  138.7460
## 6             6 Polygon        6    2013        0          6 1026.0600
## 7             7 Polygon        7    2013        7          7   32.7726
## 8             8 Polygon        8    2013        8          8 1052.0500
## 9             9 Polygon        9    2013        0          9  112.6950
## 10           10 Polygon       10    2012        0          1   22.2131
## 11           11 Polygon       11    2012        0          2 3593.6400
## 12           12 Polygon       12    2012        0          3   63.6132
## 13           13 Polygon       13    2012        0          4 2784.3400
## 14           14 Polygon       14    2012        0          5  138.7460
## 15           15 Polygon       15    2012        0          6 1026.0600
## 16           16 Polygon       16    2012        0          7   32.7726
## 17           17 Polygon       17    2012        0          8 1052.0500
## 18           18 Polygon       18    2012        0          9  112.6950
## 19           19 Polygon       19 Polygon       19          1   22.2131
## 20           20 Polygon       20 Polygon       20          2 3593.6400
## 21           21 Polygon       21 Polygon       21          3   63.6132
## 22           22 Polygon       22 Polygon       22          4 2784.3400
## 23           23 Polygon       23 Polygon       23          5  138.7460
## 24           24 Polygon       24 Polygon       24          6 1026.0600
## 25           25 Polygon       25 Polygon       25          7   32.7726
## 26           26 Polygon       26 Polygon       26          8 1052.0500
## 27           27 Polygon       27 Polygon       27          9  112.6950
##    CHOROPHYLL CONDFIELD       DO     FWPH   FWTEMP      MCTOT     PCRFU
## 1    6.225000  254.7586  9.12213 8.285350 19.78100  1.2166700 1.0564800
## 2    5.980000  255.7133  9.38837 8.119020 20.30420  0.1583330 0.7925930
## 3    5.235000  257.3951  8.71554 8.192520 20.06130  0.0300000 0.7959880
## 4    2.317778  237.7856 10.37260 8.227790 18.13300  0.9128570 0.6420000
## 5   66.570000  256.0574  8.73040 8.305170 19.85320  4.8120000 1.1596300
## 6    5.535000  246.2133  9.23891 8.070300 18.38180  1.7800000 0.5753330
## 7   11.005556  303.2860  9.96349 8.022360 16.33680  2.1545500 1.3370500
## 8    5.544286  256.8065  9.84252 8.365080 18.26880  0.8077780 1.6369400
## 9    9.917500  286.1991  8.20674 8.206740 17.08170  0.5840000 1.4309000
## 10   6.921429  258.7545 11.11249 7.946004 16.37412  4.1709414 0.7874660
## 11   7.028571  276.6121 11.69927 7.918423 16.83617  8.5060000 0.9086706
## 12   5.284615  276.8996 11.68883 7.927533 16.59223  8.5060000 0.8833761
## 13  12.876923  265.9464 12.26378 7.995238 16.54946 11.4543817 1.1190476
## 14   6.430769  250.0345 11.91570 8.017071 15.92044  0.0000000 1.0204762
## 15   7.071429  262.7923 11.51454 7.976560 16.31663  5.8325420 1.2090476
## 16   7.935714  282.0768 10.84007 7.719973 15.45208  9.8922145 1.3146599
## 17  43.600000  264.9231 11.60086 8.131879 17.28083 11.5205035 2.7264835
## 18  10.650000  280.6090 10.78354 7.985160 16.03781 12.2530000 2.0805536
## 19   5.008333  255.0377 12.67648 8.445817 17.26703  0.4649484 0.9385714
## 20   8.929167  264.1389 12.85899 8.335632 17.80013  0.1162936 1.7624339
## 21  10.091667  262.3361 11.32984 8.430801 17.93573  0.2680594 1.5152778
## 22   9.612500  276.1458 12.92521 8.401389 17.87139  0.4866084 1.2194444
## 23   8.462500  249.0417 13.14794 8.421403 17.02688  0.7218186 0.9891667
## 24  15.304545  264.2803 12.07167 8.426515 17.67545  0.7312644 1.4522727
## 25  12.866667  303.2709 10.18907 8.239279 16.67454  0.7037500 1.1322619
## 26  17.268182  262.0000 11.72590 8.530277 18.09656  1.0254015 1.3023377
## 27  13.431818  274.7917 10.68493 8.344741 16.39815  0.9445911 1.0477904
##       PHYCO        PON        PPFT       PPPT       PPUT     SDISC
## 1  2101.680 0.13425000 0.007300000 0.01818300 0.02190000 1.7857100
## 2  1710.530 0.12175000 0.005600000 0.01433300 0.01903300 1.6222200
## 3  1740.700 0.11575000 0.006400000 0.01763300 0.02330000 1.7000000
## 4  1280.570 0.08800000 0.006850000 0.01178000 0.01828200 1.5428600
## 5  2436.540 0.20950000 0.006900000 0.01874000 0.02370000 1.6400000
## 6  1232.410 0.11900000 0.006600000 0.00000000 0.01746700 1.7500000
## 7  2847.440 0.19600000 0.008150000 0.03329000 0.03340900 1.7090900
## 8  3314.880 0.26112500 0.008500000 0.03151000 0.03567300 1.3916700
## 9  3124.510 0.27475000 0.008500000 0.02958000 0.04150900 1.6500000
## 10 1710.526 0.18208333 0.008207143 0.01780000 0.02371429 1.8230769
## 11 1931.997 0.13266667 0.006538462 0.01360909 0.01963077 1.9285714
## 12 1879.574 0.13927273 0.006541667 0.01343000 0.01931667 1.9538462
## 13 2386.976 0.22740000 0.008275000 0.02131000 0.02719167 0.9714286
## 14 2110.712 0.15318182 0.007784615 0.01146000 0.02380000 1.5571429
## 15 2656.679 0.18541667 0.008276923 0.02113636 0.02672308 1.2892857
## 16 2830.466 0.16525000 0.013900000 0.02433636 0.03745385 2.0500000
## 17 5811.222 0.28975000 0.009914286 0.03034167 0.03985000 1.6142857
## 18 4404.485 0.25200000 0.010064286 0.02591667 0.03234286 1.8071429
## 19 1816.530 0.08981818 0.007491667 0.01169167 0.01871667 2.3463636
## 20 3804.942 0.16845455 0.006808333 0.01570833 0.02332500 1.4683333
## 21 3187.034 0.17145455 0.008225000 0.01990000 0.03035833 1.5716667
## 22 2634.910 0.14672727 0.009275000 0.01969167 0.02505833 1.4416667
## 23 2118.613 0.13872727 0.008191667 0.01525000 0.02387500 1.7550000
## 24 3100.235 0.22060000 0.008518182 0.02035455 0.03101818 1.3818182
## 25 2223.507 0.16318182 0.015208333 0.01958333 0.03748333 2.1400000
## 26 2864.650 0.15200000 0.010900000 0.01980909 0.03106364 1.6227273
## 27 2197.176 0.17680000 0.011790909 0.01804545 0.03241818 2.0108333
##       Water Exposed.Land     Urban Shrubland   Wetland   Pasture    Grain
## 1  0.072930     2.029880 17.592290 17.511260 10.392500  9.586217 0.024310
## 2  4.515051     0.296273  1.920768 11.775750  7.497971 12.718620 1.210513
## 3  0.165532     0.557431 31.043540 15.272770  4.023691 10.359170 4.582537
## 4  2.670904     0.382744  2.090145 16.786900 10.693250  6.767476 0.334550
## 5  1.406956     2.733478  2.037459 19.939990 16.995040 14.888180 4.918833
## 6  3.716262     0.992044  2.154078 27.216480 11.326060  9.785450 0.242968
## 7  0.505300     8.153461 18.053500 16.658430  4.838800 12.841220 6.159721
## 8  4.645465     1.871257  2.506701 33.063790  8.285323 13.486930 0.397110
## 9  1.998132     2.695321  1.169170 32.970770  9.656038 15.287060 2.815113
## 10 0.060775     1.572042 15.744730 19.622170 10.724730 10.153450 0.109395
## 11 4.408438     0.273934  1.629153 11.719380  7.606212 13.437390 0.220088
## 12 0.142895     0.560261 25.760680 13.006252  4.182149 10.008300 0.149969
## 13 2.171827     0.306461  1.800622 17.622600 11.549570  6.715176 0.105634
## 14 1.160463     2.289142  2.016053 18.184695 17.296020 14.784390 0.558501
## 15 3.203399     0.642680  2.051453 27.497347 11.855500 10.366120 0.059645
## 16 0.483331     6.033396 17.619600 25.254035  4.783876 15.024450 0.675565
## 17 4.120462     1.003296  2.469660 34.016695  8.885350 13.138585 0.116515
## 18 1.837610     2.640217  1.157990 29.312319  9.673608 17.780340 0.242779
## 19 0.056723     1.754367 16.105330  6.981003 10.331720 18.349947 4.817419
## 20 4.829556     0.213828  1.609168  7.670526  6.561266 15.627530 1.706790
## 21 0.090547     0.350870 26.090330  7.965324  3.521437 14.648844 5.345115
## 22 2.637643     0.241878  1.791474 13.973264 10.587100  9.206715 0.743897
## 23 1.205221     0.841320  2.025783 13.401438 15.855990 19.476837 5.147163
## 24 3.418386     0.293315  1.986369 23.016125 11.197380 14.197637 1.042479
## 25 0.584940     5.843908 18.479160  9.433188  4.127535 18.597247 9.982428
## 26 4.637081     0.473161  2.282482 27.806148  8.116111 19.272143 1.376454
## 27 1.613998     1.455873  1.147608 24.550187  8.720063 23.711645 3.361365
##    Corn.Products     Beans other.agriculture   Fruits Coniferous Broadleaf
## 1      10.534300 14.569750          0.000000 0.000000   0.093188 10.068360
## 2       5.208727  2.362924          0.004809 0.206214   7.212492 19.535140
## 3       7.552203  6.096373          0.000000 0.069325   0.739940  9.847008
## 4       1.753591  1.082778          0.004654 0.011346   7.789808 18.956080
## 5       5.222408  5.651176          0.247142 0.048650   5.806208  8.099890
## 6       0.720482  0.638645          0.017192 0.000000   9.816062 13.176380
## 7       6.983580  6.423356          0.000000 0.000000   3.861154  4.338992
## 8       1.405282  1.776215          0.000000 0.004106   6.412611 14.073360
## 9       2.014104  3.009975          0.000000 0.000000   6.311444 10.508160
## 10     17.653060  6.470494          0.000000 0.000000   0.182325  9.991383
## 11      5.189492  1.713026          0.000476 0.000852   7.336761 20.190570
## 12     17.628410  7.588988          0.000000 0.000000   0.690422 10.320970
## 13      2.414609  0.665576          0.000452 0.000000   7.547606 18.836160
## 14     13.600579  5.586310          0.000000 0.000000   5.176353  7.609499
## 15      1.188172  0.326734          0.004034 0.006491   9.529325 13.231120
## 16      7.615206  5.410009          0.032954 0.000000   3.732082  4.080850
## 17      1.377992  1.772279          0.006587 0.000000   6.358203 14.579020
## 18      8.245687  1.787297          0.000000 0.000000   6.219604  9.900414
## 19     10.911110 15.007330          0.036465 0.000000   0.024310  9.335014
## 20      4.083989  2.517848          0.048886 6.409648   6.386482 20.294830
## 21     13.225550  8.500118          0.093377 0.000000   0.302767  9.365976
## 22      1.805826  0.913758          0.013220 0.001972   6.031207 18.092070
## 23      8.274381  8.344437          0.019460 0.000000   5.629122  8.199136
## 24      1.098616  0.492250          0.020438 0.000000   8.735953 12.657730
## 25      8.576375  5.679136          0.389960 0.000000   4.168728  3.891362
## 26      3.066436  0.977718          0.008641 0.000000   5.617280 14.541640
## 27      3.103414  7.019814          0.055903 0.000000   4.929044  9.957116
##    Mixed.Wood
## 1    5.299566
## 2   25.435210
## 3    7.451752
## 4   30.622300
## 5    7.069160
## 6   19.887200
## 7    6.571651
## 8   11.667510
## 9    6.781828
## 10   5.660163
## 11  26.219640
## 12   7.873362
## 13  30.208760
## 14   6.748070
## 15  19.781680
## 16   5.209537
## 17  11.754170
## 18   6.260333
## 19   4.217773
## 20  28.362980
## 21   8.447771
## 22  33.914990
## 23   6.489901
## 24  21.583580
## 25   5.967487
## 26  11.432430
## 27   5.759602
names(mydata) # What are the Field names
##  [1] "OBJECTID_1.."      "Shape.."           "OBJECTID"         
##  [4] "Year"              "gridcode"          "WatershedI"       
##  [7] "Area"              "CHOROPHYLL"        "CONDFIELD"        
## [10] "DO"                "FWPH"              "FWTEMP"           
## [13] "MCTOT"             "PCRFU"             "PHYCO"            
## [16] "PON"               "PPFT"              "PPPT"             
## [19] "PPUT"              "SDISC"             "Water"            
## [22] "Exposed.Land"      "Urban"             "Shrubland"        
## [25] "Wetland"           "Pasture"           "Grain"            
## [28] "Corn.Products"     "Beans"             "other.agriculture"
## [31] "Fruits"            "Coniferous"        "Broadleaf"        
## [34] "Mixed.Wood"
attach(mydata) # Attach data for proper management(Best practice)
detach(mydata)  # Detach data
View(mydata)  # View data
Mod1=glm(mydata$PPUT~ mydata$Urban +I(mydata$Urban^2), data=mydata, family=poisson())# Fit a generalized Linear Model
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.021900
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.019033
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.023300
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.018282
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.023700
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.017467
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.033409
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.035673
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.041509
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.023714
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.019631
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.019317
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.027192
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.023800
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.026723
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.037454
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.039850
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.032343
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.018717
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.023325
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.030358
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.025058
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.023875
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.031018
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.037483
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.031064
## Warning in dpois(y, mu, log = TRUE): non-integer x = 0.032418
summary(Mod1) # Model diagnostic
## 
## Call:
## glm(formula = mydata$PPUT ~ mydata$Urban + I(mydata$Urban^2), 
##     family = poisson(), data = mydata)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.06433  -0.03440  -0.00395   0.03047   0.08095  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)  
## (Intercept)       -3.6206086  1.8946026  -1.911    0.056 .
## mydata$Urban       0.0119755  0.5017353   0.024    0.981  
## I(mydata$Urban^2) -0.0005042  0.0188229  -0.027    0.979  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 0.047658  on 26  degrees of freedom
## Residual deviance: 0.046855  on 24  degrees of freedom
## AIC: Inf
## 
## Number of Fisher Scoring iterations: 6
plot(Urban, PPUT, ylab="PHYCO",xlab="Agriculture", ylim=c(0,20),main="Relation btw Area of PHYCO & Agriculture") # Plot model parameters
## Error in plot(Urban, PPUT, ylab = "PHYCO", xlab = "Agriculture", ylim = c(0, : object 'Urban' not found
abline(Mod1$coef)  # Fit line
## Error in int_abline(a = a, b = b, h = h, v = v, untf = untf, ...): plot.new has not been called yet
curve(coef(Mod1)[1]+coef(Mod1)[2]*x+coef(Mod1)[3]*x^2,from=0,to=20,add=TRUE) #Fit curve line
## Error in plot.xy(xy.coords(x, y), type = type, ...): plot.new has not been called yet
coef # Observe model coefficients
## function (object, ...) 
## UseMethod("coef")
## <bytecode: 0x0000000006bb7520>
## <environment: namespace:stats>
install.packages("lme4") # R package for glm
## Installing package into 'H:/My Documents/R/win-library/3.2'
## (as 'lib' is unspecified)
## Error in contrib.url(repos, "source"): trying to use CRAN without setting a mirror
library(lme4) # library containing model algorithm
## Loading required package: Matrix
## Loading required package: Rcpp
##############################################################################################################################

