library(readxl)
datainflowsumatera <- read_excel(path = "sumatera.xlsx")
datainflowsumatera 
## # A tibble: 10 x 12
##    Propinsi       `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##    <chr>           <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
##  1 Aceh            2308.  2620. 36337. 4.57e3  4710.  5775.  5514.  5799.  7509.
##  2 Sumatera Utara 23238. 25981. 18120. 3.05e4 30254. 34427. 35617. 41769. 47112.
##  3 Sumatera Barat  9385. 11192. 14056. 1.41e4 13309. 14078. 15312. 15058. 14750.
##  4 Riau            3012.  4447.  8933. 6.36e3  7156.  8211.  8553. 10730. 10915.
##  5 Kep. Riau       1426.  2236.  3378. 2.56e3  3218.  4317.  4412.  5134.  6077.
##  6 Jambi           1868.  2138.  3047. 5.17e3  4978.  4398.  4404.  5657.  6486.
##  7 Sumatera Sela~  7820.  9126.  8647. 1.00e4 10797. 12752. 13075. 14267. 14812.
##  8 Bengkulu        1153.  1201.  2378. 3.26e3  2791.  2889.  3620.  4150.  5789.
##  9 Lampung         7690.  6969.  3474. 9.45e3  8160.  9373. 12078. 13415. 17046.
## 10 Kep. Bangka B~     0      0      0  1.37e1  1177.  1544.  1164.  1517.  3265.
## # ... with 2 more variables: `2020` <dbl>, `2021` <dbl>
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.2
## Warning: package 'tibble' was built under R version 4.1.2
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'readr' was built under R version 4.1.2
## Warning: package 'dplyr' was built under R version 4.1.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
datasumatera <- datainflowsumatera  %>%
  pivot_longer (
  cols = 2:12,
  names_to = "years",
  values_to = "cases"
  )
datasumatera
## # A tibble: 110 x 3
##    Propinsi years  cases
##    <chr>    <chr>  <dbl>
##  1 Aceh     2011   2308.
##  2 Aceh     2012   2620.
##  3 Aceh     2013  36337.
##  4 Aceh     2014   4567.
##  5 Aceh     2015   4710.
##  6 Aceh     2016   5775.
##  7 Aceh     2017   5514.
##  8 Aceh     2018   5799.
##  9 Aceh     2019   7509.
## 10 Aceh     2020   6641.
## # ... with 100 more rows
  ggplot(data = datasumatera) +
  geom_col(
    mapping = aes(x = years, y = cases, fill = Propinsi),
    width = 1
  )

library(tidyverse)
datasumatera %>% 
  filter(Propinsi != "Aceh") %>% 
  ggplot() +
  geom_col(
    aes(x = years, y = cases, fill = Propinsi),
    width = 1
  )

library(tidyverse)
datasumatera %>% 
  filter(Propinsi != "Sumatera Utara") %>% 
  ggplot() +
  geom_col(
    aes(x = years, y = cases, fill = Propinsi),
    width = 1
  )

datasumatera[[1]]
##   [1] "Aceh"                 "Aceh"                 "Aceh"                
##   [4] "Aceh"                 "Aceh"                 "Aceh"                
##   [7] "Aceh"                 "Aceh"                 "Aceh"                
##  [10] "Aceh"                 "Aceh"                 "Sumatera Utara"      
##  [13] "Sumatera Utara"       "Sumatera Utara"       "Sumatera Utara"      
##  [16] "Sumatera Utara"       "Sumatera Utara"       "Sumatera Utara"      
##  [19] "Sumatera Utara"       "Sumatera Utara"       "Sumatera Utara"      
##  [22] "Sumatera Utara"       "Sumatera Barat"       "Sumatera Barat"      
##  [25] "Sumatera Barat"       "Sumatera Barat"       "Sumatera Barat"      
##  [28] "Sumatera Barat"       "Sumatera Barat"       "Sumatera Barat"      
##  [31] "Sumatera Barat"       "Sumatera Barat"       "Sumatera Barat"      
##  [34] "Riau"                 "Riau"                 "Riau"                
##  [37] "Riau"                 "Riau"                 "Riau"                
##  [40] "Riau"                 "Riau"                 "Riau"                
##  [43] "Riau"                 "Riau"                 "Kep. Riau"           
##  [46] "Kep. Riau"            "Kep. Riau"            "Kep. Riau"           
##  [49] "Kep. Riau"            "Kep. Riau"            "Kep. Riau"           
##  [52] "Kep. Riau"            "Kep. Riau"            "Kep. Riau"           
##  [55] "Kep. Riau"            "Jambi"                "Jambi"               
##  [58] "Jambi"                "Jambi"                "Jambi"               
##  [61] "Jambi"                "Jambi"                "Jambi"               
##  [64] "Jambi"                "Jambi"                "Jambi"               
##  [67] "Sumatera Selatan"     "Sumatera Selatan"     "Sumatera Selatan"    
##  [70] "Sumatera Selatan"     "Sumatera Selatan"     "Sumatera Selatan"    
##  [73] "Sumatera Selatan"     "Sumatera Selatan"     "Sumatera Selatan"    
##  [76] "Sumatera Selatan"     "Sumatera Selatan"     "Bengkulu"            
##  [79] "Bengkulu"             "Bengkulu"             "Bengkulu"            
##  [82] "Bengkulu"             "Bengkulu"             "Bengkulu"            
##  [85] "Bengkulu"             "Bengkulu"             "Bengkulu"            
##  [88] "Bengkulu"             "Lampung"              "Lampung"             
##  [91] "Lampung"              "Lampung"              "Lampung"             
##  [94] "Lampung"              "Lampung"              "Lampung"             
##  [97] "Lampung"              "Lampung"              "Lampung"             
## [100] "Kep. Bangka Belitung" "Kep. Bangka Belitung" "Kep. Bangka Belitung"
## [103] "Kep. Bangka Belitung" "Kep. Bangka Belitung" "Kep. Bangka Belitung"
## [106] "Kep. Bangka Belitung" "Kep. Bangka Belitung" "Kep. Bangka Belitung"
## [109] "Kep. Bangka Belitung" "Kep. Bangka Belitung"
datasumatera[[2]]
##   [1] "2011" "2012" "2013" "2014" "2015" "2016" "2017" "2018" "2019" "2020"
##  [11] "2021" "2011" "2012" "2013" "2014" "2015" "2016" "2017" "2018" "2019"
##  [21] "2020" "2021" "2011" "2012" "2013" "2014" "2015" "2016" "2017" "2018"
##  [31] "2019" "2020" "2021" "2011" "2012" "2013" "2014" "2015" "2016" "2017"
##  [41] "2018" "2019" "2020" "2021" "2011" "2012" "2013" "2014" "2015" "2016"
##  [51] "2017" "2018" "2019" "2020" "2021" "2011" "2012" "2013" "2014" "2015"
##  [61] "2016" "2017" "2018" "2019" "2020" "2021" "2011" "2012" "2013" "2014"
##  [71] "2015" "2016" "2017" "2018" "2019" "2020" "2021" "2011" "2012" "2013"
##  [81] "2014" "2015" "2016" "2017" "2018" "2019" "2020" "2021" "2011" "2012"
##  [91] "2013" "2014" "2015" "2016" "2017" "2018" "2019" "2020" "2021" "2011"
## [101] "2012" "2013" "2014" "2015" "2016" "2017" "2018" "2019" "2020" "2021"
# Table4a
tablesumatera<- gather(datainflowsumatera, 2:12,
                    # variabel kunci
                    key = "year",
                    # nilai variabel
                    value = "cases")

tablesumatera
## # A tibble: 110 x 3
##    Propinsi             year   cases
##    <chr>                <chr>  <dbl>
##  1 Aceh                 2011   2308.
##  2 Sumatera Utara       2011  23238.
##  3 Sumatera Barat       2011   9385.
##  4 Riau                 2011   3012.
##  5 Kep. Riau            2011   1426.
##  6 Jambi                2011   1868.
##  7 Sumatera Selatan     2011   7820.
##  8 Bengkulu             2011   1153.
##  9 Lampung              2011   7690.
## 10 Kep. Bangka Belitung 2011      0 
## # ... with 100 more rows
# table4a_new
tablesumatera$cases <- as.integer(tablesumatera$cases)
tablesumatera
## # A tibble: 110 x 3
##    Propinsi             year  cases
##    <chr>                <chr> <int>
##  1 Aceh                 2011   2307
##  2 Sumatera Utara       2011  23237
##  3 Sumatera Barat       2011   9384
##  4 Riau                 2011   3012
##  5 Kep. Riau            2011   1426
##  6 Jambi                2011   1867
##  7 Sumatera Selatan     2011   7820
##  8 Bengkulu             2011   1153
##  9 Lampung              2011   7690
## 10 Kep. Bangka Belitung 2011      0
## # ... with 100 more rows
# spread
table2_new <- spread(tablesumatera,
                        key = year,
                        value = cases)

#print
table2_new
## # A tibble: 10 x 12
##    Propinsi       `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##    <chr>           <int>  <int>  <int>  <int>  <int>  <int>  <int>  <int>  <int>
##  1 Aceh             2307   2619  36336   4566   4709   5774   5514   5799   7508
##  2 Bengkulu         1153   1201   2377   3261   2791   2888   3619   4149   5789
##  3 Jambi            1867   2138   3046   5169   4978   4398   4403   5656   6486
##  4 Kep. Bangka B~      0      0      0     13   1176   1544   1163   1517   3265
##  5 Kep. Riau        1426   2236   3377   2563   3217   4316   4411   5133   6077
##  6 Lampung          7690   6969   3473   9447   8159   9373  12078  13415  17046
##  7 Riau             3012   4447   8933   6358   7156   8210   8553  10729  10915
##  8 Sumatera Barat   9384  11192  14055  14102  13308  14078  15311  15058  14749
##  9 Sumatera Sela~   7820   9125   8647  10037  10797  12751  13075  14266  14811
## 10 Sumatera Utara  23237  25980  18120  30502  30253  34426  35616  41768  47112
## # ... with 2 more variables: `2020` <int>, `2021` <int>
filter(table2_new, Propinsi == 'Aceh' )
## # A tibble: 1 x 12
##   Propinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##   <chr>     <int>  <int>  <int>  <int>  <int>  <int>  <int>  <int>  <int>  <int>
## 1 Aceh       2307   2619  36336   4566   4709   5774   5514   5799   7508   6640
## # ... with 1 more variable: `2021` <int>
arrange(table2_new, Propinsi)
## # A tibble: 10 x 12
##    Propinsi       `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019`
##    <chr>           <int>  <int>  <int>  <int>  <int>  <int>  <int>  <int>  <int>
##  1 Aceh             2307   2619  36336   4566   4709   5774   5514   5799   7508
##  2 Bengkulu         1153   1201   2377   3261   2791   2888   3619   4149   5789
##  3 Jambi            1867   2138   3046   5169   4978   4398   4403   5656   6486
##  4 Kep. Bangka B~      0      0      0     13   1176   1544   1163   1517   3265
##  5 Kep. Riau        1426   2236   3377   2563   3217   4316   4411   5133   6077
##  6 Lampung          7690   6969   3473   9447   8159   9373  12078  13415  17046
##  7 Riau             3012   4447   8933   6358   7156   8210   8553  10729  10915
##  8 Sumatera Barat   9384  11192  14055  14102  13308  14078  15311  15058  14749
##  9 Sumatera Sela~   7820   9125   8647  10037  10797  12751  13075  14266  14811
## 10 Sumatera Utara  23237  25980  18120  30502  30253  34426  35616  41768  47112
## # ... with 2 more variables: `2020` <int>, `2021` <int>
select(table2_new, Propinsi, '2011')
## # A tibble: 10 x 2
##    Propinsi             `2011`
##    <chr>                 <int>
##  1 Aceh                   2307
##  2 Bengkulu               1153
##  3 Jambi                  1867
##  4 Kep. Bangka Belitung      0
##  5 Kep. Riau              1426
##  6 Lampung                7690
##  7 Riau                   3012
##  8 Sumatera Barat         9384
##  9 Sumatera Selatan       7820
## 10 Sumatera Utara        23237