Un Dataframe segun la disposicion de los datos puede clasificarse en:
a. El Formato “wide”, donde donde generalmente las categorias de las variables son ahora columnas o variables
Por ejemplo, estos son los datos en formato wide
| year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1981 | 16.8 | 16.1 | 18.5 | 17.7 | 18.9 | 21.4 | 22.1 | 22.8 | 22.9 | 21.7 | 21.3 | 18.9 |
| 1982 | 17.7 | 17.3 | 17.6 | 18.0 | 19.5 | 21.0 | 23.1 | 22.9 | 22.7 | 21.9 | 20.0 | 17.4 |
| 1983 | 16.9 | 17.0 | 18.3 | 18.7 | 18.9 | 21.9 | 22.5 | 22.9 | 24.4 | 23.9 | 21.0 | 18.9 |
| 1984 | 17.6 | 17.2 | 17.7 | 19.1 | 19.2 | 20.6 | 23.7 | 22.9 | 23.1 | 22.3 | 19.9 | 18.1 |
| 1985 | 16.8 | 17.3 | 17.8 | 18.7 | 18.9 | 22.1 | 22.8 | 24.3 | 24.0 | 22.8 | 20.8 | 18.4 |
| 1986 | 17.3 | 16.9 | 17.2 | 17.5 | 19.8 | 20.3 | 21.8 | 23.2 | 23.8 | 21.9 | 19.7 | 18.0 |
b. Formato “Long”, donde existe una variable para las categorias y otra variable para los valores de las categorias.
Por ejemplo, estos son los datos en formato long
| year | Id | mes | temperatura |
|---|---|---|---|
| 1981 | 1 | Jan | 16.8 |
| 1982 | 2 | Jan | 17.7 |
| 1983 | 3 | Jan | 16.9 |
| 1984 | 4 | Jan | 17.6 |
| 1985 | 5 | Jan | 16.8 |
| 1986 | 6 | Jan | 17.3 |
require(tidyverse)
require(rstatix)
nrow(tempMediagando)
tempMediagando<-cbind(tempMediagando,Id=c(1:length(tempMediagando$year)))
base<-tempMediagando %>%
gather(key="mes",value="temperatura","Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec") %>%
convert_as_factor (Id,year)
###
#dabernedo@gmail.com