install.packages("knitr")
## Installing package into 'H:/My Documents/R/win-library/3.2'
## (as 'lib' is unspecified)
## Error in contrib.url(repos, "source"): trying to use CRAN without setting a mirror
library(knitr)


###########################################################################################
mod2=glm()       #Generalized Linear Model detailed explanation here http://www.sagepub.com/upm-data/21121_Chapter_15.pdf
## Error in environment(formula): argument "formula" is missing, with no default
names(mydata)  # Viewing data names  
##  [1] "OBJECTID_1.."      "Shape.."           "OBJECTID"         
##  [4] "Year"              "gridcode"          "WatershedI"       
##  [7] "Area"              "CHOROPHYLL"        "CONDFIELD"        
## [10] "DO"                "FWPH"              "FWTEMP"           
## [13] "MCTOT"             "PCRFU"             "PHYCO"            
## [16] "PON"               "PPFT"              "PPPT"             
## [19] "PPUT"              "SDISC"             "Water"            
## [22] "Exposed.Land"      "Urban"             "Shrubland"        
## [25] "Wetland"           "Pasture"           "Grain"            
## [28] "Corn.Products"     "Beans"             "other.agriculture"
## [31] "Fruits"            "Coniferous"        "Broadleaf"        
## [34] "Mixed.Wood"
View(mydata)  # View data in spreadsheet
summary(mydata) #Summary Statistics
##   OBJECTID_1..     Shape..      OBJECTID         Year      gridcode    
##  Min.   : 1.0   Polygon:27   Min.   : 1.0   2012   :9   Min.   : 0.00  
##  1st Qu.: 7.5                1st Qu.: 7.5   2013   :9   1st Qu.: 0.00  
##  Median :14.0                Median :14.0   Polygon:9   Median : 0.00  
##  Mean   :14.0                Mean   :14.0               Mean   : 8.37  
##  3rd Qu.:20.5                3rd Qu.:20.5               3rd Qu.:20.50  
##  Max.   :27.0                Max.   :27.0               Max.   :27.00  
##    WatershedI      Area           CHOROPHYLL       CONDFIELD    
##  Min.   :1    Min.   :  22.21   Min.   : 2.318   Min.   :237.8  
##  1st Qu.:3    1st Qu.:  63.61   1st Qu.: 6.103   1st Qu.:255.9  
##  Median :5    Median : 138.75   Median : 8.463   Median :262.8  
##  Mean   :5    Mean   : 980.68   Mean   :12.115   Mean   :266.1  
##  3rd Qu.:7    3rd Qu.:1052.05   3rd Qu.:11.936   3rd Qu.:276.4  
##  Max.   :9    Max.   :3593.64   Max.   :66.570   Max.   :303.3  
##        DO              FWPH           FWTEMP          MCTOT        
##  Min.   : 8.207   Min.   :7.720   Min.   :15.45   Min.   : 0.0000  
##  1st Qu.: 9.903   1st Qu.:8.006   1st Qu.:16.47   1st Qu.: 0.5353  
##  Median :11.112   Median :8.207   Median :17.27   Median : 0.9446  
##  Mean   :10.911   Mean   :8.185   Mean   :17.49   Mean   : 3.3354  
##  3rd Qu.:11.821   3rd Qu.:8.355   3rd Qu.:18.11   3rd Qu.: 5.3223  
##  Max.   :13.148   Max.   :8.530   Max.   :20.30   Max.   :12.2530  
##      PCRFU            PHYCO           PON              PPFT         
##  Min.   :0.5753   Min.   :1232   Min.   :0.0880   Min.   :0.005600  
##  1st Qu.:0.9236   1st Qu.:1906   1st Qu.:0.1365   1st Qu.:0.006875  
##  Median :1.1323   Median :2387   Median :0.1653   Median :0.008207  
##  Mean   :1.2162   Mean   :2573   Mean   :0.1731   Mean   :0.008545  
##  3rd Qu.:1.3840   3rd Qu.:2982   3rd Qu.:0.2028   3rd Qu.:0.008897  
##  Max.   :2.7265   Max.   :5811   Max.   :0.2898   Max.   :0.015208  
##       PPPT              PPUT             SDISC            Water        
##  Min.   :0.00000   Min.   :0.01747   Min.   :0.9714   Min.   :0.05672  
##  1st Qu.:0.01479   1st Qu.:0.02260   1st Qu.:1.5500   1st Qu.:0.49432  
##  Median :0.01874   Median :0.02506   Median :1.6500   Median :1.83761  
##  Mean   :0.01905   Mean   :0.02732   Mean   :1.6861   Mean   :2.08740  
##  3rd Qu.:0.02122   3rd Qu.:0.03238   3rd Qu.:1.8151   3rd Qu.:3.56732  
##  Max.   :0.03329   Max.   :0.04151   Max.   :2.3464   Max.   :4.82956  
##   Exposed.Land        Urban          Shrubland         Wetland      
##  Min.   :0.2138   Min.   : 1.148   Min.   : 6.981   Min.   : 3.521  
##  1st Qu.:0.3668   1st Qu.: 1.861   1st Qu.:13.204   1st Qu.: 7.030  
##  Median :0.9920   Median : 2.090   Median :17.623   Median : 9.656  
##  Mean   :1.7223   Mean   : 8.161   Mean   :19.342   Mean   : 9.233  
##  3rd Qu.:2.1595   3rd Qu.:16.849   3rd Qu.:26.235   3rd Qu.:10.961  
##  Max.   :8.1535   Max.   :31.044   Max.   :34.017   Max.   :17.296  
##     Pasture           Grain         Corn.Products         Beans        
##  Min.   : 6.715   Min.   :0.02431   Min.   : 0.7205   Min.   : 0.3267  
##  1st Qu.:10.256   1st Qu.:0.23143   1st Qu.: 1.9100   1st Qu.: 1.3979  
##  Median :13.487   Median :0.74390   Median : 5.2087   Median : 3.0100  
##  Mean   :13.712   Mean   :2.09062   Mean   : 6.3131   Mean   : 4.5328  
##  3rd Qu.:15.457   3rd Qu.:3.97195   3rd Qu.: 8.4254   3rd Qu.: 6.4469  
##  Max.   :23.712   Max.   :9.98243   Max.   :17.6531   Max.   :15.0073  
##  other.agriculture      Fruits           Coniferous        Broadleaf     
##  Min.   :0.000000   Min.   :0.000000   Min.   :0.02431   Min.   : 3.891  
##  1st Qu.:0.000000   1st Qu.:0.000000   1st Qu.:3.79662   1st Qu.: 9.350  
##  Median :0.004809   Median :0.000000   Median :5.80621   Median :10.321  
##  Mean   :0.037209   Mean   :0.250319   Mean   :5.06076   Mean   :11.988  
##  3rd Qu.:0.026696   3rd Qu.:0.003039   3rd Qu.:6.81255   3rd Qu.:14.560  
##  Max.   :0.389960   Max.   :6.409648   Max.   :9.81606   Max.   :20.295  
##    Mixed.Wood    
##  Min.   : 4.218  
##  1st Qu.: 6.375  
##  Median : 7.873  
##  Mean   :13.581  
##  3rd Qu.:20.735  
##  Max.   :33.915
ncol(mydata) # View number of fields.
## [1] 34
nrow(mydata)  # View number of records.
## [1] 27
######################################################################

##########################################
crPlots(mod2) # Construct a model plot (Optional)
## Error in eval(expr, envir, enclos): could not find function "crPlots"
###Statistical Anlaysis for Generalized Parameters##########################

#############################################################################

#### Part two, Detailed Parameters##########################################


##############################################################################
## Model for further analysis#################################################
mod3=lm(mydata$PPPT~mydata$Urban+mydata$Exposed.Land+mydata$Pasture+mydata$Corn.Products+mydata$Beans+mydata$Grain, data=mydata)
summary(mod3)
## 
## Call:
## lm(formula = mydata$PPPT ~ mydata$Urban + mydata$Exposed.Land + 
##     mydata$Pasture + mydata$Corn.Products + mydata$Beans + mydata$Grain, 
##     data = mydata)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0199225 -0.0031409  0.0006973  0.0036387  0.0095628 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## (Intercept)           0.0143006  0.0055785   2.563   0.0185 *
## mydata$Urban          0.0002515  0.0002407   1.045   0.3086  
## mydata$Exposed.Land   0.0018639  0.0007540   2.472   0.0225 *
## mydata$Pasture        0.0004054  0.0004351   0.932   0.3626  
## mydata$Corn.Products -0.0004870  0.0004154  -1.172   0.2549  
## mydata$Beans         -0.0003298  0.0005071  -0.650   0.5229  
## mydata$Grain         -0.0007174  0.0007667  -0.936   0.3606  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.006671 on 20 degrees of freedom
## Multiple R-squared:  0.3292, Adjusted R-squared:  0.1279 
## F-statistic: 1.636 on 6 and 20 DF,  p-value: 0.1892
names(mydata)
##  [1] "OBJECTID_1.."      "Shape.."           "OBJECTID"         
##  [4] "Year"              "gridcode"          "WatershedI"       
##  [7] "Area"              "CHOROPHYLL"        "CONDFIELD"        
## [10] "DO"                "FWPH"              "FWTEMP"           
## [13] "MCTOT"             "PCRFU"             "PHYCO"            
## [16] "PON"               "PPFT"              "PPPT"             
## [19] "PPUT"              "SDISC"             "Water"            
## [22] "Exposed.Land"      "Urban"             "Shrubland"        
## [25] "Wetland"           "Pasture"           "Grain"            
## [28] "Corn.Products"     "Beans"             "other.agriculture"
## [31] "Fruits"            "Coniferous"        "Broadleaf"        
## [34] "Mixed.Wood"
attach(mydata)
re1= lm(PPPT~Urban)
summary(re1)
## 
## Call:
## lm(formula = PPPT ~ Urban)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0189809 -0.0041872 -0.0002395  0.0022450  0.0141190 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.896e-02  1.859e-03   10.20 2.16e-10 ***
## Urban       1.195e-05  1.496e-04    0.08    0.937    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.007284 on 25 degrees of freedom
## Multiple R-squared:  0.0002554,  Adjusted R-squared:  -0.03973 
## F-statistic: 0.006387 on 1 and 25 DF,  p-value: 0.9369
coplot(PPPT~Urban|Exposed.Land, panel=panel.smooth) # Observe interaction between model parameters of interest
plot(re1) # Ploting regression diagnostics
termplot(re1) # termplot for model diagnostics
Exposed.Land1=mean(Exposed.Land,na.rm=T) # remove zero value if any in dataset
Exposed.Land1# Get a look at variable
## [1] 1.72229
max(Exposed.Land) #Maximum value
## [1] 8.153461
plot(x=log(mydata$Urban),# Log transform variables
     y=log(mydata$PPPT),
     main="PPPT-Urban relationship on Bay of Quinte", # title
     xlab="log(Urban)", ylab= "log(PPPT(mg/L))",
     pch=19, col="blue") #graph parameters
########################################################################################
mod4=lm(mydata$PPUT~mydata$Urban+mydata$Exposed.Land+mydata$Pasture+mydata$Corn.Products+mydata$Beans+mydata$Grain, data=mydata) # Fit Model
summary(mod4)####Summary to elliminate parameters without any effect
## 
## Call:
## lm(formula = mydata$PPUT ~ mydata$Urban + mydata$Exposed.Land + 
##     mydata$Pasture + mydata$Corn.Products + mydata$Beans + mydata$Grain, 
##     data = mydata)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0094872 -0.0033415 -0.0003431  0.0022017  0.0105709 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)   
## (Intercept)           0.0158523  0.0045477   3.486  0.00233 **
## mydata$Urban          0.0003480  0.0001963   1.773  0.09142 . 
## mydata$Exposed.Land   0.0017772  0.0006146   2.891  0.00902 **
## mydata$Pasture        0.0009783  0.0003547   2.758  0.01213 * 
## mydata$Corn.Products -0.0005139  0.0003387  -1.517  0.14485   
## mydata$Beans         -0.0007009  0.0004134  -1.695  0.10553   
## mydata$Grain         -0.0006826  0.0006250  -1.092  0.28776   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.005438 on 20 degrees of freedom
## Multiple R-squared:  0.5524, Adjusted R-squared:  0.4181 
## F-statistic: 4.113 on 6 and 20 DF,  p-value: 0.007527
re2=lm(PPUT~Urban+Exposed.Land+Pasture, data=mydata)# Models with effect
summary(re2)# Summary
## 
## Call:
## lm(formula = PPUT ~ Urban + Exposed.Land + Pasture, data = mydata)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0098588 -0.0047640  0.0003084  0.0030029  0.0133818 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.0191615  0.0045132   4.246 0.000305 ***
## Urban        -0.0001098  0.0001356  -0.810 0.426395    
## Exposed.Land  0.0016959  0.0006606   2.567 0.017217 *  
## Pasture       0.0004473  0.0003098   1.444 0.162306    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.006157 on 23 degrees of freedom
## Multiple R-squared:   0.34,  Adjusted R-squared:  0.2539 
## F-statistic:  3.95 on 3 and 23 DF,  p-value: 0.02077
aov(re2)# Analysis of variance
## Call:
##    aov(formula = re2)
## 
## Terms:
##                        Urban Exposed.Land      Pasture    Residuals
## Sum of Squares  0.0000021729 0.0003680774 0.0000790233 0.0008720203
## Deg. of Freedom            1            1            1           23
## 
## Residual standard error: 0.006157428
## Estimated effects may be unbalanced
re3=lm(PPUT~Exposed.Land)
summary(re3)
## 
## Call:
## lm(formula = PPUT ~ Exposed.Land)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.008659 -0.005297 -0.001346  0.004430  0.013793 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.024296   0.001621  14.989 5.33e-14 ***
## Exposed.Land 0.001755   0.000621   2.827  0.00911 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.006328 on 25 degrees of freedom
## Multiple R-squared:  0.2422, Adjusted R-squared:  0.2119 
## F-statistic: 7.992 on 1 and 25 DF,  p-value: 0.009114
plot(PPUT,Exposed.Land)
abline(re3)

coplot(PPUT~Exposed.Land|Urban,panel=panel.smooth,data=mydata) # Coplot to observe interaction
summary(re3)
## 
## Call:
## lm(formula = PPUT ~ Exposed.Land)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.008659 -0.005297 -0.001346  0.004430  0.013793 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.024296   0.001621  14.989 5.33e-14 ***
## Exposed.Land 0.001755   0.000621   2.827  0.00911 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.006328 on 25 degrees of freedom
## Multiple R-squared:  0.2422, Adjusted R-squared:  0.2119 
## F-statistic: 7.992 on 1 and 25 DF,  p-value: 0.009114
############################################################################################



#Relationship between Pasture and PPFT on the Bay of Quinte (multiple regressions)
mod5=lm(mydata$PPFT~mydata$Urban+mydata$Exposed.Land+mydata$Pasture+mydata$Corn.Products+mydata$Beans+mydata$Grain, data=mydata)
summary(mod5)
## 
## Call:
## lm(formula = mydata$PPFT ~ mydata$Urban + mydata$Exposed.Land + 
##     mydata$Pasture + mydata$Corn.Products + mydata$Beans + mydata$Grain, 
##     data = mydata)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0032265 -0.0010267 -0.0002498  0.0010652  0.0036273 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)   
## (Intercept)           3.767e-03  1.450e-03   2.597  0.01723 * 
## mydata$Urban          9.790e-05  6.259e-05   1.564  0.13345   
## mydata$Exposed.Land   5.214e-04  1.960e-04   2.660  0.01504 * 
## mydata$Pasture        3.541e-04  1.131e-04   3.131  0.00527 **
## mydata$Corn.Products -7.454e-05  1.080e-04  -0.690  0.49802   
## mydata$Beans         -2.027e-04  1.318e-04  -1.537  0.13985   
## mydata$Grain         -1.840e-04  1.993e-04  -0.923  0.36699   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.001734 on 20 degrees of freedom
## Multiple R-squared:  0.5424, Adjusted R-squared:  0.4051 
## F-statistic: 3.951 on 6 and 20 DF,  p-value: 0.009099
aov(mod5)
## Call:
##    aov(formula = mod5)
## 
## Terms:
##                 mydata$Urban mydata$Exposed.Land mydata$Pasture
## Sum of Squares  3.521000e-07        3.665206e-05   1.883480e-05
## Deg. of Freedom            1                   1              1
##                 mydata$Corn.Products mydata$Beans mydata$Grain
## Sum of Squares          4.533380e-06 8.365180e-06 2.562410e-06
## Deg. of Freedom                    1            1            1
##                    Residuals
## Sum of Squares  6.015047e-05
## Deg. of Freedom           20
## 
## Residual standard error: 0.001734221
## Estimated effects may be unbalanced
re4=lm(PPFT~Pasture)
summary(re4)
## 
## Call:
## lm(formula = PPFT ~ Pasture)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0026712 -0.0011385 -0.0001550  0.0006483  0.0053173 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept) 4.767e-03  1.352e-03   3.525  0.00166 **
## Pasture     2.755e-04  9.462e-05   2.912  0.00745 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.001981 on 25 degrees of freedom
## Multiple R-squared:  0.2533, Adjusted R-squared:  0.2234 
## F-statistic:  8.48 on 1 and 25 DF,  p-value: 0.007452
plot(x=Pasture, y=PPFT,
     main= "Relationship Pasture-PPFT on Bay of Quinte",
     pch=19, col="blue", xlab="Pasture(%)", ylab= "Total Phosphorous (mg/L)") # Plot Model
abline(re4)
fitted <- predict(re4, interval = "confidence") # Determined confidence intervals
lines(Pasture, fitted[, "fit"],lwd=2)# Construct a regression line
lines(Pasture, fitted[, "lwr"], lty = "dotted",col="red")# determine lower confidence band
lines(Pasture, fitted[, "upr"], lty = "dotted",col="red") # determine upper confidence band
legend("topright", bty="n", legend=paste("R2 is", 
       format(summary(re4)$adj.r.squared, digits=4))) # Fit a legend and the R2

###########################################################################################


################################################################################################
###No Relationship
mod6=lm(PHYCO~Urban*Pasture)
summary(mod6)
## 
## Call:
## lm(formula = PHYCO ~ Urban * Pasture)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1254.7  -695.2  -109.1   377.2  3157.4 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   2026.60724  861.93821   2.351   0.0277 *
## Urban          -20.37394   81.56595  -0.250   0.8050  
## Pasture         51.39745   59.55648   0.863   0.3970  
## Urban:Pasture    0.06998    6.20633   0.011   0.9911  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 996.2 on 23 degrees of freedom
## Multiple R-squared:  0.09332,    Adjusted R-squared:  -0.02495 
## F-statistic: 0.7891 on 3 and 23 DF,  p-value: 0.5124
plot(Urban,PHYCO)
fitted <- predict(mod6, interval = "confidence")
lines(Urban, fitted[, "fit"])
lines(Urban, fitted[, "lwr"], lty = "dotted")
lines(Urban, fitted[, "upr"], lty = "dotted")

#########################################################################################


mod7=lm(mydata$PCRFU~mydata$Urban+mydata$Exposed.Land+mydata$Pasture+mydata$Corn.Products+mydata$Beans+mydata$Grain, data=mydata)
summary(mod7)
## 
## Call:
## lm(formula = mydata$PCRFU ~ mydata$Urban + mydata$Exposed.Land + 
##     mydata$Pasture + mydata$Corn.Products + mydata$Beans + mydata$Grain, 
##     data = mydata)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.67221 -0.27493 -0.05818  0.10867  1.32675 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)           0.68438    0.38158   1.794   0.0880 .
## mydata$Urban          0.01291    0.01647   0.784   0.4422  
## mydata$Exposed.Land   0.04438    0.05157   0.861   0.3997  
## mydata$Pasture        0.05536    0.02976   1.860   0.0776 .
## mydata$Corn.Products -0.02238    0.02842  -0.788   0.4401  
## mydata$Beans         -0.02805    0.03469  -0.809   0.4282  
## mydata$Grain         -0.06726    0.05244  -1.283   0.2143  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4563 on 20 degrees of freedom
## Multiple R-squared:  0.2363, Adjusted R-squared:  0.007236 
## F-statistic: 1.032 on 6 and 20 DF,  p-value: 0.4341
######################################################################################


mod8=lm(mydata$MCTOT~mydata$Urban+mydata$Exposed.Land+mydata$Pasture+mydata$Corn.Products+mydata$Beans+mydata$Grain, data=mydata)
summary(mod8)
## 
## Call:
## lm(formula = mydata$MCTOT ~ mydata$Urban + mydata$Exposed.Land + 
##     mydata$Pasture + mydata$Corn.Products + mydata$Beans + mydata$Grain, 
##     data = mydata)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.557 -2.561 -1.099  1.630  7.712 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)           2.62384    3.28161   0.800   0.4334  
## mydata$Urban          0.07044    0.14162   0.497   0.6243  
## mydata$Exposed.Land   0.67655    0.44352   1.525   0.1428  
## mydata$Pasture        0.11141    0.25593   0.435   0.6680  
## mydata$Corn.Products  0.15215    0.24439   0.623   0.5406  
## mydata$Beans         -0.35067    0.29832  -1.175   0.2536  
## mydata$Grain         -0.92188    0.45099  -2.044   0.0543 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.924 on 20 degrees of freedom
## Multiple R-squared:  0.3095, Adjusted R-squared:  0.1024 
## F-statistic: 1.494 on 6 and 20 DF,  p-value: 0.2307
#######################################################################################

