##(1) What is the rank of the matrix A? A = 1 2 3 4 −1 0 1 3 0 1 −2 1 5 4 −2 −3
A: (1)The set of pivot columns of any reduced row echelon form matrix is known as Rank.
#Create a matrix
A = matrix(c(1,-1,0,5, 2,0,1,4, 3,1,-2,-2, 4,3,1,-3),ncol = 4)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] -1 0 1 3
## [3,] 0 1 -2 1
## [4,] 5 4 -2 -3
#Calculate Rank
RA <- qr(A)
RA$rank
## [1] 4
# Answer. The Matrix can have a maximum rank of 3 and mininum rank of 1
What is the rank of matrix B?
M <- matrix(c(1, 3, 2, 2, 6, 4, 1, 3, 2), nrow=3, ncol=3)
det(M)
## [1] 0
# the determinant of the Matrix is 0 and all the determinant of sub matrix of this matrix is also zero , the Rank is 1
A <- matrix(c(1, 0, 0, 2, 4, 0, 3, 5, 6), nrow=3, ncol=3)
ev <- eigen(A)
ev
## eigen() decomposition
## $values
## [1] 6 4 1
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0.5108407 0.5547002 1
## [2,] 0.7981886 0.8320503 0
## [3,] 0.3192754 0.0000000 0
Demonstration:
A= |1 2 3 4 −1 0 1 3 0 1 −2 1 5 4 −2 −3⎥
Ax=λx
|A−λI|x=0
A= |1-λ 2 3 0 4-λ 5 0 0 6-λ |
(1−λ)(4−λ)(6−λ)=0
Eigenvalue = [1 4 6]