Takeaway
Goals for this section:
We start off with a plot demonstrating the distribution of vaccinated and unvaccinated participants in this pilot:
We asked participants about whether they have the motivation to get the COVID-19 vaccine and whether they have the ability to get the vaccine for both vaccinated and unvaccinated people. We then fork them into 8 different segments based on the vaccination status, motivation to get the vaccine, and ability to get the vaccine. We obtain the distribution below:
## Error: `n()` must only be used inside dplyr verbs.
## Error: `n()` must only be used inside dplyr verbs.
Takeaways
Let’s investigate each impediment (motivation & ability) in detail, and see the distributions of the reasons why they have such impediments.
Takeaways
We asked: What’s the main reason you don’t want to be vaccinated?
Provided options:
The distribution of the answers demonstrates below:
## $x
## [1] "Motivational Impediment"
##
## $y
## [1] "count"
##
## attr(,"class")
## [1] "labels"
We asked: is there a main reason why you think there isn’t a benefit?
Provided options:
The distribution of the answers demonstrates below:
We asked: is there a main reason why you think there is risk?
Provided options:
The distribution of the answers demonstrates below:
We asked: is there a main reason why against your belief?
Provided options:
The distribution of the answers demonstrates below:
We asked: What’s the main difficulty of getting vaccinated?
Provided options:
The distribution of the answers demonstrates below:
We asked: is there a main reason why there isn’t availability?
Provided options:
We asked: is there a main reason why there isn’t time?
Provided options:
We asked: is there a main reason why there isn’t money?
Provided options:
We mapped binary and ordinal demographic variables to continuous variables (with value 0, 1, 2,…).
How we did the mapping:
ability: 1 if the participant has the ability to get vax, 0 if notfemale: 1 if female, 0 if malecountry: 1 if live in South Africa, 0 if notincome: 0 if the participant is unemployed, 1 if income < R5,000, 2 if income in R5,000 – R9,999, …, 6 if income > R100,000education: 1 if the participant’s education < high school, 2 if education is high school, …, 6 if education is a graduate degreereligiosity: 1 if the participant is not very religious, 2 if somewhat religious, 3 if very religiouspolitics: 1 if the participant is conservative, 2 if moderate, 3 if liberallocation: 1 if the participant lives in rural, 2 if suburban, 3 if urban,white: 1 if the participant is a white or caucasian, 0 if not## version vax_status N Missing Mean SD Min Q1 Median Q3 Max
## 1 Pilot 4 Vaccinated 92 268 47.22 45.74 2 15.5 33.5 62.5 274
## 2 Pilot 4 Unvaccinated 154 494 53.31 101.93 1 11.0 20.5 51.0 799
## 3 Pilot 4B Vaccinated 910 3890 41.73 44.81 2 12.0 28.0 55.0 333
## 4 Pilot 4B Unvaccinated 1566 6306 35.96 47.81 1 9.0 20.0 43.0 430
##
## Call:
## lm(formula = nchar ~ version, data = free_text_combined)
##
## Residuals:
## Min 1Q Median 3Q Max
## -50.03 -29.08 -17.08 10.92 747.97
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 51.028 3.281 15.552 < 2e-16 ***
## versionPilot 4B -12.949 3.440 -3.764 0.000171 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 51.46 on 2720 degrees of freedom
## (10958 observations deleted due to missingness)
## Multiple R-squared: 0.005182, Adjusted R-squared: 0.004816
## F-statistic: 14.17 on 1 and 2720 DF, p-value: 0.0001708
##
## Call:
## lm(formula = nchar ~ version + vax_status + version * vax_status,
## data = free_text_combined)
##
## Residuals:
## Min 1Q Median 3Q Max
## -52.31 -28.96 -15.96 10.04 745.69
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 53.305 4.142 12.868 < 2e-16 ***
## versionPilot 4B -17.344 4.341 -3.995 6.63e-05 ***
## vax_statusVaccinated -6.088 6.774 -0.899 0.3689
## versionPilot 4B:vax_statusVaccinated 11.852 7.104 1.668 0.0954 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 51.4 on 2718 degrees of freedom
## (10958 observations deleted due to missingness)
## Multiple R-squared: 0.008117, Adjusted R-squared: 0.007023
## F-statistic: 7.415 on 3 and 2718 DF, p-value: 6.05e-05
## version vax_status N Missing Mean SD Min Q1 Median Q3 Max
## 1 Pilot 4 Vaccinated 14 1 45.36 53.76 3 10 25.5 56 186
## 2 Pilot 4 Unvaccinated 9 18 38.89 36.60 4 6 24.0 64 103
## 3 Pilot 4B Vaccinated 117 33 42.90 41.26 2 12 26.0 67 186
## 4 Pilot 4B Unvaccinated 148 98 28.51 37.55 1 9 17.0 35 264
##
## Call:
## lm(formula = nchar ~ version, data = free_text_combined)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.83 -25.86 -14.86 12.42 229.14
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.826 8.424 5.084 6.7e-07 ***
## versionPilot 4B -7.962 8.782 -0.907 0.365
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 40.4 on 286 degrees of freedom
## (150 observations deleted due to missingness)
## Multiple R-squared: 0.002866, Adjusted R-squared: -0.0006208
## F-statistic: 0.8219 on 1 and 286 DF, p-value: 0.3654
##
## Call:
## lm(formula = nchar ~ version + vax_status + version * vax_status,
## data = free_text_combined)
##
## Residuals:
## Min 1Q Median 3Q Max
## -42.36 -23.51 -13.13 11.49 235.49
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 38.889 13.314 2.921 0.00377 **
## versionPilot 4B -10.375 13.713 -0.757 0.44990
## vax_statusVaccinated 6.468 17.065 0.379 0.70494
## versionPilot 4B:vax_statusVaccinated 7.916 17.766 0.446 0.65625
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 39.94 on 284 degrees of freedom
## (150 observations deleted due to missingness)
## Multiple R-squared: 0.03223, Adjusted R-squared: 0.02201
## F-statistic: 3.153 on 3 and 284 DF, p-value: 0.02531
## version vax_status N Missing Mean SD Min Q1 Median Q3 Max
## 1 Pilot 4 Vaccinated 14 136 42.21 26.19 2 30 35.5 59 96
## 2 Pilot 4 Unvaccinated 58 212 99.29 150.47 1 27 51.0 104 799
## 3 Pilot 4B Vaccinated 142 1508 50.27 44.02 2 23 37.5 65 264
## 4 Pilot 4B Unvaccinated 530 2176 58.83 57.58 1 21 40.5 76 430
##
## Call:
## lm(formula = nchar ~ version, data = free_text_combined)
##
## Residuals:
## Min 1Q Median 3Q Max
## -87.19 -38.02 -18.61 15.18 710.81
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 88.194 7.944 11.102 < 2e-16 ***
## versionPilot 4B -31.172 8.359 -3.729 0.000207 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 67.41 on 742 degrees of freedom
## (4032 observations deleted due to missingness)
## Multiple R-squared: 0.0184, Adjusted R-squared: 0.01708
## F-statistic: 13.91 on 1 and 742 DF, p-value: 0.0002067
##
## Call:
## lm(formula = nchar ~ version + vax_status + version * vax_status,
## data = free_text_combined)
##
## Residuals:
## Min 1Q Median 3Q Max
## -98.29 -37.83 -18.05 15.73 699.71
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 99.293 8.804 11.279 < 2e-16 ***
## versionPilot 4B -40.461 9.273 -4.363 1.46e-05 ***
## vax_statusVaccinated -57.079 19.965 -2.859 0.00437 **
## versionPilot 4B:vax_statusVaccinated 48.514 20.946 2.316 0.02082 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 67.05 on 740 degrees of freedom
## (4032 observations deleted due to missingness)
## Multiple R-squared: 0.03149, Adjusted R-squared: 0.02756
## F-statistic: 8.02 on 3 and 740 DF, p-value: 2.897e-05