mod9=lm(FWTEMP~Pasture*Beans*Grain)# Multiple regression
summary(mod9)
## 
## Call:
## lm(formula = FWTEMP ~ Pasture * Beans * Grain)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1947 -0.7810 -0.1603  0.8899  2.0853 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         15.25322    1.73521   8.790 4.02e-08 ***
## Pasture              0.13849    0.14497   0.955   0.3514    
## Beans                0.66149    0.39270   1.684   0.1084    
## Grain                5.41497    2.40968   2.247   0.0367 *  
## Pasture:Beans       -0.05274    0.03668  -1.438   0.1667    
## Pasture:Grain       -0.31170    0.13942  -2.236   0.0376 *  
## Beans:Grain         -0.78184    0.37565  -2.081   0.0512 .  
## Pasture:Beans:Grain  0.04691    0.02251   2.084   0.0509 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.251 on 19 degrees of freedom
## Multiple R-squared:  0.3418, Adjusted R-squared:  0.0993 
## F-statistic: 1.409 on 7 and 19 DF,  p-value: 0.2585
plot(mod9)
###########################################################################################
####################################################################################
reg0=lm(mydata$FWPH~mydata$Exposed.Land+mydata$Corn.Products+mydata$Beans+mydata$Grain, data=mydata)
summary(reg0)
## 
## Call:
## lm(formula = mydata$FWPH ~ mydata$Exposed.Land + mydata$Corn.Products + 
##     mydata$Beans + mydata$Grain, data = mydata)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.231345 -0.075549 -0.005422  0.070071  0.310394 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           8.232861   0.049054 167.832  < 2e-16 ***
## mydata$Exposed.Land  -0.063652   0.015884  -4.007 0.000593 ***
## mydata$Corn.Products -0.022451   0.007606  -2.952 0.007372 ** 
## mydata$Beans          0.023836   0.010280   2.319 0.030093 *  
## mydata$Grain          0.045537   0.013312   3.421 0.002447 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1413 on 22 degrees of freedom
## Multiple R-squared:  0.609,  Adjusted R-squared:  0.5379 
## F-statistic: 8.567 on 4 and 22 DF,  p-value: 0.0002512
aov(reg0)
## Call:
##    aov(formula = reg0)
## 
## Terms:
##                 mydata$Exposed.Land mydata$Corn.Products mydata$Beans
## Sum of Squares            0.1142043            0.0397436    0.2969676
## Deg. of Freedom                   1                    1            1
##                 mydata$Grain Residuals
## Sum of Squares     0.2337832 0.4395510
## Deg. of Freedom            1        22
## 
## Residual standard error: 0.1413492
## Estimated effects may be unbalanced
plot(reg0)
reg1=lm(DO~ Beans*I(Grain1^2)) # Multiple regression Model
## Error in unique(c("AsIs", oldClass(x))): object 'Grain1' not found
fitted <- predict(reg1, interval = "confidence")# Model Prediction
## Error in predict(reg1, interval = "confidence"): object 'reg1' not found
plot(Grain1, DO)
## Error in plot(Grain1, DO): object 'Grain1' not found
lines(Grain1, fitted[, "fit"])
## Error in lines(Grain1, fitted[, "fit"]): object 'Grain1' not found
# now the confidence bands
lines(Corn.Products, fitted[, "lwr"], lty = "dotted")
lines(Corn.Products, fitted[, "upr"], lty = "dotted")
summary(reg1)
## Error in summary(reg1): error in evaluating the argument 'object' in selecting a method for function 'summary': Error: object 'reg1' not found
plot(Exposed.Land,FWPH)

plot of chunk unnamed-chunk-1

mydata$Grain1<-log(mydata$Grain) # Creating a new variable in the database
names(mydata)
##  [1] "OBJECTID_1.."      "Shape.."           "OBJECTID"         
##  [4] "Year"              "gridcode"          "WatershedI"       
##  [7] "Area"              "CHOROPHYLL"        "CONDFIELD"        
## [10] "DO"                "FWPH"              "FWTEMP"           
## [13] "MCTOT"             "PCRFU"             "PHYCO"            
## [16] "PON"               "PPFT"              "PPPT"             
## [19] "PPUT"              "SDISC"             "Water"            
## [22] "Exposed.Land"      "Urban"             "Shrubland"        
## [25] "Wetland"           "Pasture"           "Grain"            
## [28] "Corn.Products"     "Beans"             "other.agriculture"
## [31] "Fruits"            "Coniferous"        "Broadleaf"        
## [34] "Mixed.Wood"        "Grain1"
attach(mydata)
## The following objects are masked from mydata (pos = 3):
## 
##     Area, Beans, Broadleaf, CHOROPHYLL, CONDFIELD, Coniferous,
##     Corn.Products, DO, Exposed.Land, Fruits, FWPH, FWTEMP, Grain,
##     gridcode, MCTOT, Mixed.Wood, OBJECTID, OBJECTID_1..,
##     other.agriculture, Pasture, PCRFU, PHYCO, PON, PPFT, PPPT,
##     PPUT, SDISC, Shape.., Shrubland, Urban, Water, WatershedI,
##     Wetland, Year
Grain1
##  [1] -3.71686749  0.19104424  1.52225277 -1.09496893  1.59307131
##  [6] -1.41482553  1.81803148 -0.92354196  1.03500240 -2.21279009
## [11] -1.51372781 -1.89732667 -2.24777499 -0.58249887 -2.81934496
## [16] -0.39220590 -2.14973526 -1.41560371  1.57223831  0.53461441
## [21]  1.67618306 -0.29585269  1.63844569  0.04160153  2.30082635
## [26]  0.31951063  1.21234714
##########################################################################################
#########################################################################################
reg2=lm(mydata$CONDFIELD~mydata$Urban+mydata$Exposed.Land+mydata$Pasture+mydata$Corn.Products+mydata$Beans+mydata$Grain, data=mydata)
summary(reg2)
## 
## Call:
## lm(formula = mydata$CONDFIELD ~ mydata$Urban + mydata$Exposed.Land + 
##     mydata$Pasture + mydata$Corn.Products + mydata$Beans + mydata$Grain, 
##     data = mydata)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -16.7264  -9.0706   0.5376   6.6879  19.3074 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          245.68975    9.84383  24.959  < 2e-16 ***
## mydata$Urban           0.63477    0.42481   1.494  0.15073    
## mydata$Exposed.Land    4.65312    1.33044   3.497  0.00227 ** 
## mydata$Pasture         1.14467    0.76773   1.491  0.15157    
## mydata$Corn.Products   0.06282    0.73308   0.086  0.93256    
## mydata$Beans          -2.00630    0.89488  -2.242  0.03646 *  
## mydata$Grain           0.09030    1.35284   0.067  0.94744    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.77 on 20 degrees of freedom
## Multiple R-squared:  0.5744, Adjusted R-squared:  0.4467 
## F-statistic: 4.498 on 6 and 20 DF,  p-value: 0.004858
###################################################################################################


#############################################################################################
############################################################################################
attach(mydata) # attach data
## The following objects are masked from mydata (pos = 3):
## 
##     Area, Beans, Broadleaf, CHOROPHYLL, CONDFIELD, Coniferous,
##     Corn.Products, DO, Exposed.Land, Fruits, FWPH, FWTEMP, Grain,
##     Grain1, gridcode, MCTOT, Mixed.Wood, OBJECTID, OBJECTID_1..,
##     other.agriculture, Pasture, PCRFU, PHYCO, PON, PPFT, PPPT,
##     PPUT, SDISC, Shape.., Shrubland, Urban, Water, WatershedI,
##     Wetland, Year
## 
## The following objects are masked from mydata (pos = 4):
## 
##     Area, Beans, Broadleaf, CHOROPHYLL, CONDFIELD, Coniferous,
##     Corn.Products, DO, Exposed.Land, Fruits, FWPH, FWTEMP, Grain,
##     gridcode, MCTOT, Mixed.Wood, OBJECTID, OBJECTID_1..,
##     other.agriculture, Pasture, PCRFU, PHYCO, PON, PPFT, PPPT,
##     PPUT, SDISC, Shape.., Shrubland, Urban, Water, WatershedI,
##     Wetland, Year
reg5=lm(CONDFIELD~Exposed.Land) #Fit linear model
summary(reg5) # summarize model
## 
## Call:
## lm(formula = CONDFIELD ~ Exposed.Land)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.337 -10.618   2.408   8.498  18.053 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   257.138      3.123  82.342  < 2e-16 ***
## Exposed.Land    5.187      1.196   4.335 0.000209 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.19 on 25 degrees of freedom
## Multiple R-squared:  0.4291, Adjusted R-squared:  0.4063 
## F-statistic: 18.79 on 1 and 25 DF,  p-value: 0.0002087
aov(reg5)   # Analysis of variance
## Call:
##    aov(formula = reg5)
## 
## Terms:
##                 Exposed.Land Residuals
## Sum of Squares      2793.836  3716.556
## Deg. of Freedom            1        25
## 
## Residual standard error: 12.19271
## Estimated effects may be unbalanced
plot(x= Exposed.Land, y= CONDFIELD,
     main= "Relationship Exposed Land- Water Conductivity on Bay of Quinte", # Graph Title
     pch=19, col="blue",xlab="Exposed Land(%)", ylab= "Electrical Conductivity (mS/cm)") # Plot model parameter
fitted <- predict(reg5, interval = "confidence") # confidence interval
lines(Exposed.Land, fitted[, "fit"]) #
lines(Exposed.Land, fitted[, "lwr"], lty = "dotted",col="red") # Lower confidence band
lines(Exposed.Land, fitted[, "upr"], lty = "dotted",col="red") # Upper confidence band
legend("topright", bty="n", legend=paste("R2 is", 
format(summary(reg5)$adj.r.squared, digits=4)))  # Legend with R2

plot of chunk unnamed-chunk-1

########################################################################################
#########################################################################################
#######################################################################################

reg6=lm(SDISC~Pasture)# Fit Model
summary(reg6)# Model summary
## 
## Call:
## lm(formula = SDISC ~ Pasture)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.47629 -0.15593 -0.03004  0.21892  0.50223 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.21892    0.17134   7.114 1.86e-07 ***
## Pasture      0.03407    0.01199   2.842   0.0088 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2511 on 25 degrees of freedom
## Multiple R-squared:  0.2442, Adjusted R-squared:  0.2139 
## F-statistic: 8.077 on 1 and 25 DF,  p-value: 0.008798
aov(reg6)# Analysis of variance
## Call:
##    aov(formula = reg6)
## 
## Terms:
##                   Pasture Residuals
## Sum of Squares  0.5090634 1.5757420
## Deg. of Freedom         1        25
## 
## Residual standard error: 0.2510571
## Estimated effects may be unbalanced
plot(x=Pasture, y=SDISC,
     main= "Relationship Pasture - SDISC on Bay of Quinte",pch=19, col="blue",
     xlab="Pasture(%)", ylab="SDISC (m)") # Plot model

fitted <- predict(reg6, interval = "confidence")# confidence interval
lines(Pasture, fitted[, "fit"],lwd=2)
lines(Pasture, fitted[, "lwr"], lty = "dotted",col="red",lwd=2)# lower confidence band
lines(Pasture, fitted[, "upr"], lty = "dotted",col="red",lwd=2) # Upper confidence band
legend("topright", bty="n", legend=paste("R2 is", 
      format(summary(reg6)$adj.r.squared, digits=4)))# Legend

plot of chunk unnamed-chunk-1

coplot(SDISC~Pasture|SDISC,panel=panel.smooth)  # coplot to observe parameter interaction

plot of chunk unnamed-chunk-1

##################################################################################################
#####################################################################################
###############################################################################
fit=lm(PPUT~SDISC)
summary(fit)
## 
## Call:
## lm(formula = PPUT ~ SDISC)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.009781 -0.004772 -0.002533  0.005310  0.014150 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  0.029200   0.008596   3.397  0.00228 **
## SDISC       -0.001115   0.005030  -0.222  0.82630   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.007263 on 25 degrees of freedom
## Multiple R-squared:  0.001963,   Adjusted R-squared:  -0.03796 
## F-statistic: 0.04918 on 1 and 25 DF,  p-value: 0.8263
names(mydata)
##  [1] "OBJECTID_1.."      "Shape.."           "OBJECTID"         
##  [4] "Year"              "gridcode"          "WatershedI"       
##  [7] "Area"              "CHOROPHYLL"        "CONDFIELD"        
## [10] "DO"                "FWPH"              "FWTEMP"           
## [13] "MCTOT"             "PCRFU"             "PHYCO"            
## [16] "PON"               "PPFT"              "PPPT"             
## [19] "PPUT"              "SDISC"             "Water"            
## [22] "Exposed.Land"      "Urban"             "Shrubland"        
## [25] "Wetland"           "Pasture"           "Grain"            
## [28] "Corn.Products"     "Beans"             "other.agriculture"
## [31] "Fruits"            "Coniferous"        "Broadleaf"        
## [34] "Mixed.Wood"        "Grain1"
plot(fit) # for model diagnostics

plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1

plot(PPUT,SDISC) # Plot parameter
abline(PPUT,SDISC,add=T) # add line on graph
## Warning in int_abline(a = a, b = b, h = h, v = v, untf = untf, ...): "add"
## is not a graphical parameter

plot of chunk unnamed-chunk-1

#####################################################################################
# Using ggplot2 for developing aesthetic graphics
#The learning curve is pretty steep but become fun when understood
######################################################################
install.packages("ggplot2") # install ggplot2 documentation is found online
## Installing package into 'H:/My Documents/R/win-library/3.2'
## (as 'lib' is unspecified)
## Error in contrib.url(repos, "source"): trying to use CRAN without setting a mirror
library(ggplot2) # Open ggplot2 library and graph algorithms
qplot(Pasture, SDISC, data=mydata, geom=c("point", "smooth"), # Plotting ggplot2
      method="lm", formula=y~x, 
      main="Regression of Pasture on SDISC", 
      xlab="Pasture", ylab="SDISC (m)")

plot of chunk unnamed-chunk-1

p <- ggplot(mydata, aes(Pasture, SDISC))
p + geom_point(colour = "red", size = 3)

plot of chunk unnamed-chunk-1

###########################################################################################
#Statistical Analysis Part II - Saturday 13-06-2015
########################################################
getwd()
## [1] "E:/BayofQuinte2"
setwd("E:\\BayofQuinte2")
list.files()
##  [1] "AAFC_Crop_Mapping_2011_v1_Metadata_EN.xml"
##  [2] "AAFC_Crop_Mapping_2011_v1_Metadata_FR.xml"
##  [3] "AESB-EOS_2011_CI_ON_30m_v1.tif"           
##  [4] "AESB-EOS_2011_CI_ON_30m_v1.tif.aux.xml"   
##  [5] "AESB-EOS_2011_CI_ON_30m_v1.tif.ovr"       
##  [6] "Collab_R.md"                              
##  [7] "Collab_R.R"                               
##  [8] "Collab_R.Rmd"                             
##  [9] "ExposedLandUrban.pdf"                     
## [10] "figure"                                   
## [11] "FinalStat1.csv"                           
## [12] "FinalStat2.csv"                           
## [13] "FinalStat3.csv"                           
## [14] "FinalStats.csv"                           
## [15] "FinalStats.xlsx"                          
## [16] "FinalStats4.xlsx"                         
## [17] "FinalStats5.csv"                          
## [18] "NormalityUrbanExposedLand.pdf"            
## [19] "Project_New.mxd"                          
## [20] "R_with vegetation Indices.Rhistory"       
## [21] "ResidualUrbanExposedLand.pdf"             
## [22] "Rplot.pdf"                                
## [23] "Rplot01.pdf"                              
## [24] "SalamanderIn R.txt"                       
## [25] "Vegetation Inventory.docx"
mydata1 <- read.csv("FinalStats5.csv", header=TRUE, 
                   sep=",")

View(mydata1)
edit(mydata1)
##    OBJECTID_1.. Shape.. OBJECTID Year gridcode WatershedI      Area
## 1             1 Polygon        1 2013        1          1   22.2131
## 2             2 Polygon        2 2013        0          2 3593.6400
## 3             3 Polygon        3 2013        3          3   63.6132
## 4             4 Polygon        4 2013        0          4 2784.3400
## 5             5 Polygon        5 2013        0          5  138.7460
## 6             6 Polygon        6 2013        0          6 1026.0600
## 7             7 Polygon        7 2013        7          7   32.7726
## 8             8 Polygon        8 2013        8          8 1052.0500
## 9             9 Polygon        9 2013        0          9  112.6950
## 10           10 Polygon       10 2012        0          1   22.2131
## 11           11 Polygon       11 2012        0          2 3593.6400
## 12           12 Polygon       12 2012        0          3   63.6132
## 13           13 Polygon       13 2012        0          4 2784.3400
## 14           14 Polygon       14 2012        0          5  138.7460
## 15           15 Polygon       15 2012        0          6 1026.0600
## 16           16 Polygon       16 2012        0          7   32.7726
## 17           17 Polygon       17 2012        0          8 1052.0500
## 18           18 Polygon       18 2012        0          9  112.6950
## 19           19 Polygon       19 2011       19          1   22.2131
## 20           20 Polygon       20 2011       20          2 3593.6400
## 21           21 Polygon       21 2011       21          3   63.6132
## 22           22 Polygon       22 2011       22          4 2784.3400
## 23           23 Polygon       23 2011       23          5  138.7460
## 24           24 Polygon       24 2011       24          6 1026.0600
## 25           25 Polygon       25 2011       25          7   32.7726
## 26           26 Polygon       26 2011       26          8 1052.0500
## 27           27 Polygon       27 2011       27          9  112.6950
##    CHOROPHYLL CONDFIELD       DO     FWPH   FWTEMP      MCTOT     PCRFU
## 1    6.225000  254.7586  9.12213 8.285350 19.78100  1.2166700 1.0564800
## 2    5.980000  255.7133  9.38837 8.119020 20.30420  0.1583330 0.7925930
## 3    5.235000  257.3951  8.71554 8.192520 20.06130  0.0300000 0.7959880
## 4    2.317778  237.7856 10.37260 8.227790 18.13300  0.9128570 0.6420000
## 5   66.570000  256.0574  8.73040 8.305170 19.85320  4.8120000 1.1596300
## 6    5.535000  246.2133  9.23891 8.070300 18.38180  1.7800000 0.5753330
## 7   11.005556  303.2860  9.96349 8.022360 16.33680  2.1545500 1.3370500
## 8    5.544286  256.8065  9.84252 8.365080 18.26880  0.8077780 1.6369400
## 9    9.917500  286.1991  8.20674 8.206740 17.08170  0.5840000 1.4309000
## 10   6.921429  258.7545 11.11249 7.946004 16.37412  4.1709414 0.7874660
## 11   7.028571  276.6121 11.69927 7.918423 16.83617  8.5060000 0.9086706
## 12   5.284615  276.8996 11.68883 7.927533 16.59223  8.5060000 0.8833761
## 13  12.876923  265.9464 12.26378 7.995238 16.54946 11.4543817 1.1190476
## 14   6.430769  250.0345 11.91570 8.017071 15.92044  0.0000000 1.0204762
## 15   7.071429  262.7923 11.51454 7.976560 16.31663  5.8325420 1.2090476
## 16   7.935714  282.0768 10.84007 7.719973 15.45208  9.8922145 1.3146599
## 17  43.600000  264.9231 11.60086 8.131879 17.28083 11.5205035 2.7264835
## 18  10.650000  280.6090 10.78354 7.985160 16.03781 12.2530000 2.0805536
## 19   5.008333  255.0377 12.67648 8.445817 17.26703  0.4649484 0.9385714
## 20   8.929167  264.1389 12.85899 8.335632 17.80013  0.1162936 1.7624339
## 21  10.091667  262.3361 11.32984 8.430801 17.93573  0.2680594 1.5152778
## 22   9.612500  276.1458 12.92521 8.401389 17.87139  0.4866084 1.2194444
## 23   8.462500  249.0417 13.14794 8.421403 17.02688  0.7218186 0.9891667
## 24  15.304545  264.2803 12.07167 8.426515 17.67545  0.7312644 1.4522727
## 25  12.866667  303.2709 10.18907 8.239279 16.67454  0.7037500 1.1322619
## 26  17.268182  262.0000 11.72590 8.530277 18.09656  1.0254015 1.3023377
## 27  13.431818  274.7917 10.68493 8.344741 16.39815  0.9445911 1.0477904
##       PHYCO        PON        PPFT       PPPT       PPUT     SDISC
## 1  2101.680 0.13425000 0.007300000 0.01818300 0.02190000 1.7857100
## 2  1710.530 0.12175000 0.005600000 0.01433300 0.01903300 1.6222200
## 3  1740.700 0.11575000 0.006400000 0.01763300 0.02330000 1.7000000
## 4  1280.570 0.08800000 0.006850000 0.01178000 0.01828200 1.5428600
## 5  2436.540 0.20950000 0.006900000 0.01874000 0.02370000 1.6400000
## 6  1232.410 0.11900000 0.006600000 0.00000000 0.01746700 1.7500000
## 7  2847.440 0.19600000 0.008150000 0.03329000 0.03340900 1.7090900
## 8  3314.880 0.26112500 0.008500000 0.03151000 0.03567300 1.3916700
## 9  3124.510 0.27475000 0.008500000 0.02958000 0.04150900 1.6500000
## 10 1710.526 0.18208333 0.008207143 0.01780000 0.02371429 1.8230769
## 11 1931.997 0.13266667 0.006538462 0.01360909 0.01963077 1.9285714
## 12 1879.574 0.13927273 0.006541667 0.01343000 0.01931667 1.9538462
## 13 2386.976 0.22740000 0.008275000 0.02131000 0.02719167 0.9714286
## 14 2110.712 0.15318182 0.007784615 0.01146000 0.02380000 1.5571429
## 15 2656.679 0.18541667 0.008276923 0.02113636 0.02672308 1.2892857
## 16 2830.466 0.16525000 0.013900000 0.02433636 0.03745385 2.0500000
## 17 5811.222 0.28975000 0.009914286 0.03034167 0.03985000 1.6142857
## 18 4404.485 0.25200000 0.010064286 0.02591667 0.03234286 1.8071429
## 19 1816.530 0.08981818 0.007491667 0.01169167 0.01871667 2.3463636
## 20 3804.942 0.16845455 0.006808333 0.01570833 0.02332500 1.4683333
## 21 3187.034 0.17145455 0.008225000 0.01990000 0.03035833 1.5716667
## 22 2634.910 0.14672727 0.009275000 0.01969167 0.02505833 1.4416667
## 23 2118.613 0.13872727 0.008191667 0.01525000 0.02387500 1.7550000
## 24 3100.235 0.22060000 0.008518182 0.02035455 0.03101818 1.3818182
## 25 2223.507 0.16318182 0.015208333 0.01958333 0.03748333 2.1400000
## 26 2864.650 0.15200000 0.010900000 0.01980909 0.03106364 1.6227273
## 27 2197.176 0.17680000 0.011790909 0.01804545 0.03241818 2.0108333
##       Water Exposed.Land     Urban Shrubland   Wetland   Pasture    Grain
## 1  0.072930     2.029880 17.592290 17.511260 10.392500  9.586217 0.024310
## 2  4.515051     0.296273  1.920768 11.775750  7.497971 12.718620 1.210513
## 3  0.165532     0.557431 31.043540 15.272770  4.023691 10.359170 4.582537
## 4  2.670904     0.382744  2.090145 16.786900 10.693250  6.767476 0.334550
## 5  1.406956     2.733478  2.037459 19.939990 16.995040 14.888180 4.918833
## 6  3.716262     0.992044  2.154078 27.216480 11.326060  9.785450 0.242968
## 7  0.505300     8.153461 18.053500 16.658430  4.838800 12.841220 6.159721
## 8  4.645465     1.871257  2.506701 33.063790  8.285323 13.486930 0.397110
## 9  1.998132     2.695321  1.169170 32.970770  9.656038 15.287060 2.815113
## 10 0.060775     1.572042 15.744730 19.622170 10.724730 10.153450 0.109395
## 11 4.408438     0.273934  1.629153 11.719380  7.606212 13.437390 0.220088
## 12 0.142895     0.560261 25.760680 13.006252  4.182149 10.008300 0.149969
## 13 2.171827     0.306461  1.800622 17.622600 11.549570  6.715176 0.105634
## 14 1.160463     2.289142  2.016053 18.184695 17.296020 14.784390 0.558501
## 15 3.203399     0.642680  2.051453 27.497347 11.855500 10.366120 0.059645
## 16 0.483331     6.033396 17.619600 25.254035  4.783876 15.024450 0.675565
## 17 4.120462     1.003296  2.469660 34.016695  8.885350 13.138585 0.116515
## 18 1.837610     2.640217  1.157990 29.312319  9.673608 17.780340 0.242779
## 19 0.056723     1.754367 16.105330  6.981003 10.331720 18.349947 4.817419
## 20 4.829556     0.213828  1.609168  7.670526  6.561266 15.627530 1.706790
## 21 0.090547     0.350870 26.090330  7.965324  3.521437 14.648844 5.345115
## 22 2.637643     0.241878  1.791474 13.973264 10.587100  9.206715 0.743897
## 23 1.205221     0.841320  2.025783 13.401438 15.855990 19.476837 5.147163
## 24 3.418386     0.293315  1.986369 23.016125 11.197380 14.197637 1.042479
## 25 0.584940     5.843908 18.479160  9.433188  4.127535 18.597247 9.982428
## 26 4.637081     0.473161  2.282482 27.806148  8.116111 19.272143 1.376454
## 27 1.613998     1.455873  1.147608 24.550187  8.720063 23.711645 3.361365
##    Corn.Products     Beans other.agriculture   Fruits Coniferous Broadleaf
## 1      10.534300 14.569750          0.000000 0.000000   0.093188 10.068360
## 2       5.208727  2.362924          0.004809 0.206214   7.212492 19.535140
## 3       7.552203  6.096373          0.000000 0.069325   0.739940  9.847008
## 4       1.753591  1.082778          0.004654 0.011346   7.789808 18.956080
## 5       5.222408  5.651176          0.247142 0.048650   5.806208  8.099890
## 6       0.720482  0.638645          0.017192 0.000000   9.816062 13.176380
## 7       6.983580  6.423356          0.000000 0.000000   3.861154  4.338992
## 8       1.405282  1.776215          0.000000 0.004106   6.412611 14.073360
## 9       2.014104  3.009975          0.000000 0.000000   6.311444 10.508160
## 10     17.653060  6.470494          0.000000 0.000000   0.182325  9.991383
## 11      5.189492  1.713026          0.000476 0.000852   7.336761 20.190570
## 12     17.628410  7.588988          0.000000 0.000000   0.690422 10.320970
## 13      2.414609  0.665576          0.000452 0.000000   7.547606 18.836160
## 14     13.600579  5.586310          0.000000 0.000000   5.176353  7.609499
## 15      1.188172  0.326734          0.004034 0.006491   9.529325 13.231120
## 16      7.615206  5.410009          0.032954 0.000000   3.732082  4.080850
## 17      1.377992  1.772279          0.006587 0.000000   6.358203 14.579020
## 18      8.245687  1.787297          0.000000 0.000000   6.219604  9.900414
## 19     10.911110 15.007330          0.036465 0.000000   0.024310  9.335014
## 20      4.083989  2.517848          0.048886 6.409648   6.386482 20.294830
## 21     13.225550  8.500118          0.093377 0.000000   0.302767  9.365976
## 22      1.805826  0.913758          0.013220 0.001972   6.031207 18.092070
## 23      8.274381  8.344437          0.019460 0.000000   5.629122  8.199136
## 24      1.098616  0.492250          0.020438 0.000000   8.735953 12.657730
## 25      8.576375  5.679136          0.389960 0.000000   4.168728  3.891362
## 26      3.066436  0.977718          0.008641 0.000000   5.617280 14.541640
## 27      3.103414  7.019814          0.055903 0.000000   4.929044  9.957116
##    Mixed.Wood
## 1    5.299566
## 2   25.435210
## 3    7.451752
## 4   30.622300
## 5    7.069160
## 6   19.887200
## 7    6.571651
## 8   11.667510
## 9    6.781828
## 10   5.660163
## 11  26.219640
## 12   7.873362
## 13  30.208760
## 14   6.748070
## 15  19.781680
## 16   5.209537
## 17  11.754170
## 18   6.260333
## 19   4.217773
## 20  28.362980
## 21   8.447771
## 22  33.914990
## 23   6.489901
## 24  21.583580
## 25   5.967487
## 26  11.432430
## 27   5.759602
attach(mydata1)
## The following objects are masked from mydata (pos = 4):
## 
##     Area, Beans, Broadleaf, CHOROPHYLL, CONDFIELD, Coniferous,
##     Corn.Products, DO, Exposed.Land, Fruits, FWPH, FWTEMP, Grain,
##     gridcode, MCTOT, Mixed.Wood, OBJECTID, OBJECTID_1..,
##     other.agriculture, Pasture, PCRFU, PHYCO, PON, PPFT, PPPT,
##     PPUT, SDISC, Shape.., Shrubland, Urban, Water, WatershedI,
##     Wetland, Year
## 
## The following objects are masked from mydata (pos = 5):
## 
##     Area, Beans, Broadleaf, CHOROPHYLL, CONDFIELD, Coniferous,
##     Corn.Products, DO, Exposed.Land, Fruits, FWPH, FWTEMP, Grain,
##     gridcode, MCTOT, Mixed.Wood, OBJECTID, OBJECTID_1..,
##     other.agriculture, Pasture, PCRFU, PHYCO, PON, PPFT, PPPT,
##     PPUT, SDISC, Shape.., Shrubland, Urban, Water, WatershedI,
##     Wetland, Year
## 
## The following objects are masked from mydata (pos = 6):
## 
##     Area, Beans, Broadleaf, CHOROPHYLL, CONDFIELD, Coniferous,
##     Corn.Products, DO, Exposed.Land, Fruits, FWPH, FWTEMP, Grain,
##     gridcode, MCTOT, Mixed.Wood, OBJECTID, OBJECTID_1..,
##     other.agriculture, Pasture, PCRFU, PHYCO, PON, PPFT, PPPT,
##     PPUT, SDISC, Shape.., Shrubland, Urban, Water, WatershedI,
##     Wetland, Year
mean(Fruits, na.rm=T)
## [1] 0.2503187
names(mydata1)
##  [1] "OBJECTID_1.."      "Shape.."           "OBJECTID"         
##  [4] "Year"              "gridcode"          "WatershedI"       
##  [7] "Area"              "CHOROPHYLL"        "CONDFIELD"        
## [10] "DO"                "FWPH"              "FWTEMP"           
## [13] "MCTOT"             "PCRFU"             "PHYCO"            
## [16] "PON"               "PPFT"              "PPPT"             
## [19] "PPUT"              "SDISC"             "Water"            
## [22] "Exposed.Land"      "Urban"             "Shrubland"        
## [25] "Wetland"           "Pasture"           "Grain"            
## [28] "Corn.Products"     "Beans"             "other.agriculture"
## [31] "Fruits"            "Coniferous"        "Broadleaf"        
## [34] "Mixed.Wood"
############################################################################

