Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

library(readxl)
datainflow <- read_excel(path = "book1.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 11 x 13
##    Tahun ...2  Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dbl> <lgl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>
##  1  2011 NA      57900.  2308.           23238.            9385.  3012.
##  2  2012 NA      65911.  2620.           25981.           11192.  4447.
##  3  2013 NA      98369. 36337.           18120.           14056.  8933.
##  4  2014 NA      86024.  4567.           30503.           14103.  6358.
##  5  2015 NA      86549.  4710.           30254.           13309.  7156.
##  6  2016 NA      97764.  5775.           34427.           14078.  8211.
##  7  2017 NA     103748.  5514.           35617.           15312.  8553.
##  8  2018 NA     117495.  5799.           41769.           15058. 10730.
##  9  2019 NA     133762.  7509.           47112.           14750. 10915.
## 10  2020 NA     109345.  6641.           36609.           10696.  9148.
## 11  2021 NA      89270.  3702.           31840.           10748.  7769.
## # ... with 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
library(readxl)
dataoutflow <- read_excel(path = "book2.xlsx")
## New names:
## * `` -> ...2
dataoutflow
## # A tibble: 11 x 13
##    Tahun ...2  Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dbl> <lgl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>
##  1  2011 NA      80092.  6338.           22176.            5300. 12434.
##  2  2012 NA      85235.  6378.           22495.            6434. 13014.
##  3  2013 NA     103288. 23278.           19235.            6511. 15460.
##  4  2014 NA     102338.  8630.           26391.            7060. 15158.
##  5  2015 NA     109186.  9637.           27877.            7471. 15789.
##  6  2016 NA     121992. 11311.           31959.            9198. 17645.
##  7  2017 NA     133606. 11760.           35243.           10754. 18128.
##  8  2018 NA     135676. 11450.           36908.            8447. 17926.
##  9  2019 NA     153484. 13087.           44051.            9465. 19277.
## 10  2020 NA     140589. 12874.           39758.            8763. 19139.
## 11  2021 NA      86627.  5770.           23453.            5941. 12631.
## # ... with 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
plot(datainflow$Tahun,datainflow$`Sumatera Selatan`,type = "l", col= "steelblue")

plot(dataoutflow$Tahun,dataoutflow$`Sumatera Selatan`,type = "l", col= "red")

plot(datainflow$Tahun,datainflow$`Sumatera Selatan`,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$`Sumatera Selatan`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

library(readxl)
datainflowperbulan <- read_excel(path = "inmount.xlsx")
dataoutflowperbulan <- read_excel(path = "outmount.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 12
##    keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
plot(datainflowperbulan$`Sumatera Selatan`, type = "l", col = "green")
lines(dataoutflowperbulan$`Sumatera Selatan`,col="yellow")
legend("top",c("Inflow","Outflow"),fill=c("green","yellow"))

SumateraSelatantimeseries <- datainflowperbulan$`Sumatera Selatan`
plot.ts(SumateraSelatantimeseries , type = "l", col = "green")

logSumateraSelatan <- log(datainflowperbulan$`Sumatera Selatan`)
plot.ts(logSumateraSelatan)