library(tidyverse)
library(openintro)
library(infer)
library(dplyr)
data("yrbss",package="openintro")
Exercise 1
Overall there was 4792 students that don’t text while driving and 7873 students that text while driving in the past 30 days.
yrbss%>%count(text_while_driving_30d)
## # A tibble: 9 x 2
## text_while_driving_30d n
## <chr> <int>
## 1 0 4792
## 2 1-2 925
## 3 10-19 373
## 4 20-29 298
## 5 3-5 493
## 6 30 827
## 7 6-9 311
## 8 did not drive 4646
## 9 <NA> 918
Exercise 2
There were 463 students that have text while driving and do not wear helmets.
no_helmet <- yrbss %>%filter(helmet_12m == "never")
no_helmet <- no_helmet %>%
mutate(text_ind = ifelse(text_while_driving_30d == "30", "yes", "no"))
ind_text<-no_helmet %>%count(text_ind) %>%mutate(p_hat = n/sum(n))
print(ind_text)
## # A tibble: 3 x 3
## text_ind n p_hat
## <chr> <int> <dbl>
## 1 no 6040 0.866
## 2 yes 463 0.0664
## 3 <NA> 474 0.0679
Exercise 3
The margin of error for non-helmet wearers who text and drive is ~.006.
no_helmet %>%
specify(response = text_ind, success = "yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.95)
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.0658 0.0780
x<-ind_text$p_hat
SE.ME<-function(x){
x<-(x*(1-x))/5000
x<- sqrt(x)
x<-1.95*x
return(x)
}
ME<-SE.ME(x)
print(ME[2])
## [1] 0.006864284
Exercise 4
Let’s find the calculate the confident levels if those who do text while driving get a full night rest and if students who always wear helmets are physically active. For both senarios, we will run with 95% confident for the ME calculations.
text.drive <- yrbss %>%filter(text_while_driving_30d == "30")
safety.acv <- yrbss %>%filter(helmet_12m == "always")
text.drive <- text.drive %>%
mutate(sleep_ind = ifelse(school_night_hours_sleep == "9"|school_night_hours_sleep=="10+", "yes", "no"))
safety.acv <- safety.acv %>%
mutate(work_ind = ifelse(physically_active_7d=="7", "yes", "no"))
sleep_ind<-text.drive%>%count(sleep_ind) %>%mutate(p_hat = n/sum(n))
work_ind<-safety.acv%>%count(work_ind) %>%mutate(p_hat = n/sum(n))
text.drive %>%
specify(response = sleep_ind, success = "yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.95)
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.0561 0.0949
safety.acv %>%
specify(response = work_ind, success = "yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.95)
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.266 0.355
y<-sleep_ind$p_hat
z<-work_ind$p_hat
ME_a<-SE.ME(y)
ME_b<-SE.ME(z)
print(ME_a[2])
## [1] 0.006928916
## [1] 0.01264647
Exercise 5
It appears that the population proportion and the marign of error have a quadratic relationship. There is a exponential increase both variables before it hits the vertex at .50
Exercise 6
For the graph created, it is bimodal and symmetric. The center appears to be .10 and the spread is small.
Exercise 7
When we increased P to 0.5, it shifted the histogram down for the center to be 0.5. There was a increase in spread from the increment as well. The increment did change the shape, a as it became unimodal.
Exercise 8
Surprisingly, when the sample size increased to 1000, the shape of the histogram became narrower and formed back to a bi modal.
Exercise 9
Students who get 10+ hours of sleep are more likely to workout every day of the week. Let’s set the confident level to 93% for the example.It appears that only 24% of students that sleep over 10+ hours work out daily. The CL was determine to be (0.236,0.294)
sleep_10<-yrbss%>%filter(school_night_hours_sleep=="10+")
sleep.train <- text.drive %>%
mutate(strength_ind = ifelse(strength_training_7d == "7", "yes", "no"))
strength_ind<-sleep.train%>%count(strength_ind) %>%mutate(p_hat = n/sum(n))
set.seed(1000)
sleep.train%>%
specify(response = strength_ind, success = "yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.93)
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.236 0.294
Exercise 10
There is only a 5% chance that the hypothesis is correct but the data shown the wrong answer. It can mean more students did train daily with 10+ hours of sleep but report incorrectly.
Exercise 11
ME is 1% with 95% confidence. Find n, if p is ~0.2 (given by chart) ME=zSE 0.1 <=1.96sqrt(.2(1-.2)/n) (0.1/1.96)^ (2)<= (sqrt(.16/n))^2 (0.1/1.96)^2<=.16/n (1.0/1.96)^2n<.16 n<=.16/(1.0/1.96)^(2)
LS0tDQp0aXRsZTogIkxhYiA2IEluZmVyZW5jZSBmb3IgY2F0ZWdvcmljYWwgZGF0YSINCmF1dGhvcjogIlZ5YW5uYSBIaWxsIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQpgYGB7ciBsb2FkLXBhY2thZ2VzLCBtZXNzYWdlPUZBTFNFfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KG9wZW5pbnRybykNCmxpYnJhcnkoaW5mZXIpDQogbGlicmFyeShkcGx5cikNCmRhdGEoInlyYnNzIixwYWNrYWdlPSJvcGVuaW50cm8iKQ0KYGBgDQoNCiMjIyBFeGVyY2lzZSAxDQoNCk92ZXJhbGwgdGhlcmUgd2FzIDQ3OTIgc3R1ZGVudHMgdGhhdCBkb24ndCB0ZXh0IHdoaWxlIGRyaXZpbmcgYW5kIDc4NzMgc3R1ZGVudHMgdGhhdCB0ZXh0IHdoaWxlIGRyaXZpbmcgaW4gdGhlIHBhc3QgMzAgZGF5cy4NCg0KYGBge3IgY29kZS1jaHVuay1sYWJlbH0NCnlyYnNzJT4lY291bnQodGV4dF93aGlsZV9kcml2aW5nXzMwZCkNCg0KYGBgDQoNCiMjIyBFeGVyY2lzZSAyDQoNClRoZXJlIHdlcmUgNDYzIHN0dWRlbnRzIHRoYXQgaGF2ZSB0ZXh0IHdoaWxlIGRyaXZpbmcgYW5kIGRvIG5vdCB3ZWFyIGhlbG1ldHMuDQpgYGB7ciB3YXJuaW5nPUZBTFNFfQ0Kbm9faGVsbWV0IDwtIHlyYnNzICU+JWZpbHRlcihoZWxtZXRfMTJtID09ICJuZXZlciIpDQpub19oZWxtZXQgPC0gbm9faGVsbWV0ICU+JQ0KICBtdXRhdGUodGV4dF9pbmQgPSBpZmVsc2UodGV4dF93aGlsZV9kcml2aW5nXzMwZCA9PSAiMzAiLCAieWVzIiwgIm5vIikpDQppbmRfdGV4dDwtbm9faGVsbWV0ICU+JWNvdW50KHRleHRfaW5kKSAlPiVtdXRhdGUocF9oYXQgPSBuL3N1bShuKSkNCnByaW50KGluZF90ZXh0KQ0KYGBgDQoNCiMjIyBFeGVyY2lzZSAzDQoNClRoZSBtYXJnaW4gb2YgZXJyb3IgZm9yIG5vbi1oZWxtZXQgd2VhcmVycyB3aG8gdGV4dCBhbmQgZHJpdmUgaXMgfi4wMDYuDQpgYGB7ciB3YXJuaW5nPUZBTFNFfQ0Kbm9faGVsbWV0ICU+JQ0KICBzcGVjaWZ5KHJlc3BvbnNlID0gdGV4dF9pbmQsIHN1Y2Nlc3MgPSAieWVzIikgJT4lDQogIGdlbmVyYXRlKHJlcHMgPSAxMDAwLCB0eXBlID0gImJvb3RzdHJhcCIpICU+JQ0KICBjYWxjdWxhdGUoc3RhdCA9ICJwcm9wIikgJT4lDQogIGdldF9jaShsZXZlbCA9IDAuOTUpDQp4PC1pbmRfdGV4dCRwX2hhdA0KU0UuTUU8LWZ1bmN0aW9uKHgpew0KICB4PC0oeCooMS14KSkvNTAwMA0KICB4PC0gc3FydCh4KQ0KICB4PC0xLjk1KngNCiAgcmV0dXJuKHgpDQp9DQpNRTwtU0UuTUUoeCkNCnByaW50KE1FWzJdKQ0KDQpgYGANCg0KIyMjIEV4ZXJjaXNlIDQNCg0KTGV0J3MgZmluZCB0aGUgY2FsY3VsYXRlIHRoZSBjb25maWRlbnQgbGV2ZWxzIGlmIHRob3NlIHdobyBkbyB0ZXh0IHdoaWxlIGRyaXZpbmcgIGdldCBhIGZ1bGwgbmlnaHQgcmVzdCBhbmQgaWYgc3R1ZGVudHMgd2hvIGFsd2F5cyB3ZWFyIGhlbG1ldHMgYXJlIHBoeXNpY2FsbHkgYWN0aXZlLiBGb3IgYm90aCBzZW5hcmlvcywgd2Ugd2lsbCBydW4gd2l0aCA5NSUgY29uZmlkZW50IGZvciB0aGUgTUUgY2FsY3VsYXRpb25zLiANCg0KYGBge3Igd2FybmluZz1GQUxTRX0NCnRleHQuZHJpdmUgPC0geXJic3MgJT4lZmlsdGVyKHRleHRfd2hpbGVfZHJpdmluZ18zMGQgPT0gIjMwIikNCnNhZmV0eS5hY3YgPC0geXJic3MgJT4lZmlsdGVyKGhlbG1ldF8xMm0gPT0gImFsd2F5cyIpDQoNCnRleHQuZHJpdmUgPC0gdGV4dC5kcml2ZSAlPiUNCiAgbXV0YXRlKHNsZWVwX2luZCA9IGlmZWxzZShzY2hvb2xfbmlnaHRfaG91cnNfc2xlZXAgPT0gIjkifHNjaG9vbF9uaWdodF9ob3Vyc19zbGVlcD09IjEwKyIsICJ5ZXMiLCAibm8iKSkNCg0Kc2FmZXR5LmFjdiA8LSBzYWZldHkuYWN2ICU+JQ0KICBtdXRhdGUod29ya19pbmQgPSBpZmVsc2UocGh5c2ljYWxseV9hY3RpdmVfN2Q9PSI3IiwgInllcyIsICJubyIpKQ0KDQpzbGVlcF9pbmQ8LXRleHQuZHJpdmUlPiVjb3VudChzbGVlcF9pbmQpICU+JW11dGF0ZShwX2hhdCA9IG4vc3VtKG4pKQ0KDQp3b3JrX2luZDwtc2FmZXR5LmFjdiU+JWNvdW50KHdvcmtfaW5kKSAlPiVtdXRhdGUocF9oYXQgPSBuL3N1bShuKSkNCg0KdGV4dC5kcml2ZSAlPiUNCiAgc3BlY2lmeShyZXNwb25zZSA9IHNsZWVwX2luZCwgc3VjY2VzcyA9ICJ5ZXMiKSAlPiUNCiAgZ2VuZXJhdGUocmVwcyA9IDEwMDAsIHR5cGUgPSAiYm9vdHN0cmFwIikgJT4lDQogIGNhbGN1bGF0ZShzdGF0ID0gInByb3AiKSAlPiUNCiAgZ2V0X2NpKGxldmVsID0gMC45NSkNCg0Kc2FmZXR5LmFjdiAlPiUNCiAgc3BlY2lmeShyZXNwb25zZSA9IHdvcmtfaW5kLCBzdWNjZXNzID0gInllcyIpICU+JQ0KICBnZW5lcmF0ZShyZXBzID0gMTAwMCwgdHlwZSA9ICJib290c3RyYXAiKSAlPiUNCiAgY2FsY3VsYXRlKHN0YXQgPSAicHJvcCIpICU+JQ0KICBnZXRfY2kobGV2ZWwgPSAwLjk1KQ0KDQp5PC1zbGVlcF9pbmQkcF9oYXQNCno8LXdvcmtfaW5kJHBfaGF0DQoNCk1FX2E8LVNFLk1FKHkpDQpNRV9iPC1TRS5NRSh6KQ0KcHJpbnQoTUVfYVsyXSkNCnByaW50KE1FX2JbMl0pDQoNCmBgYA0KDQojIyMgRXhlcmNpc2UgNQ0KDQpJdCBhcHBlYXJzIHRoYXQgdGhlIHBvcHVsYXRpb24gcHJvcG9ydGlvbiBhbmQgdGhlIG1hcmlnbiBvZiBlcnJvciBoYXZlIGEgcXVhZHJhdGljIHJlbGF0aW9uc2hpcC4gVGhlcmUgaXMgYSBleHBvbmVudGlhbCBpbmNyZWFzZSBib3RoIHZhcmlhYmxlcyBiZWZvcmUgaXQgaGl0cyB0aGUgdmVydGV4IGF0IC41MA0KDQojIyMgRXhlcmNpc2UgNg0KRm9yIHRoZSBncmFwaCBjcmVhdGVkLCBpdCBpcyBiaW1vZGFsIGFuZCBzeW1tZXRyaWMuIFRoZSBjZW50ZXIgYXBwZWFycyB0byBiZSAuMTAgYW5kIHRoZSBzcHJlYWQgaXMgc21hbGwuDQoNCiMjIyBFeGVyY2lzZSA3DQoNCldoZW4gd2UgaW5jcmVhc2VkIFAgdG8gMC41LCBpdCBzaGlmdGVkIHRoZSBoaXN0b2dyYW0gZG93biBmb3IgdGhlIGNlbnRlciB0byBiZSAwLjUuIFRoZXJlIHdhcyBhIGluY3JlYXNlIGluIHNwcmVhZCBmcm9tIHRoZSBpbmNyZW1lbnQgYXMgd2VsbC4gVGhlIGluY3JlbWVudCBkaWQgIGNoYW5nZSB0aGUgc2hhcGUsIGEgYXMgaXQgYmVjYW1lIHVuaW1vZGFsLg0KDQojIyMgRXhlcmNpc2UgOA0KDQpTdXJwcmlzaW5nbHksIHdoZW4gdGhlIHNhbXBsZSBzaXplIGluY3JlYXNlZCB0byAxMDAwLCB0aGUgc2hhcGUgb2YgdGhlIGhpc3RvZ3JhbSBiZWNhbWUgbmFycm93ZXIgYW5kIGZvcm1lZCBiYWNrIHRvIGEgYmkgbW9kYWwuDQoNCiMjIyBFeGVyY2lzZSA5DQoNClN0dWRlbnRzIHdobyBnZXQgMTArIGhvdXJzIG9mIHNsZWVwIGFyZSBtb3JlIGxpa2VseSB0byB3b3Jrb3V0IGV2ZXJ5IGRheSBvZiB0aGUgd2Vlay4gTGV0J3Mgc2V0IHRoZSBjb25maWRlbnQgbGV2ZWwgdG8gOTMlIGZvciB0aGUgZXhhbXBsZS5JdCBhcHBlYXJzIHRoYXQgb25seSAyNCUgb2Ygc3R1ZGVudHMgdGhhdCBzbGVlcCBvdmVyIDEwKyBob3VycyB3b3JrIG91dCBkYWlseS4gVGhlIENMIHdhcyBkZXRlcm1pbmUgdG8gYmUgKDAuMjM2LDAuMjk0KQ0KYGBge3Igd2FybmluZz1GQUxTRX0NCnNsZWVwXzEwPC15cmJzcyU+JWZpbHRlcihzY2hvb2xfbmlnaHRfaG91cnNfc2xlZXA9PSIxMCsiKQ0Kc2xlZXAudHJhaW4gPC0gdGV4dC5kcml2ZSAlPiUNCiAgbXV0YXRlKHN0cmVuZ3RoX2luZCA9IGlmZWxzZShzdHJlbmd0aF90cmFpbmluZ183ZCA9PSAiNyIsICJ5ZXMiLCAibm8iKSkNCg0Kc3RyZW5ndGhfaW5kPC1zbGVlcC50cmFpbiU+JWNvdW50KHN0cmVuZ3RoX2luZCkgJT4lbXV0YXRlKHBfaGF0ID0gbi9zdW0obikpDQoNCnNldC5zZWVkKDEwMDApDQpzbGVlcC50cmFpbiU+JQ0KICBzcGVjaWZ5KHJlc3BvbnNlID0gc3RyZW5ndGhfaW5kLCBzdWNjZXNzID0gInllcyIpICU+JQ0KICBnZW5lcmF0ZShyZXBzID0gMTAwMCwgdHlwZSA9ICJib290c3RyYXAiKSAlPiUNCiAgY2FsY3VsYXRlKHN0YXQgPSAicHJvcCIpICU+JQ0KICBnZXRfY2kobGV2ZWwgPSAwLjkzKQ0KYGBgDQoNCiMjIyBFeGVyY2lzZSAxMA0KDQpUaGVyZSBpcyBvbmx5IGEgNSUgY2hhbmNlIHRoYXQgdGhlIGh5cG90aGVzaXMgaXMgY29ycmVjdCBidXQgdGhlIGRhdGEgc2hvd24gdGhlIHdyb25nIGFuc3dlci4gSXQgY2FuIG1lYW4gbW9yZSBzdHVkZW50cyBkaWQgdHJhaW4gZGFpbHkgd2l0aCAxMCsgaG91cnMgb2Ygc2xlZXAgYnV0IHJlcG9ydCBpbmNvcnJlY3RseS4NCg0KIyMjIEV4ZXJjaXNlIDExDQoNCk1FIGlzIDElIHdpdGggOTUlIGNvbmZpZGVuY2UuIEZpbmQgbiwgaWYgcCBpcyB+MC4yIChnaXZlbiBieSBjaGFydCkNCk1FPXoqU0UNCjAuMSA8PTEuOTYqc3FydCguMigxLS4yKS9uKQ0KKDAuMS8xLjk2KV4gKDIpPD0gKHNxcnQoLjE2L24pKV4yDQooMC4xLzEuOTYpXjI8PS4xNi9uDQooMS4wLzEuOTYpXjJuPC4xNg0Kbjw9LjE2LygxLjAvMS45NileKDIp