##Example to use

reg6=lm(SDISC~Pasture)# Fit Model
summary(reg6)# Model summary
## 
## Call:
## lm(formula = SDISC ~ Pasture)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.47629 -0.15593 -0.03004  0.21892  0.50223 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.21892    0.17134   7.114 1.86e-07 ***
## Pasture      0.03407    0.01199   2.842   0.0088 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2511 on 25 degrees of freedom
## Multiple R-squared:  0.2442, Adjusted R-squared:  0.2139 
## F-statistic: 8.077 on 1 and 25 DF,  p-value: 0.008798
aov(reg6)# Analysis of variance
## Call:
##    aov(formula = reg6)
## 
## Terms:
##                   Pasture Residuals
## Sum of Squares  0.5090634 1.5757420
## Deg. of Freedom         1        25
## 
## Residual standard error: 0.2510571
## Estimated effects may be unbalanced
plot(x=Pasture, y=SDISC,
     main= "Relationship Pasture - SDISC on Bay of Quinte",pch=19, col="blue",
     xlab="Pasture(%)", ylab="SDISC (m)") # Plot model
line(SDISC,Pasture)
## 
## Call:
## line(SDISC, Pasture)
## 
## Coefficients:
## [1]  8.542  3.162
fitted <- predict(reg6, interval = "confidence")# confidence interval
lines(Pasture, fitted[, "fit"],lwd=2)
lines(Pasture, fitted[, "lwr"], lty = "dotted",col="red",lwd=2)# lower confidence band
lines(Pasture, fitted[, "upr"], lty = "dotted",col="red",lwd=2) # Upper confidence band
legend("topright", bty="n", legend=paste("R2 is", 
                                         format(summary(reg6)$adj.r.squared, digits=4)))# Legend

plot of chunk unnamed-chunk-1

coplot(SDISC~Pasture|SDISC,panel=panel.smooth)  # coplot to observe parameter interaction

plot of chunk unnamed-chunk-1

########################################################################################
#Effect of exposed land, corn and beans on fresh water temperature
re1=lm(CHOROPHYLL~Pasture)
summary(re1)
## 
## Call:
## lm(formula = CHOROPHYLL ~ Pasture)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -9.516 -5.041 -3.747 -1.222 53.844 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)   4.9923     9.1026   0.548    0.588
## Pasture       0.5195     0.6369   0.816    0.422
## 
## Residual standard error: 13.34 on 25 degrees of freedom
## Multiple R-squared:  0.02592,    Adjusted R-squared:  -0.01305 
## F-statistic: 0.6652 on 1 and 25 DF,  p-value: 0.4224
aov(re1)
## Call:
##    aov(formula = re1)
## 
## Terms:
##                  Pasture Residuals
## Sum of Squares   118.330  4447.322
## Deg. of Freedom        1        25
## 
## Residual standard error: 13.33765
## Estimated effects may be unbalanced
plot(CHOROPHYLL,Urban)
abline(CHOROPHYLL,Urban)

plot of chunk unnamed-chunk-1

re2=lm(FWTEMP~Exposed.Land+I(Exposed.Land)^2)
summary(re2)
## 
## Call:
## lm(formula = FWTEMP ~ Exposed.Land + I(Exposed.Land)^2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4384 -1.0878 -0.1554  0.3441  2.5995 
## 
## Coefficients: (1 not defined because of singularities)
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      17.9002     0.3213  55.713   <2e-16 ***
## Exposed.Land     -0.2365     0.1231  -1.921   0.0662 .  
## I(Exposed.Land)       NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.254 on 25 degrees of freedom
## Multiple R-squared:  0.1287, Adjusted R-squared:  0.0938 
## F-statistic: 3.691 on 1 and 25 DF,  p-value: 0.06617
plot(x=Exposed.Land, y=FWTEMP,
     main= "Relationship Exposed Land - FWTEMP on Bay of Quinte",pch=19, col="blue",
     xlab="Exposed Land(%)", ylab="FWTEMP (c)") # Plot model

fitted <- predict(re2, interval = "confidence")# confidence interval
lines(Exposed.Land, fitted[, "fit"],lwd=2)
lines(Exposed.Land, fitted[, "lwr"], lty = "dotted",col="red",lwd=2)# lower confidence band
lines(Exposed.Land, fitted[, "upr"], lty = "dotted",col="red",lwd=2) # Upper confidence band
legend("topright", bty="n", legend=paste("R2 is", 
      format(summary(re2)$adj.r.squared, digits=4)))# Legend

plot of chunk unnamed-chunk-1

###################################################################################################

