Dosen Pengampu : Prof. Dr. Suhartono, M.Kom

Mata Kuliah : Linier Algebra

Prodi : Teknik Informatika

Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Pendahuluan

Bank Indonesia (BI) merupakan Bank sentral Republik Indonesia dan satu-satunya lembaga yang berwenang untuk mencetak serta mengedarkan uang rupiah kepada masyarakat. Dalam kapasitasnya sebagai bank sentral, BI mempunyai satu tujuan tunggal, yaitu mencapai dan memelihara kestabilan nilai rupiah.Adapun salah satu tugas dari BI adalah mengatur dan menjaga kelancaran sistem pembayaran. Dalam rangka mengatur dan menjaga kelancaran sistem pembayaran, BI berwenang untuk melakukan pengelolaan uang rupiah yang meliputi tahapan perencanaan, pencetakan, pengeluaran, pengedaran, pencabutan dan penarikan, serta pemusnahan uang rupiah (Bank Indonesia, 2012). Perencanaan tersebut dapat dilakukan dengan melakukan peramalan untuk inflow dan outflow uang kartal. Inflow merupakan uang yang masuk ke BI melalui kegiatan penyetoran, sedangkan outflow merupakan uang yang keluar dari BI melalui kegiatan penarikan.

Visualisasi

Berikut prediksi data Inflow-Outflow Uang Kartal di Aceh dan contoh penerapan visualisasi menggunakan bahasa pemrograman R.

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
inflowBI <- read_excel("~/inflowBI.xlsx")
## New names:
## * `` -> ...1
## * `` -> ...3
inflowBI
## # A tibble: 11 x 14
##     ...1 Tahun ...3  Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dbl> <dbl> <lgl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>
##  1     1  2011 NA      57900.  2308.           23238.            9385.  3012.
##  2     2  2012 NA      65911.  2620.           25981.           11192.  4447.
##  3     3  2013 NA      98369. 36337.           18120.           14056.  8933.
##  4     4  2014 NA      86024.  4567.           30503.           14103.  6358.
##  5     5  2015 NA      86549.  4710.           30254.           13309.  7156.
##  6     6  2016 NA      97764.  5775.           34427.           14078.  8211.
##  7     7  2017 NA     103748.  5514.           35617.           15312.  8553.
##  8     8  2018 NA     117495.  5799.           41769.           15058. 10730.
##  9     9  2019 NA     133762.  7509.           47112.           14750. 10915.
## 10    10  2020 NA     109345.  6641.           36609.           10696.  9148.
## 11    11  2021 NA      89270.  3702.           31840.           10748.  7769.
## # ... with 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
plot(inflowBI$Tahun,inflowBI$`Aceh`,type = "l", col= "dark red")

\[Visualisasi Prediksi Data Inflow Uang Kartal di- Aceh Setiap Periode\]

library(readxl)
outflowBI <- read_excel("~/outflowBI.xlsx")
## New names:
## * `` -> ...2
outflowBI
## # A tibble: 11 x 13
##    Tahun ...2  Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dbl> <lgl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>
##  1  2011 NA      80092.  6338.           22176.            5300. 12434.
##  2  2012 NA      85235.  6378.           22495.            6434. 13014.
##  3  2013 NA     103288. 23278.           19235.            6511. 15460.
##  4  2014 NA     102338.  8630.           26391.            7060. 15158.
##  5  2015 NA     109186.  9637.           27877.            7471. 15789.
##  6  2016 NA     121992. 11311.           31959.            9198. 17645.
##  7  2017 NA     133606. 11760.           35243.           10754. 18128.
##  8  2018 NA     135676. 11450.           36908.            8447. 17926.
##  9  2019 NA     153484. 13087.           44051.            9465. 19277.
## 10  2020 NA     140589. 12874.           39758.            8763. 19139.
## 11  2021 NA      86627.  5770.           23453.            5941. 12631.
## # ... with 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
plot(outflowBI$Tahun,outflowBI$`Aceh`,type = "l", col= "salmon")

\[Visualisasi Prediksi Data Outflow Uang Kartal di -Aceh Setiap Periode\]

plot(inflowBI$Tahun,inflowBI$`Aceh`,type = "l", col= "dark red")
lines(outflowBI$Tahun,outflowBI$`Aceh`,col="salmon")
legend("top",c("inflow","outflow"),fill=c("dark red","salmon"))

\[Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di -Aceh Setiap Periode\]

Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Aceh Setiap Bulan

library(readxl)
inflowPerBulan <- read_excel("~/inflowPerBulan.xlsx")
## New names:
## * `` -> ...2
inflowPerBulan
## # A tibble: 128 x 13
##    Bulan               ...2  Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`
##    <dttm>              <lgl>    <dbl> <dbl>            <dbl>            <dbl>
##  1 2011-01-01 00:00:00 NA       4164.  124.            2068.             545.
##  2 2011-02-01 00:00:00 NA       3338.  115.            1826.             450.
##  3 2011-03-01 00:00:00 NA       4878.  154.            2028.             849.
##  4 2011-04-01 00:00:00 NA       3157.  122.            1429.             539.
##  5 2011-05-01 00:00:00 NA       3821.  123.            1539.             692.
##  6 2011-06-01 00:00:00 NA       3686.  151.            1637.             592.
##  7 2011-07-01 00:00:00 NA       4370.  107.            1791.             800.
##  8 2011-08-01 00:00:00 NA       3668.  184.            1256.             586.
##  9 2011-09-01 00:00:00 NA      12875.  606.            4172.            2176.
## 10 2011-10-01 00:00:00 NA       4777.  158.            1941.             787.
## # ... with 118 more rows, and 7 more variables: Riau <dbl>, Kep. Riau <dbl>,
## #   Jambi <dbl>, Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
library(readxl)
outflowPerBulan <- read_excel("~/outflowPerBulan.xlsx")
## New names:
## * `` -> ...2
outflowPerBulan
## # A tibble: 128 x 13
##    Bulan               ...2  Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`
##    <dttm>              <lgl>    <dbl> <dbl>            <dbl>            <dbl>
##  1 2011-01-01 00:00:00 NA       3442.  350.             941.             307.
##  2 2011-02-01 00:00:00 NA       3989.  193.             990.             228.
##  3 2011-03-01 00:00:00 NA       4229.  230.            1209.             347.
##  4 2011-04-01 00:00:00 NA       6721.  529.            1653.             336.
##  5 2011-05-01 00:00:00 NA       5787.  523.            1465.             328.
##  6 2011-06-01 00:00:00 NA       7395.  406.            2167.             399.
##  7 2011-07-01 00:00:00 NA       7154.  958.            1695.             449.
##  8 2011-08-01 00:00:00 NA      16043. 1046.            4104.            1376.
##  9 2011-09-01 00:00:00 NA       1915.  124.             824.             148.
## 10 2011-10-01 00:00:00 NA       5174.  634.            1392.             299.
## # ... with 118 more rows, and 7 more variables: Riau <dbl>, Kep. Riau <dbl>,
## #   Jambi <dbl>, Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
plot(inflowPerBulan$`Aceh`, type = "l", col = "gold")
lines(outflowPerBulan$`Aceh`,col="coral")
legend("top",c("Inflow","Outflow"),fill=c("gold","coral"))

Acehtimeseries <- inflowPerBulan$`Aceh`
plot.ts(Acehtimeseries , type = "l", col = "sky blue")

logAceh <- log(inflowPerBulan$`Aceh`)
plot.ts(logAceh, type = "l", col = "dark green")

library(TTR)
## Warning: package 'TTR' was built under R version 4.1.2
AcehSMA3 <- SMA(inflowPerBulan$`Aceh`,n=5)
plot.ts(AcehSMA3 )

Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Aceh

Acehinflowtimeseries <- ts(inflowPerBulan$`Aceh`, frequency=12, start=c(2011,1))
Acehinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  124.33329  115.14321  154.41614  122.18349  122.75253  151.37534
## 2012  315.65341  292.57807  170.13069  139.33374  167.56600  119.32971
## 2013 5571.15653 3457.27812 3253.57336 3775.08977 3705.38033 3449.77565
## 2014  779.00596  332.03457  248.89939  260.82180  168.17801  194.97802
## 2015  836.57498  376.45107  317.53476  263.06848  256.64615  398.59527
## 2016  883.11220  498.41373  242.45180  218.98473  298.46423  450.32018
## 2017 1120.37553  452.83734  347.32016  240.71874  299.60563  194.84441
## 2018 1279.35872  366.57150  278.86587  262.95066  288.49282 1005.08498
## 2019 1293.88334  565.87121  397.27368  342.84300  420.44274 1554.92585
## 2020 1641.95487  692.74998  297.06861  281.42142  489.21304 1095.11262
## 2021  762.78539  487.91516  368.91965  308.33410  566.54102  502.60975
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  107.22432  183.84525  605.62334  157.64630  287.24653  176.19523
## 2012  196.61835  420.06418  286.31394  142.89984  288.58842   80.49051
## 2013 3456.32173 8516.17096  243.91990  379.41362  322.99838  205.46842
## 2014  173.99322 1306.11875  271.45458  454.45573  219.11177  157.53593
## 2015  977.94399  495.56495  179.23767  257.65850  227.20326  123.34945
## 2016 1374.47417  310.75050  538.99459  432.31664  301.61184  225.04199
## 2017 1149.75614  264.01934  627.70230  365.36280  275.68807  175.99260
## 2018  784.64208  369.23511  426.04458  344.08223  243.18631  150.59965
## 2019  473.28934  684.81679  405.51614  467.20195  436.23339  466.53727
## 2020  257.81810  592.86464  410.39330  273.60601  438.09977  170.52803
## 2021  280.32142  424.17610
plot.ts(Acehinflowtimeseries, type = "l", col = "sky blue")

Acehoutflowtimeseries <- ts(outflowPerBulan$`Aceh`, frequency=12, start=c(2011,1))
Acehoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  349.57673  192.62487  230.35748  528.59007  523.47023  405.84701
## 2012  420.97459  217.70857  503.88607  600.25342  429.26734  606.25526
## 2013  758.75245 1850.82994 2442.65886 1618.83372 2777.13063 2209.74012
## 2014  288.10448  489.92887  504.83732  773.93194  485.84142  912.38357
## 2015  269.29171  255.71308  521.69449 1125.85624  564.44034 1011.07770
## 2016  307.32375  172.45727  730.75026  667.74179 1079.70825 2642.66616
## 2017  247.27680  344.01370  677.88709  850.88747 1157.54011 2346.78323
## 2018  120.03917  266.02669  996.17473  707.23188 1634.43230 1889.68997
## 2019   85.36298  400.92165  964.22663 1218.54729 3312.30047  122.91218
## 2020  182.38950  426.10026 1433.83382 1432.33902 1689.68700  436.00470
## 2021   56.98918   60.56520  591.41875 1789.00566 2112.99646  176.09492
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  957.58488 1046.09243  123.98156  634.45751  595.14381  750.32697
## 2012  600.85083  791.04331  303.81795  854.83456  207.40890  841.70726
## 2013 5383.25551 2570.21842  566.69494  895.80335  699.91951 1504.22825
## 2014 1538.16507  285.80192  611.06198  902.31059  586.60778 1250.89508
## 2015 1558.53777  301.57675 1040.79937  316.39942  824.14892 1847.02405
## 2016  692.69059  653.34617 1027.41562  515.70143  962.49370 1858.31057
## 2017  282.09425 1520.49864  354.31840  667.42332  766.85433 2544.67010
## 2018  278.98765 1155.80705  609.61619  549.33587  622.53291 2619.93560
## 2019  687.35821 1230.78590  600.44006  552.87679 1055.67352 2855.56524
## 2020 1768.67777  455.94178  829.58521 1174.85940  774.36491 2269.89617
## 2021  662.04381  320.71844
plot.ts(Acehoutflowtimeseries, type = "l", col = "dark green")

Acehintimeseriescomponents <- decompose(Acehinflowtimeseries)
Acehintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2012  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2013  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2014  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2015  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2016  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2017  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2018  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2019  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2020  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2021  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2012  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2013  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2014  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2015  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2016  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2017  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2018  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2019  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2020  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2021  209.38959  624.31306
Acehouttimeseriescomponents <- decompose(Acehoutflowtimeseries)
Acehouttimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2012 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2013 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2014 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2015 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2016 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2017 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2018 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2019 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2020 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2021 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2012  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2013  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2014  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2015  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2016  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2017  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2018  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2019  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2020  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2021  414.184121   42.244469
plot(Acehintimeseriescomponents$seasonal,type = "l", col = "sky blue")
lines(Acehouttimeseriescomponents$seasonal,col="dark green")
legend("top",c("Inflow","Outflow"),fill=c("sky blue","dark green"))

plot(Acehintimeseriescomponents$trend,type = "l", col = "sky blue")
lines(Acehouttimeseriescomponents$trend,col="dark green")
legend("top",c("Inflow","Outflow"),fill=c("sky blue","dark green"))

plot(Acehintimeseriescomponents$random,type = "l", col = "sky blue")
lines(Acehouttimeseriescomponents$random,col="dark green")
legend("top",c("Inflow","Outflow"),fill=c("sky blue","dark green"))

plot(Acehintimeseriescomponents$figure,type = "l", col = "sky blue")
lines(Acehouttimeseriescomponents$figure,col="dark green")
legend("top",c("Inflow","Outflow"),fill=c("sky blue","dark green"))

Acehintimeseriesseasonallyadjusted <- Acehtimeseries - Acehintimeseriescomponents$seasonal
plot(Acehintimeseriesseasonallyadjusted)

Acehseriesforecasts <- HoltWinters(Acehtimeseries, beta=FALSE, gamma=FALSE)
Acehseriesforecasts
## Holt-Winters exponential smoothing without trend and without seasonal component.
## 
## Call:
## HoltWinters(x = Acehtimeseries, beta = FALSE, gamma = FALSE)
## 
## Smoothing parameters:
##  alpha: 0.4152191
##  beta : FALSE
##  gamma: FALSE
## 
## Coefficients:
##       [,1]
## a 407.8737
Acehseriesforecasts$fitted
## Time Series:
## Start = 2 
## End = 128 
## Frequency = 1 
##          xhat     level
##   2  124.3333  124.3333
##   3  120.5174  120.5174
##   4  134.5928  134.5928
##   5  129.4402  129.4402
##   6  126.6634  126.6634
##   7  136.9242  136.9242
##   8  124.5923  124.5923
##   9  149.1952  149.1952
##  10  338.7129  338.7129
##  11  263.5306  263.5306
##  12  273.3779  273.3779
##  13  233.0258  233.0258
##  14  267.3344  267.3344
##  15  277.8160  277.8160
##  16  233.1030  233.1030
##  17  194.1682  194.1682
##  18  183.1225  183.1225
##  19  156.6345  156.6345
##  20  173.2366  173.2366
##  21  275.7241  275.7241
##  22  280.1212  280.1212
##  23  223.1443  223.1443
##  24  250.3179  250.3179
##  25  179.8023  179.8023
##  26 2418.3957 2418.3957
##  27 2849.7596 2849.7596
##  28 3017.4308 3017.4308
##  29 3332.0253 3332.0253
##  30 3487.0494 3487.0494
##  31 3471.5727 3471.5727
##  32 3465.2402 3465.2402
##  33 5562.4833 5562.4833
##  34 3354.1140 3354.1140
##  35 2118.9615 2118.9615
##  36 1373.2433 1373.2433
##  37  888.3608  888.3608
##  38  842.9546  842.9546
##  39  630.8108  630.8108
##  40  472.2339  472.2339
##  41  384.4515  384.4515
##  42  294.6506  294.6506
##  43  253.2647  253.2647
##  44  220.3496  220.3496
##  45  671.1817  671.1817
##  46  505.2074  505.2074
##  47  484.1343  484.1343
##  48  374.0919  374.0919
##  49  284.1737  284.1737
##  50  513.5413  513.5413
##  51  456.6188  456.6188
##  52  398.8684  398.8684
##  53  342.4817  342.4817
##  54  306.8411  306.8411
##  55  344.9392  344.9392
##  56  607.7749  607.7749
##  57  561.1832  561.1832
##  58  402.5921  402.5921
##  59  342.4129  342.4129
##  60  294.5757  294.5757
##  61  223.4793  223.4793
##  62  497.3715  497.3715
##  63  497.8042  497.8042
##  64  391.7770  391.7770
##  65  320.0304  320.0304
##  66  311.0757  311.0757
##  67  368.8927  368.8927
##  68  786.4293  786.4293
##  69  588.9184  588.9184
##  70  568.1891  568.1891
##  71  511.7722  511.7722
##  72  424.5096  424.5096
##  73  341.6868  341.6868
##  74  665.0133  665.0133
##  75  576.9138  576.9138
##  76  481.5821  481.5821
##  77  381.5710  381.5710
##  78  347.5374  347.5374
##  79  284.1364  284.1364
##  80  643.5583  643.5583
##  81  485.9664  485.9664
##  82  544.8179  544.8179
##  83  470.3047  470.3047
##  84  389.4961  389.4961
##  85  300.8454  300.8454
##  86  707.1428  707.1428
##  87  565.7311  565.7311
##  88  446.6192  446.6192
##  89  370.3565  370.3565
##  90  336.3651  336.3651
##  91  614.0304  614.0304
##  92  684.8716  684.8716
##  93  553.8133  553.8133
##  94  500.7613  500.7613
##  95  435.7051  435.7051
##  96  355.7676  355.7676
##  97  270.5780  270.5780
##  98  695.4739  695.4739
##  99  641.6604  641.6604
## 100  540.1864  540.1864
## 101  458.2456  458.2456
## 102  442.5491  442.5491
## 103  904.4292  904.4292
## 104  725.4117  725.4117
## 105  708.5559  708.5559
## 106  582.7280  582.7280
## 107  534.7594  534.7594
## 108  493.8495  493.8495
## 109  482.5089  482.5089
## 110  963.9331  963.9331
## 111  851.3327  851.3327
## 112  621.1916  621.1916
## 113  480.1125  480.1125
## 114  483.8912  483.8912
## 115  737.6820  737.6820
## 116  538.4334  538.4334
## 117  561.0343  561.0343
## 118  498.4853  498.4853
## 119  405.1111  405.1111
## 120  418.8086  418.8086
## 121  315.7178  315.7178
## 122  501.3488  501.3488
## 123  495.7709  495.7709
## 124  443.0998  443.0998
## 125  387.1425  387.1425
## 126  461.6322  461.6322
## 127  478.6469  478.6469
## 128  396.2983  396.2983
plot(Acehseriesforecasts)

library(forecast)
## Warning: package 'forecast' was built under R version 4.1.2
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
dftimeseries.hw <- HoltWinters(Acehtimeseries, gamma=FALSE)
Acehtimeserieforecasts2  <-forecast(dftimeseries.hw,h=20)
Acehtimeserieforecasts2
##     Point Forecast      Lo 80    Hi 80     Lo 95    Hi 95
## 129       385.7352  -831.9371 1603.407 -1476.534 2248.004
## 130       376.5451  -942.5304 1695.621 -1640.807 2393.897
## 131       367.3550 -1045.8663 1780.576 -1793.981 2528.691
## 132       358.1649 -1143.3107 1859.641 -1938.144 2654.474
## 133       348.9749 -1235.8480 1933.798 -2074.802 2772.752
## 134       339.7848 -1324.2158 2003.785 -2205.084 2884.654
## 135       330.5947 -1408.9835 2070.173 -2329.861 2991.050
## 136       321.4046 -1490.6016 2133.411 -2449.820 3092.629
## 137       312.2145 -1569.4339 2193.863 -2565.518 3189.948
## 138       303.0244 -1645.7791 2251.828 -2677.413 3283.462
## 139       293.8344 -1719.8860 2307.555 -2785.885 3373.554
## 140       284.6443 -1791.9645 2361.253 -2891.255 3460.543
## 141       275.4542 -1862.1937 2413.102 -2993.796 3544.705
## 142       266.2641 -1930.7277 2463.256 -3093.745 3626.273
## 143       257.0740 -1997.7003 2511.848 -3191.306 3705.454
## 144       247.8839 -2063.2287 2558.997 -3286.658 3782.426
## 145       238.6939 -2127.4161 2604.804 -3379.959 3857.347
## 146       229.5038 -2190.3538 2649.361 -3471.349 3930.356
## 147       220.3137 -2252.1233 2692.751 -3560.952 4001.580
## 148       211.1236 -2312.7978 2735.045 -3648.881 4071.128
plot(Acehtimeserieforecasts2)

Acehtimeseriesdiff1<-diff(Acehtimeseries, difference=1)
plot.ts(Acehtimeseriesdiff1)

acf(Acehtimeseriesdiff1, lag.max=20) # plot correlogram

acf(Acehtimeseriesdiff1,lag.max=20, plot=FALSE) #to get the partial autocorrelation values
## 
## Autocorrelations of series 'Acehtimeseriesdiff1', by lag
## 
##      0      1      2      3      4      5      6      7      8      9     10 
##  1.000 -0.436 -0.008  0.018 -0.029  0.025 -0.059  0.302 -0.313  0.014 -0.033 
##     11     12     13     14     15     16     17     18     19     20 
## -0.096  0.239 -0.133  0.016 -0.022 -0.033  0.054 -0.006  0.057 -0.062
pacf(Acehtimeseriesdiff1,lag.max=20) #plot partial correlogram

Penutup

Referensi

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://rpubs.com/suhartono-uinmaliki/861286

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiU4MDX4fz1AhU4SWwGHVoxCCsQFnoECAQQAQ&url=https%3A%2F%2Frepository.its.ac.id%2F63217%2F2%2F1312030072-Non_Degree.pdf&usg=AOvVaw1m8_VJUrSbsDtRUDWgJ4nf