\[A= \begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & 1 & 3 \\ 0 & 1 & -2 & 1 \\ 5 & 4 & -2 & -3\\ \end{bmatrix} \]
The rank of the matrix refers to the number of linearly independent rows or columns in the matrix. ρ(A) is used to denote the rank of matrix A.
Properties of the Rank of the Matrix:
Rank linear algebra refers to finding column rank or row rank collectively known as the rank of the matrix.
Zero matrices have no non-zero row. Hence it has an independent row (or column). So, the rank of the zero matrices is zero.
When the rank equals the smallest dimension it is called the full rank matrix.
Matrix A.
library(Matrix)
A = matrix(c(1,2,3,4,-1,0,1,3,0,1,-2,1,5,4,-2,-3), nrow = 4, byrow = TRUE)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] -1 0 1 3
## [3,] 0 1 -2 1
## [4,] 5 4 -2 -3
Use rankMatrix() fundction to obtain the rank matrix.
rankA<-rankMatrix(A)
rankA[1]
## [1] 4
The rank matrix for A is 4.
For the Linearly independent columns, the maximum rank is the number of the columns, and since the matix is non-zero matrix, the minumum rank should be 1.
\[B= \begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 2 & 4 & 2 \\ \end{bmatrix} \]
B = matrix(c(1,2,1,3,6,3,2,4,2), nrow = 3, byrow = TRUE)
B
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 3 6 3
## [3,] 2 4 2
rankB<-rankMatrix(B)
rankB[1]
## [1] 1
According to the rankMatrix() function, The rank of matrix B is 1.
\[A= \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \\ \end{bmatrix} \]
a<-matrix(c(1,2,3,0,4,5,0,0,6), nrow = 3, byrow=T)
a
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 0 4 5
## [3,] 0 0 6
Eigen value and Eigen vectors with eigen() function.
ev<-eigen(a)
ev
## eigen() decomposition
## $values
## [1] 6 4 1
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0.5108407 0.5547002 1
## [2,] 0.7981886 0.8320503 0
## [3,] 0.3192754 0.0000000 0
With R computation, I got the eigen values and eigen vectors. Let me see how is this work in mathmatic term.
\[ \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \\ \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \\ \end{bmatrix} =0 \] \[ \begin{bmatrix} 1-\lambda & 0 & 3 \\ 0 & 4-\lambda & 0 \\ 0 & 0 & 6-\lambda \\ \end{bmatrix} =0 \] \[(1-\lambda)(4-\lambda)(6-\lambda)=0\]
\[1-\lambda = 0\]
\[\lambda1 = 1\]
\[4-\lambda = 0\] \[\lambda2 = 4\]
\[6-\lambda = 0\] \[\lambda3 = 6\]
when \[\lambda = 6, \begin{bmatrix} -5 & 2 & 3 \\ 0 & -2 & 5 \\ 0 & 0 & 0 \\ \end{bmatrix} =0 \]
when \[\lambda = 1, \begin{bmatrix} 0 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 5 \\ \end{bmatrix} =0 \]
when \[\lambda = 4, \begin{bmatrix} -3 & 2 & 3 \\ 0 & 8 & 5 \\ 0 & 0 & 10 \\ \end{bmatrix} =0 \] lambda = 6 vector = (1, 1.6, 2.5)
1.6/sqrt(1.6^2+2.5^2+1^2)
## [1] 0.5108407
2.5/sqrt(1.6^2+2.5^2+1^2)
## [1] 0.7981886
1/sqrt(1.6^2+2.5^2+1^2)
## [1] 0.3192754
lambda = 1 vector = (0, 0, 1)
1/sqrt(0^2+0^2+1^2)
## [1] 1
0/sqrt(0^2+0^2+1^2)
## [1] 0
0/sqrt(0^2+0^2+1^2)
## [1] 0
lambda = 4 vector = (0, 1.5, 1)
1/sqrt(1^2 +1.5^2+0^2)
## [1] 0.5547002
1.5/sqrt(1^2 +1.5^2 + 0^2)
## [1] 0.8320503
0/sqrt(1^2 +1.5^2 + 0^2)
## [1] 0
It looks the the two methods give the same answers.