#Fresh water ph
names(mydata1)
##  [1] "OBJECTID_1.."      "Shape.."           "OBJECTID"         
##  [4] "Year"              "gridcode"          "WatershedI"       
##  [7] "Area"              "CHOROPHYLL"        "CONDFIELD"        
## [10] "DO"                "FWPH"              "FWTEMP"           
## [13] "MCTOT"             "PCRFU"             "PHYCO"            
## [16] "PON"               "PPFT"              "PPPT"             
## [19] "PPUT"              "SDISC"             "Water"            
## [22] "Exposed.Land"      "Urban"             "Shrubland"        
## [25] "Wetland"           "Pasture"           "Grain"            
## [28] "Corn.Products"     "Beans"             "other.agriculture"
## [31] "Fruits"            "Coniferous"        "Broadleaf"        
## [34] "Mixed.Wood"
re3=lm(FWPH~Grain)
summary(re3)
## 
## Call:
## lm(formula = FWPH ~ Grain)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.42290 -0.14650  0.00056  0.15576  0.36666 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  8.12289    0.04936 164.558   <2e-16 ***
## Grain        0.02959    0.01508   1.962   0.0609 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1974 on 25 degrees of freedom
## Multiple R-squared:  0.1335, Adjusted R-squared:  0.09883 
## F-statistic: 3.851 on 1 and 25 DF,  p-value: 0.06093
plot(x=Grain, y=FWPH,
     main= "Relationship Grain Production - FWTPH on Bay of Quinte",pch=19, col="blue",
     xlab="Grain(%)", ylab="FWPH (mS/cm)") # Plot model
abline(re3)

fitted <- predict(re3, interval = "confidence")# confidence interval
lines(Grain, fitted[, "fit"],lwd=2)
lines(Grain, fitted[, "lwr"], lty = "dotted",col="red",lwd=2)# lower confidence band
lines(Grain, fitted[, "upr"], lty = "dotted",col="red",lwd=2) # Upper confidence band
legend("topright", bty="n", legend=paste("R2 is", 
      format(summary(re3)$adj.r.squared, digits=4)))# Legend

plot of chunk unnamed-chunk-1

######################################################################################################
library(car)
names(mydata1)
##  [1] "OBJECTID_1.."      "Shape.."           "OBJECTID"         
##  [4] "Year"              "gridcode"          "WatershedI"       
##  [7] "Area"              "CHOROPHYLL"        "CONDFIELD"        
## [10] "DO"                "FWPH"              "FWTEMP"           
## [13] "MCTOT"             "PCRFU"             "PHYCO"            
## [16] "PON"               "PPFT"              "PPPT"             
## [19] "PPUT"              "SDISC"             "Water"            
## [22] "Exposed.Land"      "Urban"             "Shrubland"        
## [25] "Wetland"           "Pasture"           "Grain"            
## [28] "Corn.Products"     "Beans"             "other.agriculture"
## [31] "Fruits"            "Coniferous"        "Broadleaf"        
## [34] "Mixed.Wood"
r1=lm(PPFT~+Pasture)
summary(r1)
## 
## Call:
## lm(formula = PPFT ~ +Pasture)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0026712 -0.0011385 -0.0001550  0.0006483  0.0053173 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept) 4.767e-03  1.352e-03   3.525  0.00166 **
## Pasture     2.755e-04  9.462e-05   2.912  0.00745 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.001981 on 25 degrees of freedom
## Multiple R-squared:  0.2533, Adjusted R-squared:  0.2234 
## F-statistic:  8.48 on 1 and 25 DF,  p-value: 0.007452
crPlots(r1)

plot of chunk unnamed-chunk-1

########################################################################################################
names(mydata1)
##  [1] "OBJECTID_1.."      "Shape.."           "OBJECTID"         
##  [4] "Year"              "gridcode"          "WatershedI"       
##  [7] "Area"              "CHOROPHYLL"        "CONDFIELD"        
## [10] "DO"                "FWPH"              "FWTEMP"           
## [13] "MCTOT"             "PCRFU"             "PHYCO"            
## [16] "PON"               "PPFT"              "PPPT"             
## [19] "PPUT"              "SDISC"             "Water"            
## [22] "Exposed.Land"      "Urban"             "Shrubland"        
## [25] "Wetland"           "Pasture"           "Grain"            
## [28] "Corn.Products"     "Beans"             "other.agriculture"
## [31] "Fruits"            "Coniferous"        "Broadleaf"        
## [34] "Mixed.Wood"
r2=lm(CHOROPHYLL~other.agriculture)
summary(r2)
## 
## Call:
## lm(formula = CHOROPHYLL ~ other.agriculture)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -23.059  -4.189  -2.804   0.680  40.285 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          9.603      2.551   3.765 0.000904 ***
## other.agriculture   67.500     27.564   2.449 0.021689 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.14 on 25 degrees of freedom
## Multiple R-squared:  0.1935, Adjusted R-squared:  0.1612 
## F-statistic: 5.997 on 1 and 25 DF,  p-value: 0.02169
crPlots(r2)

plot of chunk unnamed-chunk-1

plot(other.agriculture, CHOROPHYLL, pch =19, col ="blue")
abline(r2,lwd = 2, col="red")

plot of chunk unnamed-chunk-1

summary(r2)
## 
## Call:
## lm(formula = CHOROPHYLL ~ other.agriculture)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -23.059  -4.189  -2.804   0.680  40.285 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          9.603      2.551   3.765 0.000904 ***
## other.agriculture   67.500     27.564   2.449 0.021689 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.14 on 25 degrees of freedom
## Multiple R-squared:  0.1935, Adjusted R-squared:  0.1612 
## F-statistic: 5.997 on 1 and 25 DF,  p-value: 0.02169
plot(x=CHOROPHYLL, y=other.agriculture,
     main= "Relationship Other agriculture-CHOROPHYLL  on Bay of Quinte",pch=19, col="blue",
     xlab="Agriculture(%)", ylab="CHOROPHYLL(mg/l)") # Plot model
abline(r2)

fitted <- predict(r2, interval = "confidence")# confidence interval
lines(other.agriculture, fitted[, "fit"],lwd=2)
lines(other.agriculture, fitted[, "lwr"], lty = "dotted",col="red",lwd=2)# lower confidence band
lines(other.agriculture, fitted[, "upr"], lty = "dotted",col="red",lwd=2) # Upper confidence band
legend("topright", bty="n", legend=paste("R2 is", 
      format(summary(r2)$adj.r.squared, digits=4)))# Legend

plot of chunk unnamed-chunk-1

###############################################################################################################
#Overview test for selected parameter 15/06/2015

################################################################################################################
mydata
##    OBJECTID_1.. Shape.. OBJECTID    Year gridcode WatershedI      Area
## 1             1 Polygon        1    2013        1          1   22.2131
## 2             2 Polygon        2    2013        0          2 3593.6400
## 3             3 Polygon        3    2013        3          3   63.6132
## 4             4 Polygon        4    2013        0          4 2784.3400
## 5             5 Polygon        5    2013        0          5  138.7460
## 6             6 Polygon        6    2013        0          6 1026.0600
## 7             7 Polygon        7    2013        7          7   32.7726
## 8             8 Polygon        8    2013        8          8 1052.0500
## 9             9 Polygon        9    2013        0          9  112.6950
## 10           10 Polygon       10    2012        0          1   22.2131
## 11           11 Polygon       11    2012        0          2 3593.6400
## 12           12 Polygon       12    2012        0          3   63.6132
## 13           13 Polygon       13    2012        0          4 2784.3400
## 14           14 Polygon       14    2012        0          5  138.7460
## 15           15 Polygon       15    2012        0          6 1026.0600
## 16           16 Polygon       16    2012        0          7   32.7726
## 17           17 Polygon       17    2012        0          8 1052.0500
## 18           18 Polygon       18    2012        0          9  112.6950
## 19           19 Polygon       19 Polygon       19          1   22.2131
## 20           20 Polygon       20 Polygon       20          2 3593.6400
## 21           21 Polygon       21 Polygon       21          3   63.6132
## 22           22 Polygon       22 Polygon       22          4 2784.3400
## 23           23 Polygon       23 Polygon       23          5  138.7460
## 24           24 Polygon       24 Polygon       24          6 1026.0600
## 25           25 Polygon       25 Polygon       25          7   32.7726
## 26           26 Polygon       26 Polygon       26          8 1052.0500
## 27           27 Polygon       27 Polygon       27          9  112.6950
##    CHOROPHYLL CONDFIELD       DO     FWPH   FWTEMP      MCTOT     PCRFU
## 1    6.225000  254.7586  9.12213 8.285350 19.78100  1.2166700 1.0564800
## 2    5.980000  255.7133  9.38837 8.119020 20.30420  0.1583330 0.7925930
## 3    5.235000  257.3951  8.71554 8.192520 20.06130  0.0300000 0.7959880
## 4    2.317778  237.7856 10.37260 8.227790 18.13300  0.9128570 0.6420000
## 5   66.570000  256.0574  8.73040 8.305170 19.85320  4.8120000 1.1596300
## 6    5.535000  246.2133  9.23891 8.070300 18.38180  1.7800000 0.5753330
## 7   11.005556  303.2860  9.96349 8.022360 16.33680  2.1545500 1.3370500
## 8    5.544286  256.8065  9.84252 8.365080 18.26880  0.8077780 1.6369400
## 9    9.917500  286.1991  8.20674 8.206740 17.08170  0.5840000 1.4309000
## 10   6.921429  258.7545 11.11249 7.946004 16.37412  4.1709414 0.7874660
## 11   7.028571  276.6121 11.69927 7.918423 16.83617  8.5060000 0.9086706
## 12   5.284615  276.8996 11.68883 7.927533 16.59223  8.5060000 0.8833761
## 13  12.876923  265.9464 12.26378 7.995238 16.54946 11.4543817 1.1190476
## 14   6.430769  250.0345 11.91570 8.017071 15.92044  0.0000000 1.0204762
## 15   7.071429  262.7923 11.51454 7.976560 16.31663  5.8325420 1.2090476
## 16   7.935714  282.0768 10.84007 7.719973 15.45208  9.8922145 1.3146599
## 17  43.600000  264.9231 11.60086 8.131879 17.28083 11.5205035 2.7264835
## 18  10.650000  280.6090 10.78354 7.985160 16.03781 12.2530000 2.0805536
## 19   5.008333  255.0377 12.67648 8.445817 17.26703  0.4649484 0.9385714
## 20   8.929167  264.1389 12.85899 8.335632 17.80013  0.1162936 1.7624339
## 21  10.091667  262.3361 11.32984 8.430801 17.93573  0.2680594 1.5152778
## 22   9.612500  276.1458 12.92521 8.401389 17.87139  0.4866084 1.2194444
## 23   8.462500  249.0417 13.14794 8.421403 17.02688  0.7218186 0.9891667
## 24  15.304545  264.2803 12.07167 8.426515 17.67545  0.7312644 1.4522727
## 25  12.866667  303.2709 10.18907 8.239279 16.67454  0.7037500 1.1322619
## 26  17.268182  262.0000 11.72590 8.530277 18.09656  1.0254015 1.3023377
## 27  13.431818  274.7917 10.68493 8.344741 16.39815  0.9445911 1.0477904
##       PHYCO        PON        PPFT       PPPT       PPUT     SDISC
## 1  2101.680 0.13425000 0.007300000 0.01818300 0.02190000 1.7857100
## 2  1710.530 0.12175000 0.005600000 0.01433300 0.01903300 1.6222200
## 3  1740.700 0.11575000 0.006400000 0.01763300 0.02330000 1.7000000
## 4  1280.570 0.08800000 0.006850000 0.01178000 0.01828200 1.5428600
## 5  2436.540 0.20950000 0.006900000 0.01874000 0.02370000 1.6400000
## 6  1232.410 0.11900000 0.006600000 0.00000000 0.01746700 1.7500000
## 7  2847.440 0.19600000 0.008150000 0.03329000 0.03340900 1.7090900
## 8  3314.880 0.26112500 0.008500000 0.03151000 0.03567300 1.3916700
## 9  3124.510 0.27475000 0.008500000 0.02958000 0.04150900 1.6500000
## 10 1710.526 0.18208333 0.008207143 0.01780000 0.02371429 1.8230769
## 11 1931.997 0.13266667 0.006538462 0.01360909 0.01963077 1.9285714
## 12 1879.574 0.13927273 0.006541667 0.01343000 0.01931667 1.9538462
## 13 2386.976 0.22740000 0.008275000 0.02131000 0.02719167 0.9714286
## 14 2110.712 0.15318182 0.007784615 0.01146000 0.02380000 1.5571429
## 15 2656.679 0.18541667 0.008276923 0.02113636 0.02672308 1.2892857
## 16 2830.466 0.16525000 0.013900000 0.02433636 0.03745385 2.0500000
## 17 5811.222 0.28975000 0.009914286 0.03034167 0.03985000 1.6142857
## 18 4404.485 0.25200000 0.010064286 0.02591667 0.03234286 1.8071429
## 19 1816.530 0.08981818 0.007491667 0.01169167 0.01871667 2.3463636
## 20 3804.942 0.16845455 0.006808333 0.01570833 0.02332500 1.4683333
## 21 3187.034 0.17145455 0.008225000 0.01990000 0.03035833 1.5716667
## 22 2634.910 0.14672727 0.009275000 0.01969167 0.02505833 1.4416667
## 23 2118.613 0.13872727 0.008191667 0.01525000 0.02387500 1.7550000
## 24 3100.235 0.22060000 0.008518182 0.02035455 0.03101818 1.3818182
## 25 2223.507 0.16318182 0.015208333 0.01958333 0.03748333 2.1400000
## 26 2864.650 0.15200000 0.010900000 0.01980909 0.03106364 1.6227273
## 27 2197.176 0.17680000 0.011790909 0.01804545 0.03241818 2.0108333
##       Water Exposed.Land     Urban Shrubland   Wetland   Pasture    Grain
## 1  0.072930     2.029880 17.592290 17.511260 10.392500  9.586217 0.024310
## 2  4.515051     0.296273  1.920768 11.775750  7.497971 12.718620 1.210513
## 3  0.165532     0.557431 31.043540 15.272770  4.023691 10.359170 4.582537
## 4  2.670904     0.382744  2.090145 16.786900 10.693250  6.767476 0.334550
## 5  1.406956     2.733478  2.037459 19.939990 16.995040 14.888180 4.918833
## 6  3.716262     0.992044  2.154078 27.216480 11.326060  9.785450 0.242968
## 7  0.505300     8.153461 18.053500 16.658430  4.838800 12.841220 6.159721
## 8  4.645465     1.871257  2.506701 33.063790  8.285323 13.486930 0.397110
## 9  1.998132     2.695321  1.169170 32.970770  9.656038 15.287060 2.815113
## 10 0.060775     1.572042 15.744730 19.622170 10.724730 10.153450 0.109395
## 11 4.408438     0.273934  1.629153 11.719380  7.606212 13.437390 0.220088
## 12 0.142895     0.560261 25.760680 13.006252  4.182149 10.008300 0.149969
## 13 2.171827     0.306461  1.800622 17.622600 11.549570  6.715176 0.105634
## 14 1.160463     2.289142  2.016053 18.184695 17.296020 14.784390 0.558501
## 15 3.203399     0.642680  2.051453 27.497347 11.855500 10.366120 0.059645
## 16 0.483331     6.033396 17.619600 25.254035  4.783876 15.024450 0.675565
## 17 4.120462     1.003296  2.469660 34.016695  8.885350 13.138585 0.116515
## 18 1.837610     2.640217  1.157990 29.312319  9.673608 17.780340 0.242779
## 19 0.056723     1.754367 16.105330  6.981003 10.331720 18.349947 4.817419
## 20 4.829556     0.213828  1.609168  7.670526  6.561266 15.627530 1.706790
## 21 0.090547     0.350870 26.090330  7.965324  3.521437 14.648844 5.345115
## 22 2.637643     0.241878  1.791474 13.973264 10.587100  9.206715 0.743897
## 23 1.205221     0.841320  2.025783 13.401438 15.855990 19.476837 5.147163
## 24 3.418386     0.293315  1.986369 23.016125 11.197380 14.197637 1.042479
## 25 0.584940     5.843908 18.479160  9.433188  4.127535 18.597247 9.982428
## 26 4.637081     0.473161  2.282482 27.806148  8.116111 19.272143 1.376454
## 27 1.613998     1.455873  1.147608 24.550187  8.720063 23.711645 3.361365
##    Corn.Products     Beans other.agriculture   Fruits Coniferous Broadleaf
## 1      10.534300 14.569750          0.000000 0.000000   0.093188 10.068360
## 2       5.208727  2.362924          0.004809 0.206214   7.212492 19.535140
## 3       7.552203  6.096373          0.000000 0.069325   0.739940  9.847008
## 4       1.753591  1.082778          0.004654 0.011346   7.789808 18.956080
## 5       5.222408  5.651176          0.247142 0.048650   5.806208  8.099890
## 6       0.720482  0.638645          0.017192 0.000000   9.816062 13.176380
## 7       6.983580  6.423356          0.000000 0.000000   3.861154  4.338992
## 8       1.405282  1.776215          0.000000 0.004106   6.412611 14.073360
## 9       2.014104  3.009975          0.000000 0.000000   6.311444 10.508160
## 10     17.653060  6.470494          0.000000 0.000000   0.182325  9.991383
## 11      5.189492  1.713026          0.000476 0.000852   7.336761 20.190570
## 12     17.628410  7.588988          0.000000 0.000000   0.690422 10.320970
## 13      2.414609  0.665576          0.000452 0.000000   7.547606 18.836160
## 14     13.600579  5.586310          0.000000 0.000000   5.176353  7.609499
## 15      1.188172  0.326734          0.004034 0.006491   9.529325 13.231120
## 16      7.615206  5.410009          0.032954 0.000000   3.732082  4.080850
## 17      1.377992  1.772279          0.006587 0.000000   6.358203 14.579020
## 18      8.245687  1.787297          0.000000 0.000000   6.219604  9.900414
## 19     10.911110 15.007330          0.036465 0.000000   0.024310  9.335014
## 20      4.083989  2.517848          0.048886 6.409648   6.386482 20.294830
## 21     13.225550  8.500118          0.093377 0.000000   0.302767  9.365976
## 22      1.805826  0.913758          0.013220 0.001972   6.031207 18.092070
## 23      8.274381  8.344437          0.019460 0.000000   5.629122  8.199136
## 24      1.098616  0.492250          0.020438 0.000000   8.735953 12.657730
## 25      8.576375  5.679136          0.389960 0.000000   4.168728  3.891362
## 26      3.066436  0.977718          0.008641 0.000000   5.617280 14.541640
## 27      3.103414  7.019814          0.055903 0.000000   4.929044  9.957116
##    Mixed.Wood      Grain1
## 1    5.299566 -3.71686749
## 2   25.435210  0.19104424
## 3    7.451752  1.52225277
## 4   30.622300 -1.09496893
## 5    7.069160  1.59307131
## 6   19.887200 -1.41482553
## 7    6.571651  1.81803148
## 8   11.667510 -0.92354196
## 9    6.781828  1.03500240
## 10   5.660163 -2.21279009
## 11  26.219640 -1.51372781
## 12   7.873362 -1.89732667
## 13  30.208760 -2.24777499
## 14   6.748070 -0.58249887
## 15  19.781680 -2.81934496
## 16   5.209537 -0.39220590
## 17  11.754170 -2.14973526
## 18   6.260333 -1.41560371
## 19   4.217773  1.57223831
## 20  28.362980  0.53461441
## 21   8.447771  1.67618306
## 22  33.914990 -0.29585269
## 23   6.489901  1.63844569
## 24  21.583580  0.04160153
## 25   5.967487  2.30082635
## 26  11.432430  0.31951063
## 27   5.759602  1.21234714
names(mydata)
##  [1] "OBJECTID_1.."      "Shape.."           "OBJECTID"         
##  [4] "Year"              "gridcode"          "WatershedI"       
##  [7] "Area"              "CHOROPHYLL"        "CONDFIELD"        
## [10] "DO"                "FWPH"              "FWTEMP"           
## [13] "MCTOT"             "PCRFU"             "PHYCO"            
## [16] "PON"               "PPFT"              "PPPT"             
## [19] "PPUT"              "SDISC"             "Water"            
## [22] "Exposed.Land"      "Urban"             "Shrubland"        
## [25] "Wetland"           "Pasture"           "Grain"            
## [28] "Corn.Products"     "Beans"             "other.agriculture"
## [31] "Fruits"            "Coniferous"        "Broadleaf"        
## [34] "Mixed.Wood"        "Grain1"
attach(mydata)
## The following objects are masked from mydata1:
## 
##     Area, Beans, Broadleaf, CHOROPHYLL, CONDFIELD, Coniferous,
##     Corn.Products, DO, Exposed.Land, Fruits, FWPH, FWTEMP, Grain,
##     gridcode, MCTOT, Mixed.Wood, OBJECTID, OBJECTID_1..,
##     other.agriculture, Pasture, PCRFU, PHYCO, PON, PPFT, PPPT,
##     PPUT, SDISC, Shape.., Shrubland, Urban, Water, WatershedI,
##     Wetland, Year
## 
## The following objects are masked from mydata (pos = 6):
## 
##     Area, Beans, Broadleaf, CHOROPHYLL, CONDFIELD, Coniferous,
##     Corn.Products, DO, Exposed.Land, Fruits, FWPH, FWTEMP, Grain,
##     Grain1, gridcode, MCTOT, Mixed.Wood, OBJECTID, OBJECTID_1..,
##     other.agriculture, Pasture, PCRFU, PHYCO, PON, PPFT, PPPT,
##     PPUT, SDISC, Shape.., Shrubland, Urban, Water, WatershedI,
##     Wetland, Year
## 
## The following objects are masked from mydata (pos = 7):
## 
##     Area, Beans, Broadleaf, CHOROPHYLL, CONDFIELD, Coniferous,
##     Corn.Products, DO, Exposed.Land, Fruits, FWPH, FWTEMP, Grain,
##     Grain1, gridcode, MCTOT, Mixed.Wood, OBJECTID, OBJECTID_1..,
##     other.agriculture, Pasture, PCRFU, PHYCO, PON, PPFT, PPPT,
##     PPUT, SDISC, Shape.., Shrubland, Urban, Water, WatershedI,
##     Wetland, Year
## 
## The following objects are masked from mydata (pos = 8):
## 
##     Area, Beans, Broadleaf, CHOROPHYLL, CONDFIELD, Coniferous,
##     Corn.Products, DO, Exposed.Land, Fruits, FWPH, FWTEMP, Grain,
##     gridcode, MCTOT, Mixed.Wood, OBJECTID, OBJECTID_1..,
##     other.agriculture, Pasture, PCRFU, PHYCO, PON, PPFT, PPPT,
##     PPUT, SDISC, Shape.., Shrubland, Urban, Water, WatershedI,
##     Wetland, Year
Model1=lm(PHYCO~Urban+Pasture+Grain+Exposed.Land+Shrubland+Corn.Products+Beans+Coniferous+Broadleaf+Mixed.Wood+other.agriculture)
summary(Model1)
## 
## Call:
## lm(formula = PHYCO ~ Urban + Pasture + Grain + Exposed.Land + 
##     Shrubland + Corn.Products + Beans + Coniferous + Broadleaf + 
##     Mixed.Wood + other.agriculture)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1258.22  -445.25   -59.89   297.49  2247.80 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)       -1993.114  11809.331  -0.169    0.868
## Urban                 6.696     72.695   0.092    0.928
## Pasture             109.579    117.255   0.935    0.365
## Grain                58.610    314.636   0.186    0.855
## Exposed.Land        122.744    168.920   0.727    0.479
## Shrubland            98.618    173.378   0.569    0.578
## Corn.Products        33.399    222.460   0.150    0.883
## Beans               -46.358    237.264  -0.195    0.848
## Coniferous         -164.934    301.903  -0.546    0.593
## Broadleaf            78.065    152.375   0.512    0.616
## Mixed.Wood           47.550    173.331   0.274    0.788
## other.agriculture   524.178   3577.502   0.147    0.885
## 
## Residual standard error: 1028 on 15 degrees of freedom
## Multiple R-squared:  0.3708, Adjusted R-squared:  -0.09062 
## F-statistic: 0.8036 on 11 and 15 DF,  p-value: 0.637
names(mydata)
##  [1] "OBJECTID_1.."      "Shape.."           "OBJECTID"         
##  [4] "Year"              "gridcode"          "WatershedI"       
##  [7] "Area"              "CHOROPHYLL"        "CONDFIELD"        
## [10] "DO"                "FWPH"              "FWTEMP"           
## [13] "MCTOT"             "PCRFU"             "PHYCO"            
## [16] "PON"               "PPFT"              "PPPT"             
## [19] "PPUT"              "SDISC"             "Water"            
## [22] "Exposed.Land"      "Urban"             "Shrubland"        
## [25] "Wetland"           "Pasture"           "Grain"            
## [28] "Corn.Products"     "Beans"             "other.agriculture"
## [31] "Fruits"            "Coniferous"        "Broadleaf"        
## [34] "Mixed.Wood"        "Grain1"
library(knitr)

fit=lm(PPPT~Exposed.Land)
summary(fit)
## 
## Call:
## lm(formula = PPPT ~ Exposed.Land)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0178810 -0.0027757 -0.0009241  0.0037052  0.0124426 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.0162893  0.0016672   9.771 5.11e-10 ***
## Exposed.Land 0.0016045  0.0006387   2.512   0.0188 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.006509 on 25 degrees of freedom
## Multiple R-squared:  0.2015, Adjusted R-squared:  0.1696 
## F-statistic:  6.31 on 1 and 25 DF,  p-value: 0.01883
#Exclusion of Liability
#In no event will Alexand Jick Neba be liable for any damages, 
#including without limitation, direct or indirect, special, incidental, 
#moral or consequential damages, loss of profits or data, opportunities or 
#information or for expenses arising from using this R Script, 
#with any software algorithms available thereon nor with any data
#or for use thereof or inability to use by interruption, defect,
#delay in operation  or system failure.
#It is advised that any user should have acquired at least advanced statistical modeling
#knowledge at the master degree level, and a sound understanding of R statistical environment.