Prodi : Teknik Informatika

Lembaga : UIN Maulana Malik Ibrahim Malang

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflowkelasc <- read_excel(path = "inflowkelascup.xlsx")
datainflowkelasc
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   57900.  2308.           23238.            9385.  3012.       1426.
##  2  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  3  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  4  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  5  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  6  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  7  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  8  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  9  2019  133762.  7509.           47112.           14750. 10915.       6077.
## 10  2020  109345.  6641.           36609.           10696.  9148.       6175.
## 11  2021   89270.  3702.           31840.           10748.  7769.       5009.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>
library(readxl)
dataOUTflowkelasc <- read_excel(path = "OUTflowkelascup.xlsx")
dataOUTflowkelasc
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## 11  2021   86627.  5770.           23453.            5941. 12631.       5128.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>

Visualisasi Prediksi Data Inflow Uang Kartal di Sumatera setiap periode

datainflowkelasc$Sumatera
##  [1]  57900.30  65910.57  98369.30  86023.55  86549.30  97763.55 103747.82
##  [8] 117494.94 133762.18 109344.58  89270.03
plot(datainflowkelasc$Sumatera, type = "l", col = "tomato")

Visualisasi Prediksi Data Outflow Uang Kartal di Sumatera setiap periode

dataOUTflowkelasc$Sumatera
##  [1]  80092.18  85234.64 103287.72 102338.21 109185.81 121991.73 133605.71
##  [8] 135676.35 153484.27 140588.81  86627.29
plot(dataOUTflowkelasc$Sumatera, type = "l", col = "cyan")

Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sumatera setiap periode

plot(datainflowkelasc$Sumatera, type = "l", col = "tomato")
lines(dataOUTflowkelasc$Sumatera, type = "l", col = "cyan")
legend("top",c("Inflow","Outflow"),fill=c("tomato","cyan"))

Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Sumatera Setiap Bulan

datainflowperbulan <- read_excel(path = "inflowperbulan.xlsx")
dataoutflowperbulan <- read_excel(path = "outflowperbulan.xlsx")
datainflowperbulan                                
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
dataoutflowperbulan                                
## # A tibble: 128 x 12
##    Bulan               Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
plot(datainflowperbulan$Sumatera, type = "l", col = "tomato")
lines(dataoutflowperbulan$Sumatera,col="cyan")
legend("top",c("Inflow","Outflow"),fill=c("tomato","cyan"))

Sumateratimeseries <- datainflowperbulan$Sumatera
plot.ts(Sumateratimeseries , type = "l", col = "tomato")

logSumatera <- log(datainflowperbulan$Sumatera)
plot.ts(logSumatera)

library(TTR)
## Warning: package 'TTR' was built under R version 4.1.2
SumateraSMA3 <- SMA(datainflowperbulan$Sumatera ,n=3)
plot.ts(SumateraSMA3 )

library("TTR")
SumateraSMA3 <- SMA(datainflowperbulan$Sumatera ,n=8)
plot.ts(SumateraSMA3 )

Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Sumatera

Sumaterainflowtimeseries <- ts(datainflowperbulan$Sumatera, frequency=12, start=c(2011,1))
Sumaterainflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  4164.243  3337.607  4878.287  3156.548  3821.275  3686.394  4369.643
## 2012  7371.435  5443.242  5022.248  4102.575  5321.981  4064.952  5489.699
## 2013 13436.780  8035.017  7017.142  8267.947  7623.367  6961.815  7552.290
## 2014 11612.677  6964.701  5238.644  5988.730  4921.418  5591.202  3440.204
## 2015 12838.000  5173.687  5600.472  4954.255  5358.552  5936.657 15050.224
## 2016 13692.690  7760.507  6313.597  5254.795  6761.434  5066.314 20548.504
## 2017 12734.711  7752.686  7568.883  6638.224  7317.874  4071.240 21208.720
## 2018 16240.858  7668.179  7130.231  7628.992  5973.344 19402.076 14326.890
## 2019 17413.907  9281.546  8215.984  9406.456  7523.072 26667.739 11014.410
## 2020 19330.620 10365.349  7128.873  6536.998  7788.132 14946.781  8278.451
## 2021 21182.291  9983.745  8648.731  9095.626 16275.454 10211.629  6787.420
##            Aug       Sep       Oct       Nov       Dec
## 2011  3668.498 12874.594  4776.883  5669.993  3496.335
## 2012  9422.659  6813.338  4563.922  5452.494  2842.029
## 2013 19523.108  5265.619  6181.279  5347.888  3157.046
## 2014 19746.407  6305.927  6798.485  5515.775  3899.380
## 2015  8915.131  5710.106  6763.497  6087.162  4161.556
## 2016  6548.412  7498.570  6952.295  6098.330  5268.100
## 2017  8722.990  8250.898  7610.729  7122.755  4748.106
## 2018  9119.047  8886.660  8429.308  8078.990  4610.368
## 2019 10707.883  9462.332 10195.256  8492.726  5380.872
## 2020  8012.437  7559.106  5735.149  8462.623  5200.062
## 2021  7085.136
Sumateraoutflowtimeseries <- ts(dataoutflowperbulan$Sumatera, frequency=12, start=c(2011,1))
Sumateraoutflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  3441.614  3989.113  4228.628  6721.276  5787.181  7394.536  7154.223
## 2012  3200.178  4100.054  6605.179  6665.551  7147.179  8560.319  7711.993
## 2013  2221.436  4621.158  8219.574  4613.748  8423.251  7790.216 17485.108
## 2014  4289.908  4820.657  7088.166  8015.452  7757.313  8157.185 24722.650
## 2015  2036.392  5682.352  6300.508 10051.597  7592.788 12421.852 22934.645
## 2016  2804.053  4909.740  6985.628  8649.278 10859.812 28813.953  6455.632
## 2017  4855.706  6495.905  9234.822  9234.883 11638.176 29889.710  3252.637
## 2018  2424.451  7487.879 10455.312  9952.146 19165.027 25439.136  6324.910
## 2019  3735.569  7719.811 11089.472 15127.060 37664.505  2465.417 10575.813
## 2020  4693.754  6958.705 12667.832 11775.906 19644.928  3971.849 12710.177
## 2021  1990.678  6099.024  9638.351 19930.265 22004.413  7748.386 11650.666
##            Aug       Sep       Oct       Nov       Dec
## 2011 16042.967  1914.778  5173.616  5609.913 12634.335
## 2012 13610.489  3180.756  6273.015  5018.851 13161.070
## 2013 10207.967  6806.163  8014.259  8355.285 16529.555
## 2014  2377.454  6171.922  7655.389  7005.319 14276.798
## 2015  4668.410  6733.060  5783.016  8056.207 16924.980
## 2016  7937.744 10071.108  7571.519  9563.416 17369.845
## 2017 11015.435  6693.301  8559.331 12083.466 20652.339
## 2018 10042.081  7060.453  8155.825  9944.104 19225.025
## 2019 11780.050  8535.685  8868.257 12462.606 23460.023
## 2020  9744.450  9247.241 14431.727  9435.013 25307.224
## 2021  7565.509
plot.ts(Sumaterainflowtimeseries)

plot.ts(Sumateraoutflowtimeseries)

Sumateraintimeseriescomponents <- decompose(Sumaterainflowtimeseries)
Sumateraintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2012  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2013  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2014  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2015  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2016  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2017  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2018  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2019  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2020  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2021  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2012  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2013  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2014  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2015  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2016  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2017  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2018  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2019  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2020  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2021  3070.5444  2282.6974
Sumateraouttimeseriescomponents <- decompose(Sumateraoutflowtimeseries)
Sumateraouttimeseriescomponents$seasonal
##               Jan          Feb          Mar          Apr          May
## 2011 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2012 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2013 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2014 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2015 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2016 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2017 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2018 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2019 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2020 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2021 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
##               Jun          Jul          Aug          Sep          Oct
## 2011  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2012  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2013  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2014  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2015  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2016  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2017  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2018  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2019  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2020  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2021  4146.113221  2196.088359     3.268476                          
##               Nov          Dec
## 2011 -1217.537318  7914.117948
## 2012 -1217.537318  7914.117948
## 2013 -1217.537318  7914.117948
## 2014 -1217.537318  7914.117948
## 2015 -1217.537318  7914.117948
## 2016 -1217.537318  7914.117948
## 2017 -1217.537318  7914.117948
## 2018 -1217.537318  7914.117948
## 2019 -1217.537318  7914.117948
## 2020 -1217.537318  7914.117948
## 2021
plot(Sumateraintimeseriescomponents$seasonal,type = "l", col = "tomato")
lines(Sumateraouttimeseriescomponents$seasonal,col="cyan")
legend("top",c("Inflow","Outflow"),fill=c("tomato","cyan"))

plot(Sumateraintimeseriescomponents$trend,type = "l", col = "tomato")
lines(Sumateraouttimeseriescomponents$trend,col="cyan")
legend("top",c("Inflow","Outflow"),fill=c("tomato","cyan"))

plot(Sumateraintimeseriescomponents$random ,type = "l", col = "tomato")
lines(Sumateraouttimeseriescomponents$random,col="cyan")
legend("top",c("Inflow","Outflow"),fill=c("tomato","cyan"))

plot(Sumateraintimeseriescomponents$figure ,type = "l", col = "tomato")
lines(Sumateraouttimeseriescomponents$figure,col="cyan")
legend("top",c("Inflow","Outflow"),fill=c("tomato","cyan"))

REFERENSI:

https://rpubs.com/suhartono-uinmaliki/861286

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx