Lembaga : Universitas Islam Nageri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

Data Inflow-OutFlow Pertahun untuk Daerah Sumatra dan Sekitarnya

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "Data Inflow Sumatra.xlsx")
datainflowtahun <- datainflow[c(1:12),c(1:12)]
datainflowtahun
## # A tibble: 12 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  2  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  3  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  4  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  5  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  6  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  7  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  8  2019  133762.  7509.           47112.           14750. 10915.       6077.
##  9  2020  109345.  6641.           36609.           10696.  9148.       6175.
## 10  2021   89270.  3702.           31840.           10748.  7769.       5009.
## 11    NA      NA     NA               NA               NA     NA          NA 
## 12    NA      NA     NA               NA               NA     NA          NA 
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>
library(readxl)
dataoutflow <- read_excel(path = "Data Outflow Sumatra.xlsx")
dataoutflowtahun <- dataoutflow[c(1:12),c(1:12)]
dataoutflowtahun
## # A tibble: 12 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## 11  2021   86627.  5770.           23453.            5941. 12631.       5128.
## 12    NA      NA     NA               NA               NA     NA          NA 
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>

Data Inflow-Outflow Perbulan untuk Daerah Sumatra dan Sekitarnya

library(readxl)
datainflowperbulan <- read_excel(path = 'Inflow perbulan.xlsx')
datainflowperbulan
## # A tibble: 128 x 12
##    Bulan               Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
dataoutflowperbulan <- read_excel(path = 'Outflow perbulan.xlsx')
dataoutflowperbulan
## # A tibble: 128 x 12
##    Bulan               Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## #   `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>

1. Aceh

berikut adalah visualisasi dan prediksi data Inflow-Outflow di Aceh :

plot(datainflowtahun$Tahun, datainflowtahun$`Aceh`, type = "l", col = "red", main = 'Data Inflow-Outflow Uang Kartal di Aceh Setiap Tahun', xlab = 'Tahun Periode', ylab = 'Data Inflow-Outflow')
lines(dataoutflowtahun$Tahun, dataoutflowtahun$`Aceh`, col = 'purple' )
legend('top', c("Inflow","Outlow"),fill=c("red","purple") )

plot(datainflowperbulan$Bulan, datainflowperbulan$`Aceh`, type = "l", col = "steelblue", main = 'Data Inflow-Outflow Uang Kartal di Aceh Setiap Bulan', xlab = 'Bulan', ylab = 'Data Inflow-Outflow')
lines(dataoutflowperbulan$Bulan, dataoutflowperbulan$`Aceh`, col = 'purple')
legend('right',c('Inflow','Outflow'),fill = c('steelblue','purple'))

Acehtimeseries <- datainflowperbulan$`Aceh`
plot.ts(Acehtimeseries, type = "l", col = "yellow")

logAceh <- dataoutflowperbulan$`Aceh`
plot.ts(logAceh, type = "l", col = "steelblue")

library(TTR)
## Warning: package 'TTR' was built under R version 4.1.2
AcehSMA3 <- SMA(datainflowperbulan$`Aceh`, n = 3)
plot.ts(AcehSMA3)

library('TTR')
AcehSMA3 <- SMA(datainflowperbulan$`Aceh`, n = 8)
plot.ts(AcehSMA3)

Acehinflowts <- ts(datainflowperbulan$`Aceh`, frequency = 12, start = c(2011,1))
Acehinflowts
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  124.33329  115.14321  154.41614  122.18349  122.75253  151.37534
## 2012  315.65341  292.57807  170.13069  139.33374  167.56600  119.32971
## 2013 5571.15653 3457.27812 3253.57336 3775.08977 3705.38033 3449.77565
## 2014  779.00596  332.03457  248.89939  260.82180  168.17801  194.97802
## 2015  836.57498  376.45107  317.53476  263.06848  256.64615  398.59527
## 2016  883.11220  498.41373  242.45180  218.98473  298.46423  450.32018
## 2017 1120.37553  452.83734  347.32016  240.71874  299.60563  194.84441
## 2018 1279.35872  366.57150  278.86587  262.95066  288.49282 1005.08498
## 2019 1293.88334  565.87121  397.27368  342.84300  420.44274 1554.92585
## 2020 1641.95487  692.74998  297.06861  281.42142  489.21304 1095.11262
## 2021  762.78539  487.91516  368.91965  308.33410  566.54102  502.60975
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  107.22432  183.84525  605.62334  157.64630  287.24653  176.19523
## 2012  196.61835  420.06418  286.31394  142.89984  288.58842   80.49051
## 2013 3456.32173 8516.17096  243.91990  379.41362  322.99838  205.46842
## 2014  173.99322 1306.11875  271.45458  454.45573  219.11177  157.53593
## 2015  977.94399  495.56495  179.23767  257.65850  227.20326  123.34945
## 2016 1374.47417  310.75050  538.99459  432.31664  301.61184  225.04199
## 2017 1149.75614  264.01934  627.70230  365.36280  275.68807  175.99260
## 2018  784.64208  369.23511  426.04458  344.08223  243.18631  150.59965
## 2019  473.28934  684.81679  405.51614  467.20195  436.23339  466.53727
## 2020  257.81810  592.86464  410.39330  273.60601  438.09977  170.52803
## 2021  280.32142  424.17610
Acehoutflowts <- ts(dataoutflowperbulan$`Aceh`, frequency = 12, start = c(2011,1))
Acehoutflowts
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  349.57673  192.62487  230.35748  528.59007  523.47023  405.84701
## 2012  420.97459  217.70857  503.88607  600.25342  429.26734  606.25526
## 2013  758.75245 1850.82994 2442.65886 1618.83372 2777.13063 2209.74012
## 2014  288.10448  489.92887  504.83732  773.93194  485.84142  912.38357
## 2015  269.29171  255.71308  521.69449 1125.85624  564.44034 1011.07770
## 2016  307.32375  172.45727  730.75026  667.74179 1079.70825 2642.66616
## 2017  247.27680  344.01370  677.88709  850.88747 1157.54011 2346.78323
## 2018  120.03917  266.02669  996.17473  707.23188 1634.43230 1889.68997
## 2019   85.36298  400.92165  964.22663 1218.54729 3312.30047  122.91218
## 2020  182.38950  426.10026 1433.83382 1432.33902 1689.68700  436.00470
## 2021   56.98918   60.56520  591.41875 1789.00566 2112.99646  176.09492
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  957.58488 1046.09243  123.98156  634.45751  595.14381  750.32697
## 2012  600.85083  791.04331  303.81795  854.83456  207.40890  841.70726
## 2013 5383.25551 2570.21842  566.69494  895.80335  699.91951 1504.22825
## 2014 1538.16507  285.80192  611.06198  902.31059  586.60778 1250.89508
## 2015 1558.53777  301.57675 1040.79937  316.39942  824.14892 1847.02405
## 2016  692.69059  653.34617 1027.41562  515.70143  962.49370 1858.31057
## 2017  282.09425 1520.49864  354.31840  667.42332  766.85433 2544.67010
## 2018  278.98765 1155.80705  609.61619  549.33587  622.53291 2619.93560
## 2019  687.35821 1230.78590  600.44006  552.87679 1055.67352 2855.56524
## 2020 1768.67777  455.94178  829.58521 1174.85940  774.36491 2269.89617
## 2021  662.04381  320.71844
plot.ts(Acehinflowts, col = 'blue')
lines(Acehoutflowts, col = 'red')
legend('right', c('Inflow','Outflow'),fill = c('blue','red'))

Acehintscomponents <- decompose(Acehinflowts)
Acehintscomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2012  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2013  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2014  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2015  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2016  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2017  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2018  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2019  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2020  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2021  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2012  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2013  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2014  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2015  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2016  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2017  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2018  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2019  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2020  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2021  209.38959  624.31306
Acehouttscomponents <- decompose(Acehoutflowts)
Acehouttscomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2012 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2013 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2014 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2015 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2016 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2017 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2018 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2019 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2020 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2021 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2012  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2013  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2014  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2015  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2016  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2017  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2018  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2019  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2020  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2021  414.184121   42.244469
plot(Acehintscomponents$seasonal, type = 'l', col = 'turquoise')
lines(Acehouttscomponents$seasonal, col = "orange")
legend("right",c("Inflow","Outflow"),fill=c("turquoise","orange"))

plot(Acehintscomponents$trend, type = 'l', col = 'red')
lines(Acehouttscomponents$trend, col = 'green')
legend('right', c("Inflow","Outflow"),fill=c("red","green"))

plot(Acehintscomponents$random, type = 'l', col = 'Skyblue')
lines(Acehouttscomponents$random, col = 'purple')
legend('right', c("Inflow","Outflow"),fill=c("skyblue","purple"))

plot(Acehintscomponents$figure, type = 'l', col = 'blue')
lines(Acehouttscomponents$figure, col = 'green')
legend('right', c("Inflow","Outflow"),fill=c("blue","green"))

Acehintsseasonallyadjusted <- Acehtimeseries - Acehintscomponents$seasonal
plot(Acehintsseasonallyadjusted)

2. Sumatera Utara

berikut adalah visualisasi dan prediksi data Inflow-Outflow di Sumatera Utara :

plot(datainflowtahun$Tahun, datainflowtahun$`Sumatera Utara`, type = "l", col = "blue", main = 'Data Inflow Uang Kartal di Sumatra Utara Setiap Tahun', xlab = 'Tahun Periode', ylab = 'Data Inflow-Outflow')
lines(dataoutflowtahun$Tahun, dataoutflowtahun$`Sumatera Utara`, col = 'green')
legend('top', c("Inflow","Outlow"),fill=c("blue","green"))

plot(datainflowperbulan$Bulan, datainflowperbulan$`Sumatera Utara`, type = "l", col = "steelblue", main = 'Data Inflow-Outflow Uang Kartal di Sumatera Utara Setiap Bulan', xlab = 'Bulan', ylab = 'Data Inflow-Outflow')
lines(dataoutflowperbulan$Bulan, dataoutflowperbulan$`Sumatera Utara`, col = 'purple')
legend('right',c('Inflow','Outflow'),fill = c('steelblue','purple'))

Sumutts <- datainflowperbulan$`Sumatera Utara`
plot.ts(Sumutts, type = "l", col = "yellow")

logsumut <- dataoutflowperbulan$`Sumatera Utara`
plot.ts(logsumut, type = "l", col = "steelblue")

library(TTR)
sumutSMA3 <- SMA(datainflowperbulan$`Sumatera Utara`, n = 3)
plot.ts(sumutSMA3)

library('TTR')
sumutSMA3 <- SMA(datainflowperbulan$`Sumatera Utara`, n = 8)
plot.ts(sumutSMA3)

sumutinflowts <- ts(datainflowperbulan$`Sumatera Utara`, frequency = 12, start = c(2011,1))
sumutinflowts
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011 2068.3243 1826.2643 2027.5207 1429.1551 1539.2862 1636.5456 1791.1685
## 2012 2979.0495 2137.5356 2034.3183 1958.6650 2340.7850 1763.7063 2418.6288
## 2013 2011.8480 1284.0139  986.4736 1005.6172  965.7285  915.6734 1064.5788
## 2014 3915.7218 2518.0923 1977.0690 2412.9589 2104.0928 2277.4757 1289.7373
## 2015 4313.0187 1833.3080 2167.4386 2118.8912 2064.3412 2195.4568 4316.3041
## 2016 4181.4312 2940.6137 2494.2178 2178.8535 2934.5122 1934.5506 6145.8753
## 2017 4297.6567 2983.0020 2741.7477 2445.6147 2868.9780 1696.6538 5829.4896
## 2018 5434.8880 2756.8291 2766.0818 3252.3518 2292.8486 5954.2310 4699.5902
## 2019 5704.4344 3720.4500 3145.5627 3839.8883 3018.5163 7840.8944 4193.3568
## 2020 6476.7265 3659.4621 2723.3467 2035.7135 2380.0784 4344.0487 3057.1278
## 2021 7420.0889 3749.5795 3470.9778 3669.9855 4948.0587 3752.2078 2368.1586
##            Aug       Sep       Oct       Nov       Dec
## 2011 1255.7771 4171.7420 1940.8248 1942.8641 1608.2825
## 2012 3146.4553 2265.7190 1794.1134 1956.5636 1185.1042
## 2013 2923.1453 1883.2831 2061.2406 1888.7141 1129.7521
## 2014 6180.5783 2309.9967 2132.9841 1911.6489 1472.3948
## 2015 3070.8514 2205.2647 2172.2108 2272.4471 1524.0474
## 2016 2599.2919 2611.1014 2470.8154 2171.7520 1763.8555
## 2017 2961.9966 2729.2401 2687.0436 2706.0655 1669.2277
## 2018 3350.3244 3165.3554 3165.9388 3130.5635 1799.6573
## 2019 3573.5657 3295.2926 3680.2501 3329.0633 1771.0466
## 2020 2370.7092 2391.4783 1908.7555 2826.9792 2434.8872
## 2021 2461.1935
sumutoutflowts <- ts(dataoutflowperbulan$`Sumatera Utara`, frequency = 12, start = c(2011,1))
sumutoutflowts
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  940.7270  990.2344 1208.7307 1652.7141 1464.7969 2167.0247 1695.1657
## 2012  984.0324 1216.1279 1787.1988 1807.6206 1874.7360 2688.0924 1964.9303
## 2013  385.7855  571.1485  981.3722  840.9738 1249.0038 1329.4347 3110.4414
## 2014 1386.2664 1401.1061 1758.2459 2054.0262 1829.6144 1703.7050 6389.1018
## 2015  572.9684 1763.7684 1389.7572 2303.6786 1510.8211 3233.5680 5255.8327
## 2016 1101.0264 1436.2692 1955.5644 2261.7604 2799.0006 7101.1630 1545.3956
## 2017 1381.2569 1585.6275 2219.8469 2436.9895 2995.6336 6666.8397  900.1986
## 2018  464.9380 2187.8200 2554.5897 2824.5938 4441.1976 6066.3074 2069.7335
## 2019 1254.4764 2323.8685 3046.6558 4576.5874 8856.8881  780.2976 3028.1933
## 2020 1456.3547 2150.2914 3244.4160 3371.2418 4147.5741 1473.5355 3525.8830
## 2021  767.5072 1758.2828 2249.6110 5490.0438 5183.1904 2210.7195 3486.2112
##            Aug       Sep       Oct       Nov       Dec
## 2011 4103.7915  824.0580 1392.1819 1597.5122 4139.5386
## 2012 3120.9933  821.0337 1242.4665 1443.9081 3543.4771
## 2013 1837.2198 1362.0435 1608.7270 1880.8227 4077.7257
## 2014  793.8406 1397.2762 1888.7593 1700.0491 4088.9477
## 2015  982.1728 1852.0552 1907.6366 2126.0199 4978.8323
## 2016 1765.1649 2518.4152 2080.3687 2207.2962 5187.3478
## 2017 2908.6280 2161.4140 2247.3297 3283.9796 6455.4113
## 2018 2934.9619 1924.2260 2159.8890 2921.3840 6358.6489
## 2019 3577.9976 2629.2801 2576.9991 3782.3821 7617.2698
## 2020 3053.7066 2141.8995 3856.8591 2151.2443 9184.5577
## 2021 2307.3456
plot.ts(sumutinflowts, col = 'blue')
lines(sumutoutflowts, col = 'red')
legend('right', c('Inflow','Outflow'),fill = c('blue','red'))

sumutintscomponents <- decompose(sumutinflowts)
sumutintscomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2012  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2013  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2014  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2015  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2016  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2017  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2018  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2019  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2020  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2021  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2012   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2013   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2014   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2015   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2016   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2017   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2018   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2019   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2020   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2021   757.67593   390.04691
sumutouttscomponents <- decompose(sumutoutflowts)
sumutouttscomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2012 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2013 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2014 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2015 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2016 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2017 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2018 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2019 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2020 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2021 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2012   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2013   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2014   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2015   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2016   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2017   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2018   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2019   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2020   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2021   389.85774   -53.26060
plot(sumutintscomponents$seasonal, type = 'l', col = 'turquoise')
lines(sumutouttscomponents$seasonal, col = "orange")
legend("right",c("Inflow","Outflow"),fill=c("turquoise","orange"))

plot(sumutintscomponents$trend, type = 'l', col = 'red')
lines(sumutouttscomponents$trend, col = 'green')
legend('right', c("Inflow","Outflow"),fill=c("red","green"))

plot(sumutintscomponents$random, type = 'l', col = 'Skyblue')
lines(sumutouttscomponents$random, col = 'purple')
legend('right', c("Inflow","Outflow"),fill=c("skyblue","purple"))

plot(sumutintscomponents$figure, type = 'l', col = 'blue')
lines(sumutouttscomponents$figure, col = 'green')
legend('right', c("Inflow","Outflow"),fill=c("blue","green"))

sumutintsseasonallyadjusted <- Sumutts - sumutintscomponents$seasonal
plot(sumutintsseasonallyadjusted)

3. Sumatera Barat

berikut adalah visualisasi dan prediksi data Inflow-Outflow di Sumatera Barat :

plot(datainflowtahun$Tahun, datainflowtahun$`Sumatera Barat`,type = "l", col = "orange", main = 'Data Inflow Uang Kartal di Sumatra Barat Setiap Tahun', xlab = 'Tahun Periode', ylab = 'Data Inflow')
lines(dataoutflowtahun$Tahun, dataoutflowtahun$`Sumatera Barat`, col = 'purple')
legend('top', c("Inflow","Outlow"),fill=c("orange","purple"))

plot(datainflowperbulan$Bulan, datainflowperbulan$`Sumatera Barat`, type = "l", col = "steelblue", main = 'Data Inflow-Outflow Uang Kartal di Sumatera Utara Setiap Bulan', xlab = 'Bulan', ylab = 'Data Inflow-Outflow')
lines(dataoutflowperbulan$Bulan, dataoutflowperbulan$`Sumatera Barat`, col = 'purple')
legend('right',c('Inflow','Outflow'),fill = c('steelblue','purple'))

Sumbarts <- datainflowperbulan$`Sumatera Barat`
plot.ts(Sumbarts, type = "l", col = "yellow")

logsumbar <- dataoutflowperbulan$`Sumatera Barat`
plot.ts(logsumbar, type = "l", col = "steelblue")

library(TTR)
sumbarSMA3 <- SMA(datainflowperbulan$`Sumatera Barat`, n = 3)
plot.ts(sumbarSMA3)

library('TTR')
sumbarSMA3 <- SMA(datainflowperbulan$`Sumatera Barat`, n = 8)
plot.ts(sumbarSMA3)

sumbarinflowts <- ts(datainflowperbulan$`Sumatera Barat`, frequency = 12, start = c(2011,1))
sumbarinflowts
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  544.5248  450.0701  849.2939  539.1026  691.9377  592.4192  799.5802
## 2012 1130.4905  865.3519  854.9514  704.9590  885.0385  641.2570 1038.4298
## 2013 1776.9203 1112.8960  940.8829  994.6862 1107.1890 1086.4650 1303.0975
## 2014 1675.2029 1111.3808  924.0093  993.2328  762.4694  866.8874  675.1555
## 2015 1698.0899  904.5427  969.6610  836.3249  855.4427 1045.4934 2161.9387
## 2016 1751.8196  892.1499  904.6083  737.9714  919.1321  720.4721 2928.9035
## 2017 1850.5169 1143.2622 1287.3335 1037.7823 1173.4844  683.3602 2902.9224
## 2018 2037.4366  957.8346  732.3303 1043.6172  956.1836 2214.6015 2449.9422
## 2019 1890.0168  845.6557  917.9565  986.2518  810.4107 3290.2635 1379.9442
## 2020 1936.5593  867.9322  593.6931  586.1949  460.8289 1752.8809  720.9419
## 2021 2463.1456 1078.7217  996.1128  924.2523 2033.1787 1301.2214  934.1477
##            Aug       Sep       Oct       Nov       Dec
## 2011  586.3581 2176.2413  787.3761  854.4358  513.2068
## 2012 1339.7732 1507.8169  789.7558  883.7977  550.4838
## 2013 2173.6578 1202.3046  933.7316  875.4979  548.6130
## 2014 3114.2115 1200.3284 1157.9625  931.1027  691.0219
## 2015 1729.1363  824.0283  995.3346  750.3287  538.4899
## 2016 1145.6062 1048.3006 1050.2491 1005.0248  973.9955
## 2017 1503.0438 1122.1439 1047.2614  883.3420  677.3816
## 2018 1185.0947 1199.5619 1008.1251  776.0709  497.4198
## 2019 1194.5156 1066.1918 1093.7082  771.6151  503.1632
## 2020  934.1740  842.2214  604.4694  893.2831  502.3578
## 2021 1017.1201
sumbaroutflowts <- ts(dataoutflowperbulan$`Sumatera Barat`, frequency = 12, start = c(2011,1))
sumbaroutflowts
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  306.70068  227.74199  347.23365  335.95990  327.77383  399.24039
## 2012  214.52616  252.76902  462.17950  577.54488  461.72280  623.94257
## 2013  245.10797  218.45108  398.34203  317.45463  461.02830  471.02622
## 2014  185.88126  273.86294  480.13567  452.26115  466.95347  548.54011
## 2015  124.28159  443.52843  443.34413  514.88579  503.17081  926.50648
## 2016  140.03323  351.99398  316.41743  604.36993  757.45169 2598.20471
## 2017  349.10531  710.49354  848.72339  860.68821  999.67421 3176.59985
## 2018   55.96053  302.53616  543.51806  570.24349 1461.73993 2601.75460
## 2019   75.55494  370.26231  613.28838  952.67623 3692.93346   50.39067
## 2020  102.48174  308.36325  782.28278  819.13541 2242.07887   34.07573
## 2021   86.54225  374.74081  559.24066 1554.62334 2167.68623  295.68386
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  448.56438 1376.25990  147.70279  298.57216  349.75474  734.22520
## 2012  543.65577 1260.36359  163.22296  437.83317  405.63471 1030.89819
## 2013 1130.65362  773.18744  411.62158  536.88884  421.89894 1125.35118
## 2014 2100.82357  115.32964  393.25698  416.17580  555.13227 1071.69548
## 2015 2153.22221  161.12169  337.86600  346.21304  452.70749 1063.81167
## 2016  636.60428  298.35824  592.36023  470.20911  815.03093 1616.78339
## 2017  151.96773  583.16929  372.26254  511.67734  738.88167 1451.21128
## 2018  113.42245  401.53968  287.98036  398.91845  512.61803 1196.57690
## 2019  445.31828  672.32642  403.02094  428.11685  511.72653 1249.35115
## 2020  651.14472  565.58335  343.19704  792.57966  483.75028 1638.08473
## 2021  684.83394  217.18849
plot.ts(sumbarinflowts, col = 'blue')
lines(sumbaroutflowts, col = 'red')
legend('right', c('Inflow','Outflow'),fill = c('blue','red'))

sumbarintscomponents <- decompose(sumutinflowts)
sumbarintscomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2012  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2013  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2014  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2015  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2016  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2017  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2018  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2019  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2020  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
## 2021  1833.10646   -89.51799  -440.43967  -408.46057  -443.36891   432.35660
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2012   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2013   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2014   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2015   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2016   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2017   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2018   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2019   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2020   757.67593   390.04691   -64.40352  -381.18432  -392.47592 -1193.33500
## 2021   757.67593   390.04691
sumbarouttscomponents <- decompose(sumutoutflowts)
sumbarouttscomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2012 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2013 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2014 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2015 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2016 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2017 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2018 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2019 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2020 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
## 2021 -1668.31245 -1004.32016  -452.48739   -76.68515   712.34043   835.13962
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2012   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2013   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2014   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2015   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2016   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2017   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2018   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2019   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2020   389.85774   -53.26060  -805.47535  -492.84969  -310.99376  2927.04677
## 2021   389.85774   -53.26060
plot(sumbarintscomponents$seasonal, type = 'l', col = 'turquoise')
lines(sumbarouttscomponents$seasonal, col = "orange")
legend("right",c("Inflow","Outflow"),fill=c("turquoise","orange"))

plot(sumbarintscomponents$trend, type = 'l', col = 'red')
lines(sumbarouttscomponents$trend, col = 'green')
legend('right', c("Inflow","Outflow"),fill=c("red","green"))

plot(sumbarintscomponents$random, type = 'l', col = 'Skyblue')
lines(sumbarouttscomponents$random, col = 'purple')
legend('right', c("Inflow","Outflow"),fill=c("skyblue","purple"))

plot(sumbarintscomponents$figure, type = 'l', col = 'blue')
lines(sumbarouttscomponents$figure, col = 'green')
legend('right', c("Inflow","Outflow"),fill=c("blue","green"))

sumbarintsseasonallyadjusted <- Sumbarts - sumbarintscomponents$seasonal
plot(sumbarintsseasonallyadjusted)

4. Sumatera

berikut adalah visualisasi dan prediksi data Inflow-Outflow di Sumatera :

plot(dataoutflowtahun$Tahun, dataoutflowtahun$`Sumatera`, type = "l", col = "blue", main = 'Data Inflow dan Outflow Uang Kartal di Sumatera Setiap Tahun', xlab = 'Tahun Periode', ylab = 'Data Inflow dan Outflow')
lines(datainflowtahun$Tahun, datainflowtahun$`Sumatera`, col = 'red')
legend('top', c("Outlow","Inflow"),fill=c("blue","red"))

plot(datainflowperbulan$Bulan, datainflowperbulan$`Sumatera`, type = "l", col = "steelblue", main = 'Data Inflow-Outflow Uang Kartal di Sumatera Setiap Bulan', xlab = 'Bulan', ylab = 'Data Inflow-Outflow')
lines(dataoutflowperbulan$Bulan, dataoutflowperbulan$`Sumatera`, col = 'purple')
legend('right',c('Inflow','Outflow'),fill = c('steelblue','purple'))

Sumaterats <- datainflowperbulan$`Sumatera`
plot.ts(Sumaterats, type = "l", col = "yellow")

logsumatera <- dataoutflowperbulan$`Sumatera`
plot.ts(logsumatera, type = "l", col = "steelblue")

library(TTR)
sumateraSMA3 <- SMA(datainflowperbulan$`Sumatera`, n = 3)
plot.ts(sumateraSMA3)

library('TTR')
sumateraSMA3 <- SMA(datainflowperbulan$`Sumatera`, n = 8)
plot.ts(sumateraSMA3)

sumaterainflowts <- ts(datainflowperbulan$`Sumatera`, frequency = 12, start = c(2011,1))
sumaterainflowts
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  4164.243  3337.607  4878.287  3156.548  3821.275  3686.394  4369.643
## 2012  7371.435  5443.242  5022.248  4102.575  5321.981  4064.952  5489.699
## 2013 13436.780  8035.017  7017.142  8267.947  7623.367  6961.815  7552.290
## 2014 11612.677  6964.701  5238.644  5988.730  4921.418  5591.202  3440.204
## 2015 12838.000  5173.687  5600.472  4954.255  5358.552  5936.657 15050.224
## 2016 13692.690  7760.507  6313.597  5254.795  6761.434  5066.314 20548.504
## 2017 12734.711  7752.686  7568.883  6638.224  7317.874  4071.240 21208.720
## 2018 16240.858  7668.179  7130.231  7628.992  5973.344 19402.076 14326.890
## 2019 17413.907  9281.546  8215.984  9406.456  7523.072 26667.739 11014.410
## 2020 19330.620 10365.349  7128.873  6536.998  7788.132 14946.781  8278.451
## 2021 21182.291  9983.745  8648.731  9095.626 16275.454 10211.629  6787.420
##            Aug       Sep       Oct       Nov       Dec
## 2011  3668.498 12874.594  4776.883  5669.993  3496.335
## 2012  9422.659  6813.338  4563.922  5452.494  2842.029
## 2013 19523.108  5265.619  6181.279  5347.888  3157.046
## 2014 19746.407  6305.927  6798.485  5515.775  3899.380
## 2015  8915.131  5710.106  6763.497  6087.162  4161.556
## 2016  6548.412  7498.570  6952.295  6098.330  5268.100
## 2017  8722.990  8250.898  7610.729  7122.755  4748.106
## 2018  9119.047  8886.660  8429.308  8078.990  4610.368
## 2019 10707.883  9462.332 10195.256  8492.726  5380.872
## 2020  8012.437  7559.106  5735.149  8462.623  5200.062
## 2021  7085.136
sumateraoutflowts <- ts(dataoutflowperbulan$`Sumatera`, frequency = 12, start = c(2011,1))
sumateraoutflowts
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  3441.614  3989.113  4228.628  6721.276  5787.181  7394.536  7154.223
## 2012  3200.178  4100.054  6605.179  6665.551  7147.179  8560.319  7711.993
## 2013  2221.436  4621.158  8219.574  4613.748  8423.251  7790.216 17485.108
## 2014  4289.908  4820.657  7088.166  8015.452  7757.313  8157.185 24722.650
## 2015  2036.392  5682.352  6300.508 10051.597  7592.788 12421.852 22934.645
## 2016  2804.053  4909.740  6985.628  8649.278 10859.812 28813.953  6455.632
## 2017  4855.706  6495.905  9234.822  9234.883 11638.176 29889.710  3252.637
## 2018  2424.451  7487.879 10455.312  9952.146 19165.027 25439.136  6324.910
## 2019  3735.569  7719.811 11089.472 15127.060 37664.505  2465.417 10575.813
## 2020  4693.754  6958.705 12667.832 11775.906 19644.928  3971.849 12710.177
## 2021  1990.678  6099.024  9638.351 19930.265 22004.413  7748.386 11650.666
##            Aug       Sep       Oct       Nov       Dec
## 2011 16042.967  1914.778  5173.616  5609.913 12634.335
## 2012 13610.489  3180.756  6273.015  5018.851 13161.070
## 2013 10207.967  6806.163  8014.259  8355.285 16529.555
## 2014  2377.454  6171.922  7655.389  7005.319 14276.798
## 2015  4668.410  6733.060  5783.016  8056.207 16924.980
## 2016  7937.744 10071.108  7571.519  9563.416 17369.845
## 2017 11015.435  6693.301  8559.331 12083.466 20652.339
## 2018 10042.081  7060.453  8155.825  9944.104 19225.025
## 2019 11780.050  8535.685  8868.257 12462.606 23460.023
## 2020  9744.450  9247.241 14431.727  9435.013 25307.224
## 2021  7565.509
plot.ts(sumaterainflowts, col = 'blue')
lines(sumateraoutflowts, col = 'red')
legend('right', c('Inflow','Outflow'),fill = c('blue','red'))

sumateraintscomponents <- decompose(sumaterainflowts)
sumateraintscomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2012  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2013  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2014  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2015  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2016  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2017  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2018  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2019  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2020  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
## 2021  6152.5962  -614.2449 -1728.6408 -1759.2576 -1797.7115  1972.5387
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2012  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2013  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2014  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2015  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2016  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2017  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2018  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2019  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2020  3070.5444  2282.6974  -336.6473 -1439.1383 -1683.5836 -4119.1528
## 2021  3070.5444  2282.6974
sumateraouttscomponents <- decompose(sumateraoutflowts)
sumateraouttscomponents$seasonal
##               Jan          Feb          Mar          Apr          May
## 2011 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2012 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2013 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2014 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2015 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2016 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2017 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2018 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2019 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2020 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
## 2021 -6834.998330 -4154.095027 -1069.366771  -541.827422  4487.308681
##               Jun          Jul          Aug          Sep          Oct
## 2011  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2012  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2013  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2014  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2015  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2016  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2017  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2018  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2019  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2020  4146.113221  2196.088359     3.268476 -3129.321269 -1799.750549
## 2021  4146.113221  2196.088359     3.268476                          
##               Nov          Dec
## 2011 -1217.537318  7914.117948
## 2012 -1217.537318  7914.117948
## 2013 -1217.537318  7914.117948
## 2014 -1217.537318  7914.117948
## 2015 -1217.537318  7914.117948
## 2016 -1217.537318  7914.117948
## 2017 -1217.537318  7914.117948
## 2018 -1217.537318  7914.117948
## 2019 -1217.537318  7914.117948
## 2020 -1217.537318  7914.117948
## 2021
plot(sumateraintscomponents$seasonal, type = 'l', col = 'turquoise')
lines(sumateraouttscomponents$seasonal, col = "orange")
legend("right",c("Inflow","Outflow"),fill=c("turquoise","orange"))

plot(sumateraintscomponents$trend, type = 'l', col = 'red')
lines(sumateraouttscomponents$trend, col = 'green')
legend('right', c("Inflow","Outflow"),fill=c("red","green"))

plot(sumateraintscomponents$random, type = 'l', col = 'Skyblue')
lines(sumateraouttscomponents$random, col = 'purple')
legend('right', c("Inflow","Outflow"),fill=c("skyblue","purple"))

plot(sumateraintscomponents$figure, type = 'l', col = 'blue')
lines(sumateraouttscomponents$figure, col = 'green')
legend('right', c("Inflow","Outflow"),fill=c("blue","green"))

sumateraintsseasonallyadjusted <- Sumaterats - sumateraintscomponents$seasonal
plot(sumateraintsseasonallyadjusted)

sumaterasforecast <- HoltWinters(Sumaterats, beta=FALSE, gamma=FALSE)
sumaterasforecast
## Holt-Winters exponential smoothing without trend and without seasonal component.
## 
## Call:
## HoltWinters(x = Sumaterats, beta = FALSE, gamma = FALSE)
## 
## Smoothing parameters:
##  alpha: 0.06659603
##  beta : FALSE
##  gamma: FALSE
## 
## Coefficients:
##       [,1]
## a 9834.706
sumaterasforecast$fitted
## Time Series:
## Start = 2 
## End = 128 
## Frequency = 1 
##          xhat     level
##   2  4164.243  4164.243
##   3  4109.192  4109.192
##   4  4160.411  4160.411
##   5  4093.557  4093.557
##   6  4075.425  4075.425
##   7  4049.517  4049.517
##   8  4070.836  4070.836
##   9  4044.042  4044.042
##  10  4632.121  4632.121
##  11  4641.762  4641.762
##  12  4710.238  4710.238
##  13  4629.397  4629.397
##  14  4812.006  4812.006
##  15  4854.044  4854.044
##  16  4865.245  4865.245
##  17  4814.454  4814.454
##  18  4848.254  4848.254
##  19  4796.089  4796.089
##  20  4842.281  4842.281
##  21  5147.316  5147.316
##  22  5258.266  5258.266
##  23  5212.026  5212.026
##  24  5228.040  5228.040
##  25  5069.141  5069.141
##  26  5626.392  5626.392
##  27  5786.797  5786.797
##  28  5868.733  5868.733
##  29  6028.511  6028.511
##  30  6134.722  6134.722
##  31  6189.803  6189.803
##  32  6280.540  6280.540
##  33  7162.442  7162.442
##  34  7036.121  7036.121
##  35  6979.192  6979.192
##  36  6870.554  6870.554
##  37  6623.249  6623.249
##  38  6955.525  6955.525
##  39  6956.136  6956.136
##  40  6841.758  6841.758
##  41  6784.950  6784.950
##  42  6660.846  6660.846
##  43  6589.612  6589.612
##  44  6379.874  6379.874
##  45  7270.032  7270.032
##  46  7205.826  7205.826
##  47  7178.699  7178.699
##  48  7067.955  7067.955
##  49  6856.940  6856.940
##  50  7255.255  7255.255
##  51  7116.631  7116.631
##  52  7015.661  7015.661
##  53  6878.379  6878.379
##  54  6777.165  6777.165
##  55  6721.190  6721.190
##  56  7275.871  7275.871
##  57  7385.039  7385.039
##  58  7273.495  7273.495
##  59  7239.531  7239.531
##  60  7162.788  7162.788
##  61  6962.918  6962.918
##  62  7411.094  7411.094
##  63  7434.364  7434.364
##  64  7359.725  7359.725
##  65  7219.545  7219.545
##  66  7189.037  7189.037
##  67  7047.672  7047.672
##  68  7946.774  7946.774
##  69  7853.648  7853.648
##  70  7830.001  7830.001
##  71  7771.550  7771.550
##  72  7660.120  7660.120
##  73  7500.821  7500.821
##  74  7849.377  7849.377
##  75  7842.938  7842.938
##  76  7824.687  7824.687
##  77  7745.673  7745.673
##  78  7717.184  7717.184
##  79  7474.378  7474.378
##  80  8389.031  8389.031
##  81  8411.271  8411.271
##  82  8400.591  8400.591
##  83  8347.989  8347.989
##  84  8266.394  8266.394
##  85  8032.090  8032.090
##  86  8578.761  8578.761
##  87  8518.120  8518.120
##  88  8425.692  8425.692
##  89  8372.635  8372.635
##  90  8212.852  8212.852
##  91  8958.009  8958.009
##  92  9315.556  9315.556
##  93  9302.469  9302.469
##  94  9274.778  9274.778
##  95  9218.473  9218.473
##  96  9142.588  9142.588
##  97  8840.760  8840.760
##  98  9411.697  9411.697
##  99  9403.030  9403.030
## 100  9323.977  9323.977
## 101  9329.470  9329.470
## 102  9209.171  9209.171
## 103 10371.842 10371.842
## 104 10414.635 10414.635
## 105 10434.164 10434.164
## 106 10369.444 10369.444
## 107 10357.844 10357.844
## 108 10233.634 10233.634
## 109  9910.460  9910.460
## 110 10537.805 10537.805
## 111 10526.320 10526.320
## 112 10300.064 10300.064
## 113 10049.458 10049.458
## 114  9898.863  9898.863
## 115 10235.034 10235.034
## 116 10104.734 10104.734
## 117  9965.395  9965.395
## 118  9805.146  9805.146
## 119  9534.100  9534.100
## 120  9462.744  9462.744
## 121  9178.866  9178.866
## 122  9978.247  9978.247
## 123  9978.613  9978.613
## 124  9890.048  9890.048
## 125  9837.143  9837.143
## 126 10265.909 10265.909
## 127 10262.294 10262.294
## 128 10030.881 10030.881
plot(sumaterasforecast)

sumaterasforecast$SSE
## [1] 2341841644
sumaterasforecast <- HoltWinters(sumateraintscomponents$seasonal, beta = FALSE, gamma = FALSE)
sumaterasforecast
## Holt-Winters exponential smoothing without trend and without seasonal component.
## 
## Call:
## HoltWinters(x = sumateraintscomponents$seasonal, beta = FALSE,     gamma = FALSE)
## 
## Smoothing parameters:
##  alpha: 0.1439112
##  beta : FALSE
##  gamma: FALSE
## 
## Coefficients:
##       [,1]
## a 570.7609
sumaterasforecast$fitted
##                 xhat       level
## Feb 2011 6152.596200 6152.596200
## Mar 2011 5178.772022 5178.772022
## Apr 2011 4184.717991 4184.717991
## May 2011 3329.313367 3329.313367
## Jun 2011 2591.477097 2591.477097
## Jul 2011 2502.404938 2502.404938
## Aug 2011 2584.166572 2584.166572
## Sep 2011 2540.781776 2540.781776
## Oct 2011 2126.687515 2126.687515
## Nov 2011 1613.525270 1613.525270
## Dec 2011 1139.034395 1139.034395
## Jan 2012  382.322403  382.322403
## Feb 2012 1212.729396 1212.729396
## Mar 2012  949.807349  949.807349
## Apr 2012  564.348674  564.348674
## May 2012  229.955722  229.955722
## Jun 2012  -61.848288  -61.848288
## Jul 2012  230.922777  230.922777
## Aug 2012  639.576122  639.576122
## Sep 2012  876.039660  876.039660
## Oct 2012  701.520424  701.520424
## Nov 2012  393.455678  393.455678
## Dec 2012   94.546475   94.546475
## Jan 2013 -511.852013 -511.852013
## Feb 2013  447.236688  447.236688
## Mar 2013  294.477610  294.477610
## Apr 2013    3.328221    3.328221
## May 2013 -250.327608 -250.327608
## Jun 2013 -473.013470 -473.013470
## Jul 2013 -121.071133 -121.071133
## Aug 2013  338.238076  338.238076
## Sep 2013  618.067532  618.067532
## Oct 2013  480.673373  480.673373
## Nov 2013  204.390990  204.390990
## Dec 2013  -67.309688  -67.309688
## Jan 2014 -650.415263 -650.415263
## Feb 2014  328.614241  328.614241
## Mar 2014  192.926262  192.926262
## Apr 2014  -83.608752  -83.608752
## May 2014 -324.753377 -324.753377
## Jun 2014 -536.728538 -536.728538
## Jul 2014 -175.616889 -175.616889
## Aug 2014  291.542064  291.542064
## Sep 2014  578.091599  578.091599
## Oct 2014  446.450425  446.450425
## Nov 2014  175.093107  175.093107
## Dec 2014  -92.391278  -92.391278
## Jan 2015 -671.887331 -671.887331
## Feb 2015  310.232244  310.232244
## Mar 2015  177.189640  177.189640
## Apr 2015  -97.080698  -97.080698
## May 2015 -336.286559 -336.286559
## Jun 2015 -546.601967 -546.601967
## Jul 2015 -184.069420 -184.069420
## Aug 2015  284.305947  284.305947
## Sep 2015  571.896840  571.896840
## Oct 2015  441.147161  441.147161
## Nov 2015  170.553042  170.553042
## Dec 2015  -96.277977  -96.277977
## Jan 2016 -675.214690 -675.214690
## Feb 2016  307.383729  307.383729
## Mar 2016  174.751058  174.751058
## Apr 2016  -99.168341  -99.168341
## May 2016 -338.073767 -338.073767
## Jun 2016 -548.131975 -548.131975
## Jul 2016 -185.379243 -185.379243
## Aug 2016  283.184622  283.184622
## Sep 2016  570.936886  570.936886
## Oct 2016  440.325355  440.325355
## Nov 2016  169.849503  169.849503
## Dec 2016  -96.880268  -96.880268
## Jan 2017 -675.730305 -675.730305
## Feb 2017  306.942316  306.942316
## Mar 2017  174.373170  174.373170
## Apr 2017  -99.491846  -99.491846
## May 2017 -338.350716 -338.350716
## Jun 2017 -548.369068 -548.369068
## Jul 2017 -185.582216 -185.582216
## Aug 2017  283.010859  283.010859
## Sep 2017  570.788130  570.788130
## Oct 2017  440.198007  440.198007
## Nov 2017  169.740481  169.740481
## Dec 2017  -96.973601  -96.973601
## Jan 2018 -675.810206 -675.810206
## Feb 2018  306.873914  306.873914
## Mar 2018  174.314611  174.314611
## Apr 2018  -99.541977  -99.541977
## May 2018 -338.393633 -338.393633
## Jun 2018 -548.405809 -548.405809
## Jul 2018 -185.613670 -185.613670
## Aug 2018  282.983932  282.983932
## Sep 2018  570.765078  570.765078
## Oct 2018  440.178272  440.178272
## Nov 2018  169.723587  169.723587
## Dec 2018  -96.988064  -96.988064
## Jan 2019 -675.822588 -675.822588
## Feb 2019  306.863314  306.863314
## Mar 2019  174.305537  174.305537
## Apr 2019  -99.549746  -99.549746
## May 2019 -338.400284 -338.400284
## Jun 2019 -548.411502 -548.411502
## Jul 2019 -185.618544 -185.618544
## Aug 2019  282.979760  282.979760
## Sep 2019  570.761506  570.761506
## Oct 2019  440.175214  440.175214
## Nov 2019  169.720969  169.720969
## Dec 2019  -96.990305  -96.990305
## Jan 2020 -675.824506 -675.824506
## Feb 2020  306.861672  306.861672
## Mar 2020  174.304131  174.304131
## Apr 2020  -99.550950  -99.550950
## May 2020 -338.401314 -338.401314
## Jun 2020 -548.412385 -548.412385
## Jul 2020 -185.619299 -185.619299
## Aug 2020  282.979113  282.979113
## Sep 2020  570.760952  570.760952
## Oct 2020  440.174740  440.174740
## Nov 2020  169.720563  169.720563
## Dec 2020  -96.990652  -96.990652
## Jan 2021 -675.824804 -675.824804
## Feb 2021  306.861417  306.861417
## Mar 2021  174.303913  174.303913
## Apr 2021  -99.551136  -99.551136
## May 2021 -338.401474 -338.401474
## Jun 2021 -548.412521 -548.412521
## Jul 2021 -185.619416 -185.619416
## Aug 2021  282.979013  282.979013
plot(sumaterasforecast)

sumaterasforecast$SSE
## [1] 1194469870
library(forecast)
## Warning: package 'forecast' was built under R version 4.1.2
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
dftimeseries.hw <- HoltWinters(Sumaterats, gamma = FALSE)
sumateratsforecasts2 <- forecast(dftimeseries.hw, h = 20)
sumateratsforecasts2
##     Point Forecast    Lo 80    Hi 80       Lo 95    Hi 95
## 129       9997.253 4108.913 15885.59   991.81479 19002.69
## 130      10346.320 4429.817 16262.82  1297.80961 19394.83
## 131      10695.388 4723.253 16667.52  1561.79563 19828.98
## 132      11044.455 4980.734 17108.18  1770.79433 20318.12
## 133      11393.522 5194.815 17592.23  1913.41811 20873.63
## 134      11742.589 5359.473 18125.71  1980.45472 21504.72
## 135      12091.657 5470.376 18712.94  1965.28137 22218.03
## 136      12440.724 5524.979 19356.47  1864.00537 23017.44
## 137      12789.791 5522.420 20057.16  1675.30680 23904.28
## 138      13138.858 5463.258 20814.46  1400.04106 24877.68
## 139      13487.926 5349.129 21626.72  1040.70995 25935.14
## 140      13836.993 5182.386 22491.60   600.91363 27073.07
## 141      14186.060 4965.785 23406.34    84.86612 28287.25
## 142      14535.127 4702.235 24368.02  -502.98447 29573.24
## 143      14884.195 4394.621 25373.77 -1158.22393 30926.61
## 144      15233.262 4045.697 26420.83 -1876.64233 32343.17
## 145      15582.329 3658.020 27506.64 -2654.32868 33818.99
## 146      15931.397 3233.924 28628.87 -3487.71237 35350.51
## 147      16280.464 2775.517 29785.41 -4373.57000 36934.50
## 148      16629.531 2284.689 30974.37 -5309.01154 38568.07
plot(sumateratsforecasts2)

sumateratsdiff1 <- diff(Sumaterats, differences = 1)
plot.ts(sumateratsdiff1)

acf(sumateratsdiff1, lag.max = 20)

Referensi

  1. https://rpubs.com/suhartono-uinmaliki/861286

  2. https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx