Prodi : Teknik Informatika

Lembaga : UIN Maulana Malik Ibrahim Malang

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflowkelasc <- read_excel(path = "inflowkelascup.xlsx")
datainflowkelasc
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   57900.  2308.           23238.            9385.  3012.       1426.
##  2  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  3  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  4  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  5  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  6  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  7  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  8  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  9  2019  133762.  7509.           47112.           14750. 10915.       6077.
## 10  2020  109345.  6641.           36609.           10696.  9148.       6175.
## 11  2021   89270.  3702.           31840.           10748.  7769.       5009.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>
library(readxl)
dataOUTflowkelasc <- read_excel(path = "OUTflowkelascup.xlsx")
dataOUTflowkelasc
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## 11  2021   86627.  5770.           23453.            5941. 12631.       5128.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>

Visualisasi Prediksi Data Inflow Uang Kartal antara Aceh dengan Lampung setiap periode

plot(datainflowkelasc$Tahun ,datainflowkelasc$Aceh ,type = "l", col = "orchid")
lines(datainflowkelasc$Tahun  ,datainflowkelasc$Lampung ,col = "blue")
legend("top",c("Inflow Aceh","Inflow Lampung"),fill=c("orchid","blue"))

Visualisasi Prediksi Data Outflow Uang Kartal antara Aceh dengan Lampung setiap periode

plot(dataOUTflowkelasc$Tahun ,dataOUTflowkelasc$Aceh ,type = "l", col = "orchid")
lines(dataOUTflowkelasc$Tahun  ,dataOUTflowkelasc$Lampung ,col = "blue")
legend("top",c("Outflow Aceh","Outflow Lampung"),fill=c("orchid","blue"))

Visualisasi Prediksi Data Inflow-Outflow Uang Kartal antara Aceh dengan Lampung setiap periode

plot(datainflowkelasc$Tahun ,datainflowkelasc$Aceh ,type = "l", col = "dark blue")
lines(datainflowkelasc$Tahun ,datainflowkelasc$Lampung ,col = "maroon")
lines(dataOUTflowkelasc$Tahun ,dataOUTflowkelasc$Aceh ,type = "l", col = "coral")
lines(dataOUTflowkelasc$Tahun  ,dataOUTflowkelasc$Lampung ,col = "green")
legend("top",c("Inflow Aceh","Inflow Lampung","Outflow Aceh","Outflow Lampung"),fill=c("dark blue","maroon","coral","green"))

Visualisasi Prediksi Data Inflow-Outflow Uang Kartal antara Aceh dengan Lampung Setiap Bulan

datainflowperbulan <- read_excel(path = "inflowperbulan.xlsx")
dataoutflowperbulan <- read_excel(path = "outflowperbulan.xlsx")
datainflowperbulan                                
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
dataoutflowperbulan                                
## # A tibble: 128 x 12
##    Bulan               Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
plot(datainflowperbulan$Aceh ,type = "l", col = "dark blue")
lines(datainflowperbulan$Lampung ,col = "maroon")
lines(dataOUTflowkelasc$Aceh ,type = "l", col = "coral")
lines(dataOUTflowkelasc$Lampung ,col = "green")
legend("top",c("Inflow Aceh","Inflow Lampung","Outflow Aceh","Outflow Lampung"),fill=c("dark blue","maroon","coral","green"))

Acehtimeseries <- datainflowperbulan$Aceh
Lampungtimeseries <- datainflowperbulan$Lampung
plot.ts(Acehtimeseries , type = "l", col = "green")
lines(Lampungtimeseries , type = "l", col = "purple")
legend("top",c("Aceh Timeseries","Lampung Timeseries"),fill=c("green","purple"))

logAceh <- log(datainflowperbulan$Aceh)
logLampung <- log(datainflowperbulan$Lampung)
plot.ts(logAceh, type = "l", col = "pale violet red")
lines(logLampung , type = "l", col = "blue")
legend("top",c("logAceh","logLampung"),fill=c("pale violet red","blue"))

library("TTR")
## Warning: package 'TTR' was built under R version 4.1.2
AcehSMA3 <- SMA(datainflowperbulan$Aceh,n=3)
LampungSMA3 <- SMA(datainflowperbulan$Lampung,n=3)
plot.ts(AcehSMA3, type = "l", col = "red")
lines(LampungSMA3, type = "l", col = "cyan")
legend("top",c("AcehSMA3","LampungSMA3"),fill=c("red","cyan"))

library(TTR)
AcehSMA3 <- SMA(datainflowperbulan$Aceh,n=8)
LampungSMA3 <- SMA(datainflowperbulan$Lampung,n=8)
plot.ts(AcehSMA3, type = "l", col = "red")
lines(LampungSMA3, type = "l", col = "cyan")
legend("top",c("AcehSMA3","LampungSMA3"),fill=c("red","cyan"))

Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal antara Aceh dengan Lampung

Acehinflowtimeseries <- ts(datainflowperbulan$Aceh, frequency=12, start=c(2011,1))
Lampunginflowtimeseries <- ts(datainflowperbulan$Lampung, frequency=12, start=c(2011,1))
Acehinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  124.33329  115.14321  154.41614  122.18349  122.75253  151.37534
## 2012  315.65341  292.57807  170.13069  139.33374  167.56600  119.32971
## 2013 5571.15653 3457.27812 3253.57336 3775.08977 3705.38033 3449.77565
## 2014  779.00596  332.03457  248.89939  260.82180  168.17801  194.97802
## 2015  836.57498  376.45107  317.53476  263.06848  256.64615  398.59527
## 2016  883.11220  498.41373  242.45180  218.98473  298.46423  450.32018
## 2017 1120.37553  452.83734  347.32016  240.71874  299.60563  194.84441
## 2018 1279.35872  366.57150  278.86587  262.95066  288.49282 1005.08498
## 2019 1293.88334  565.87121  397.27368  342.84300  420.44274 1554.92585
## 2020 1641.95487  692.74998  297.06861  281.42142  489.21304 1095.11262
## 2021  762.78539  487.91516  368.91965  308.33410  566.54102  502.60975
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  107.22432  183.84525  605.62334  157.64630  287.24653  176.19523
## 2012  196.61835  420.06418  286.31394  142.89984  288.58842   80.49051
## 2013 3456.32173 8516.17096  243.91990  379.41362  322.99838  205.46842
## 2014  173.99322 1306.11875  271.45458  454.45573  219.11177  157.53593
## 2015  977.94399  495.56495  179.23767  257.65850  227.20326  123.34945
## 2016 1374.47417  310.75050  538.99459  432.31664  301.61184  225.04199
## 2017 1149.75614  264.01934  627.70230  365.36280  275.68807  175.99260
## 2018  784.64208  369.23511  426.04458  344.08223  243.18631  150.59965
## 2019  473.28934  684.81679  405.51614  467.20195  436.23339  466.53727
## 2020  257.81810  592.86464  410.39330  273.60601  438.09977  170.52803
## 2021  280.32142  424.17610
Lampunginflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  621.71179  358.56622  550.36496  340.44445  402.03710  573.97617
## 2012 1054.26685  666.52412  517.06758  282.85569  344.24522  206.42495
## 2013  234.65931  117.20955  170.13195   75.87996   74.77127   36.67275
## 2014 1433.51885  725.39736  590.72966  568.85388  487.63656  605.40178
## 2015 1360.19086  508.30661  417.04559  277.84130  383.31675  415.35766
## 2016 1390.23556  804.10302  598.27040  555.00940  286.75963  158.32177
## 2017 1134.20195  690.26841  655.03228  794.03117  675.69061  531.31408
## 2018 1802.74124  949.48387  814.34998  689.44512  370.42214 2491.07250
## 2019 2147.18917  921.91017  900.51341 1104.01903  842.23750 3364.05676
## 2020 2551.78237 1446.11620  939.33048  955.09673 1276.19200 1889.39473
## 2021 2555.46285 1243.57068  936.61307 1164.78835 2166.96750 1237.16558
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  656.24294  542.87169 1775.98512  623.85717  801.97986  442.08517
## 2012  412.76796 1054.75071  949.52907  542.34897  684.54376  253.90505
## 2013   44.55553  417.59331  503.81158  545.79969  811.39285  441.34723
## 2014  405.66825 2092.45192  643.26178  797.24338  708.30613  389.36846
## 2015 1428.15031  593.52078  619.52684  913.62659  703.11334  539.77191
## 2016 2223.80337  456.30742  715.20587  756.16663  791.67218  637.28563
## 2017 2604.58586 1140.22051 1078.63653 1103.29322  928.41949  742.39402
## 2018 1695.17386 1035.94201 1075.27013  999.38822 1026.78169  465.18491
## 2019 1323.56631 1497.04385 1400.45661 1499.49687 1110.19777  935.76984
## 2020 1067.22370 1128.19519 1159.70107  738.52056 1396.10786  609.86422
## 2021  636.42925  756.16900
Acehoutflowtimeseries <- ts(dataoutflowperbulan$Aceh, frequency=12, start=c(2011,1))
Lampungoutflowtimeseries <- ts(dataoutflowperbulan$Lampung, frequency=12, start=c(2011,1))
Acehoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  349.57673  192.62487  230.35748  528.59007  523.47023  405.84701
## 2012  420.97459  217.70857  503.88607  600.25342  429.26734  606.25526
## 2013  758.75245 1850.82994 2442.65886 1618.83372 2777.13063 2209.74012
## 2014  288.10448  489.92887  504.83732  773.93194  485.84142  912.38357
## 2015  269.29171  255.71308  521.69449 1125.85624  564.44034 1011.07770
## 2016  307.32375  172.45727  730.75026  667.74179 1079.70825 2642.66616
## 2017  247.27680  344.01370  677.88709  850.88747 1157.54011 2346.78323
## 2018  120.03917  266.02669  996.17473  707.23188 1634.43230 1889.68997
## 2019   85.36298  400.92165  964.22663 1218.54729 3312.30047  122.91218
## 2020  182.38950  426.10026 1433.83382 1432.33902 1689.68700  436.00470
## 2021   56.98918   60.56520  591.41875 1789.00566 2112.99646  176.09492
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  957.58488 1046.09243  123.98156  634.45751  595.14381  750.32697
## 2012  600.85083  791.04331  303.81795  854.83456  207.40890  841.70726
## 2013 5383.25551 2570.21842  566.69494  895.80335  699.91951 1504.22825
## 2014 1538.16507  285.80192  611.06198  902.31059  586.60778 1250.89508
## 2015 1558.53777  301.57675 1040.79937  316.39942  824.14892 1847.02405
## 2016  692.69059  653.34617 1027.41562  515.70143  962.49370 1858.31057
## 2017  282.09425 1520.49864  354.31840  667.42332  766.85433 2544.67010
## 2018  278.98765 1155.80705  609.61619  549.33587  622.53291 2619.93560
## 2019  687.35821 1230.78590  600.44006  552.87679 1055.67352 2855.56524
## 2020 1768.67777  455.94178  829.58521 1174.85940  774.36491 2269.89617
## 2021  662.04381  320.71844
Lampungoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  171.73514  219.94503  342.64595  449.19497  435.48670  560.37199
## 2012  158.37385  143.61587  394.89727  507.72792  767.30148  655.28330
## 2013   22.45428   29.23682  110.38391  131.24521  202.68550  265.22837
## 2014  176.19089  461.64557  620.25400  823.10212  860.99213  627.46225
## 2015   79.28158  339.63124  533.63173 1128.60610  824.42210 1345.73686
## 2016   90.45391  366.34626  546.39793  569.14521  878.53762 3098.46776
## 2017  237.91153  511.86310  849.69294  966.64675 1462.29777 3500.09080
## 2018  318.72999  882.14666 1174.25565  998.17193 2665.43895 2743.98079
## 2019  404.72220  917.99585 1094.90498 1598.16522 4619.20707  177.59795
## 2020  456.44219  786.94826 1872.12587  872.29617 2180.29038  535.27930
## 2021  101.59299  535.40874 1170.44151 1897.92824 2151.89979  841.46432
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  666.16768 1300.12070   85.77778  360.29523  363.14330  769.51399
## 2012 1070.05511 1224.03581  191.19995  311.82312  165.81554  785.51667
## 2013  716.58596  270.42444  682.06111  561.75263  495.94527 1083.01386
## 2014 2409.46995  269.11197  419.94532  498.62539  574.09363  598.25583
## 2015 2563.10561  767.93798  447.47874  410.26991  567.34463  938.38091
## 2016  500.52865 1026.05478 1034.08560  685.71598  788.86106  850.91234
## 2017  331.22315 1081.53768  589.27201  743.74975 1260.73121 1823.76710
## 2018  608.59506  813.89609  640.85045  760.05619  901.58457 1217.68173
## 2019 1207.01071  973.97942  907.99564  781.79512 1193.23921 1749.78046
## 2020 1538.36508  948.45298 1152.95654 1422.69234  897.20976 1210.34936
## 2021 1102.00325  249.35351
plot.ts(Acehinflowtimeseries,type = "l", col = "black")
lines(Lampunginflowtimeseries, type = "l", col = "red")
legend("top",c("Acehinflowtimeseries","Lampunginflowtimeseries"),fill=c("black","red"))

plot.ts(Acehoutflowtimeseries,type = "l", col = "black")
lines(Lampungoutflowtimeseries, type = "l", col = "red")
legend("top",c("Acehoutflowtimeseries","Lampungoutflowtimeseries"),fill=c("black","red"))

Acehintimeseriescomponents <- decompose(Acehinflowtimeseries)
Lampungintimeseriescomponents <- decompose(Lampunginflowtimeseries)
Acehintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2012  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2013  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2014  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2015  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2016  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2017  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2018  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2019  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2020  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2021  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2012  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2013  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2014  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2015  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2016  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2017  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2018  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2019  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2020  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2021  209.38959  624.31306
Lampungintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2012  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2013  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2014  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2015  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2016  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2017  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2018  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2019  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2020  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
## 2021  654.649730 -105.292355 -254.276223 -285.224912 -350.924198  196.297932
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2012  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2013  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2014  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2015  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2016  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2017  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2018  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2019  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2020  320.071011  118.042127  108.993961  -36.214500   -2.725779 -363.396795
## 2021  320.071011  118.042127
Acehouttimeseriescomponents <- decompose(Acehoutflowtimeseries)
Lampungouttimeseriescomponents <- decompose(Lampungoutflowtimeseries)
Acehouttimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2012 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2013 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2014 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2015 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2016 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2017 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2018 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2019 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2020 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2021 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2012  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2013  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2014  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2015  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2016  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2017  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2018  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2019  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2020  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2021  414.184121   42.244469
Lampungouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2012 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2013 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2014 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2015 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2016 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2017 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2018 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2019 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2020 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
## 2021 -687.44008 -392.00937  -70.57568  -36.15012  719.35511  546.83661
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2012  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2013  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2014  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2015  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2016  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2017  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2018  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2019  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2020  308.82481   14.24713 -242.90932 -213.87961 -159.94847  213.64900
## 2021  308.82481   14.24713
plot(Acehintimeseriescomponents$seasonal,type = "l", col = "purple")
lines(Lampungintimeseriescomponents$seasonal,col="tomato")
lines(Acehouttimeseriescomponents$seasonal, type = "l", col = "green yellow")
lines(Lampungouttimeseriescomponents$seasonal,col="gray")
legend("top",c("Aceh Inflow","Lampung Inflow", "Aceh Outflow","Lampung Outflow"),fill=c("purple","tomato","green yellow","gray"))

plot(Acehintimeseriescomponents$trend,type = "l", col = "purple")
lines(Lampungintimeseriescomponents$trend,col="tomato")
lines(Acehouttimeseriescomponents$trend, type = "l", col = "green yellow")
lines(Lampungouttimeseriescomponents$trend,col="gray")
legend("top",c("Aceh Inflow","Lampung Inflow", "Aceh Outflow","Lampung Outflow"),fill=c("purple","tomato","green yellow","gray"))

plot(Acehintimeseriescomponents$random,type = "l", col = "purple")
lines(Lampungintimeseriescomponents$random,col="tomato")
lines(Acehouttimeseriescomponents$random, type = "l", col = "green yellow")
lines(Lampungouttimeseriescomponents$random,col="gray")
legend("top",c("Aceh Inflow","Lampung Inflow", "Aceh Outflow","Lampung Outflow"),fill=c("purple","tomato","lightskyblue","gray"))

plot(Acehintimeseriescomponents$figure,type = "l", col = "purple")
lines(Lampungintimeseriescomponents$figure,col="palegreen")
lines(Acehouttimeseriescomponents$figure, type = "l", col = "lightskyblue")
lines(Lampungouttimeseriescomponents$figure,col="orange")
legend("top",c("Aceh Inflow","Lampung Inflow", "Aceh Outflow","Lampung Outflow"),fill=c("purple","palegreen","lightskyblue","orange"))

REFERENSI:

https://rpubs.com/suhartono-uinmaliki/861286

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx