Universitas : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

Inflow - Outflow

Inflow disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka.

contoh penerapan visualisasi prediksi data Inflow-Outflow Uang Kartal di Jambi menggunakan bahasa pemrograman R.

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "inflowTahunan.xlsx")
datainflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   57900.  2308.           23238.            9385.  3012.       1426.
##  2  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  3  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  4  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  5  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  6  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  7  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  8  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  9  2019  133762.  7509.           47112.           14750. 10915.       6077.
## 10  2020  109345.  6641.           36609.           10696.  9148.       6175.
## 11  2021   89270.  3702.           31840.           10748.  7769.       5009.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Bellitung <dbl>
library (readxl)
dataoutflow <- read_excel(path = "outflowTahunan.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## 11  2021   86627.  5770.           23453.            5941. 12631.       5128.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Bellitung <dbl>

1.Visualisasi Prediksi Data Inflow Uang Kartal Bengkulu setiap periode

plot(datainflow$Tahun,datainflow$`Bengkulu`,type = "l", col= "steelblue")

2.Visualisasi Prediksi Data outflow Uang Kartal Bengkulu setiap periode

plot(dataoutflow$Tahun,dataoutflow$`Bengkulu`,type = "l", col= "red")

3.Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Bengkulu Setiap Periode

plot(datainflow$Tahun,datainflow$`Bengkulu`,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$`Bengkulu`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Bengkulu Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "inflowbulanan.xlsx")
dataoutflowperbulan <- read_excel(path = "outflowbulanan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>
plot(datainflowperbulan$`Bengkulu`, type = "l", col = "green")
lines(dataoutflowperbulan$`Bengkulu`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("green","yellow"))

Bengkulutimeseries <- datainflowperbulan$`Bengkulu`
plot.ts(Bengkulutimeseries , type = "l", col = "green")

logBengkulu <- log(datainflowperbulan$`Bengkulu`)
plot.ts(logBengkulu)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Jambi

Bengkuluinflowtimeseries <- ts(datainflowperbulan$`Bengkulu`, frequency=12, start=c(2011,1))
Bengkuluinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  122.17640   42.56978   56.79831   27.06372   33.27979   25.84131
## 2012  229.63010  125.41615   65.93120   27.71178   17.46938   17.46938
## 2013  225.33676  240.39147  247.97928  232.80433  158.28819   99.59913
## 2014  708.02522  269.13089  173.04810  221.13003  102.52019  131.58252
## 2015  644.62293  221.83713  163.04665  105.55613   96.35064   84.34825
## 2016  702.39709  293.29774  185.31632   73.73894  119.25824   76.02947
## 2017  705.34454  296.38089  218.07302  108.20777  124.26259   38.37514
## 2018  885.45535  277.07756  207.05547  156.74029  120.71976  669.85657
## 2019  902.06334  384.59633  283.98631  340.23492  256.59610 1294.68991
## 2020  983.83714  517.87037  322.68228  295.68625  330.78731  594.49286
## 2021 1134.14469  507.34820  410.99660  309.79568  798.17998  293.65593
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011   98.70596   64.44523  430.67254  100.84602  111.67560   39.03351
## 2012   74.43659  207.95245  172.87088  104.67443  134.41372   23.27873
## 2013  135.59282  392.32979  166.69236  194.90184  165.05959  118.56169
## 2014   83.35252  899.76893  204.79900  245.78856  146.50267   75.86238
## 2015  662.75459  223.16428  168.84114  212.90720  127.31721   80.51677
## 2016  661.14587  110.45568  243.85150  175.18164  136.70141  111.48900
## 2017  919.91900  300.75244  296.76196  275.01659  201.18931  135.31315
## 2018  423.32742  286.78781  368.53402  286.96586  286.34575  181.12197
## 2019  381.33964  428.71096  432.36290  498.97557  330.91527  254.67978
## 2020  289.77418  409.26120  438.92378  281.96995  320.24937  185.53660
## 2021  350.87090  355.37500
Bengkuluoutflowtimeseries <- ts(dataoutflowperbulan$`Bengkulu`, frequency=12, start=c(2011,1))
Bengkuluoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   43.00021   82.23542  143.53922  246.22066  202.80478  265.84634
## 2012   77.67069  136.45409  214.08931  230.04005  343.95133  343.95133
## 2013  150.23670  309.92998  431.93072  314.02314  742.58906  664.43864
## 2014  184.84757  233.07711  359.39862  524.14915  447.54582  377.69263
## 2015  103.40197  176.91637  236.82757  435.72702  510.20743  474.21976
## 2016   59.75611  134.50325  206.17499  355.34003  506.32330 1581.42961
## 2017  156.75645  191.46206  341.51406  410.43977  612.92546 1597.77779
## 2018  104.78294  200.91583  399.37190  498.39520  866.36789 1137.64484
## 2019  136.77104  354.05007  432.66657  755.79629 1646.68269  168.74806
## 2020  256.84547  331.85653  442.42736  531.24172  969.68490  209.58637
## 2021   95.04035  340.25426  457.19172  920.71828 1096.04779  629.30605
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  263.31558  497.98805   73.97831  188.67118  175.22115  377.68102
## 2012  205.01716  360.89097  153.25346  209.32113  202.05658  482.63553
## 2013 1563.65149  783.20289  262.44591  260.53121  382.27823  624.35333
## 2014  949.04614  161.37331  247.44909  317.04213  292.98312  488.31758
## 2015 1085.06420  246.35914  274.35432  250.71305  309.02593  748.71687
## 2016  212.21523  567.18382  238.44064  187.43127  384.85065  729.08792
## 2017  110.49356  216.10078  248.63583  249.51486  472.84165  838.28091
## 2018  233.48894  261.42442  225.52806  344.89425  470.11011  752.32699
## 2019  653.94175  479.32908  380.83854  386.78029  650.26438  795.78060
## 2020  680.85829  483.37874  506.16610  625.26947  575.95459  950.75046
## 2021  676.14611  466.14904
plot.ts(Bengkuluinflowtimeseries)

plot.ts(Bengkuluoutflowtimeseries)

Bengkuluintimeseriescomponents <- decompose(Bengkuluinflowtimeseries)
Bengkuluintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2012  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2013  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2014  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2015  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2016  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2017  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2018  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2019  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2020  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2021  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2012   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2013   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2014   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2015   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2016   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2017   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2018   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2019   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2020   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2021   99.818044   52.992951
Bengkuluouttimeseriescomponents <- decompose(Bengkuluoutflowtimeseries)
Bengkuluouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2012 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2013 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2014 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2015 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2016 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2017 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2018 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2019 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2020 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2021 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2012  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2013  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2014  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2015  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2016  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2017  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2018  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2019  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2020  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2021  169.42047  -21.85756
plot(Bengkuluintimeseriescomponents$seasonal,type = "l", col = "orange")
lines(Bengkuluouttimeseriescomponents$seasonal,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Bengkuluintimeseriescomponents$trend,type = "l", col = "orange")
lines(Bengkuluouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Bengkuluintimeseriescomponents$random ,type = "l", col = "orange")
lines(Bengkuluouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(Bengkuluintimeseriescomponents$figure ,type = "l", col = "orange")
lines(Bengkuluouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))