library(dplyr)
zero<-lapply(food2, function(x){x==0}) |> sapply(sum) |> as.data.frame()
zero<-zero |> mutate(pct=zero[,1]/10041*100)|> as.data.frame()
names(zero)<- c("count","percent")
zero
count percent
rice 419 4.172891
corn 8749 87.132756
othercereal 2836 28.244199
roots 7868 78.358729
Sugar 3795 37.795040
beans 6294 62.683000
leafy 3071 30.584603
othervegetables 2872 28.602729
vitCfruit 9276 92.381237
otherfruit 7425 73.946818
fish 1314 13.086346
meat 4468 44.497560
poultry 6573 65.461607
Eggs 6449 64.226671
wholemilk 8870 88.337815
milkproducts 9467 94.283438
fats 2075 20.665272
beverages 1976 19.679315
condiments 6861 68.329848
miscellaneous 8537 85.021412
boxplot(food2[,1:5],las=2)
boxplot(food2[,6:10],las=2)
boxplot(food2[,11:15],las=2)
boxplot(food2[,16:20],las=2)
library(reshape2)
foodL <- melt(food, id= 'ID')
dtafood <-split(foodL, foodL$variable)
lapply(dtafood, function(x){
Q1 <- quantile(x$value, probs=c(.25), na.rm = FALSE)
Q3 <- quantile(x$value, probs=c(.75), na.rm = FALSE)
Q <- quantile(x$value, probs=c(.25, .75), na.rm = FALSE)
iqr <- IQR(x$value)
up <- Q[2]+1.5*iqr # Upper Range
low<- Q[1]-1.5*iqr # Lower Range
cbind(Q1, Q3, iqr, low, up)
})
$rice
Q1 Q3 iqr low up
25% 163.1304 357.6609 194.5305 -128.6653 649.4566
$corn
Q1 Q3 iqr low up
25% 0 0 0 0 0
$othercereal
Q1 Q3 iqr low up
25% 0 37.52625 37.52625 -56.28937 93.81562
$roots
Q1 Q3 iqr low up
25% 0 0 0 0 0
$Sugar
Q1 Q3 iqr low up
25% 0 15.486 15.486 -23.229 38.715
$beans
Q1 Q3 iqr low up
25% 0 3.35 3.35 -5.025 8.375
$leafy
Q1 Q3 iqr low up
25% 0 43.12381 43.12381 -64.68572 107.8095
$othervegetables
Q1 Q3 iqr low up
25% 0 69.20808 69.20808 -103.8121 173.0202
$vitCfruit
Q1 Q3 iqr low up
25% 0 0 0 0 0
$otherfruit
Q1 Q3 iqr low up
25% 0 14.7 14.7 -22.05 36.75
$fish
Q1 Q3 iqr low up
25% 28.75 152.7396 123.9896 -157.2343 338.7239
$meat
Q1 Q3 iqr low up
25% 0 77.81087 77.81087 -116.7163 194.5272
$poultry
Q1 Q3 iqr low up
25% 0 35.28828 35.28828 -52.93243 88.22071
$Eggs
Q1 Q3 iqr low up
25% 0 19.07069 19.07069 -28.60603 47.67672
$wholemilk
Q1 Q3 iqr low up
25% 0 0 0 0 0
$milkproducts
Q1 Q3 iqr low up
25% 0 0 0 0 0
$fats
Q1 Q3 iqr low up
25% 0.7308 6.525 5.7942 -7.9605 15.2163
$beverages
Q1 Q3 iqr low up
25% 0.5 25 24.5 -36.25 61.75
$condiments
Q1 Q3 iqr low up
25% 0 1.85 1.85 -2.775 4.625
$miscellaneous
Q1 Q3 iqr low up
25% 0 0 0 0 0
lapply(dtafood, function(x){
Q1 <- quantile(x$value, probs=c(.25), na.rm = FALSE)
Q3 <- quantile(x$value, probs=c(.75), na.rm = FALSE)
Q <- quantile(x$value, probs=c(.25, .75), na.rm = FALSE)
iqr <- IQR(x$value)
up2 <- Q[2]+2*iqr
low2<- Q[1]-2*iqr
cbind(Q1, Q3, iqr, low2, up2)
})
$rice
Q1 Q3 iqr low2 up2
25% 163.1304 357.6609 194.5305 -225.9306 746.7219
$corn
Q1 Q3 iqr low2 up2
25% 0 0 0 0 0
$othercereal
Q1 Q3 iqr low2 up2
25% 0 37.52625 37.52625 -75.0525 112.5787
$roots
Q1 Q3 iqr low2 up2
25% 0 0 0 0 0
$Sugar
Q1 Q3 iqr low2 up2
25% 0 15.486 15.486 -30.972 46.458
$beans
Q1 Q3 iqr low2 up2
25% 0 3.35 3.35 -6.7 10.05
$leafy
Q1 Q3 iqr low2 up2
25% 0 43.12381 43.12381 -86.24762 129.3714
$othervegetables
Q1 Q3 iqr low2 up2
25% 0 69.20808 69.20808 -138.4162 207.6242
$vitCfruit
Q1 Q3 iqr low2 up2
25% 0 0 0 0 0
$otherfruit
Q1 Q3 iqr low2 up2
25% 0 14.7 14.7 -29.4 44.1
$fish
Q1 Q3 iqr low2 up2
25% 28.75 152.7396 123.9896 -219.2291 400.7187
$meat
Q1 Q3 iqr low2 up2
25% 0 77.81087 77.81087 -155.6217 233.4326
$poultry
Q1 Q3 iqr low2 up2
25% 0 35.28828 35.28828 -70.57657 105.8649
$Eggs
Q1 Q3 iqr low2 up2
25% 0 19.07069 19.07069 -38.14138 57.21207
$wholemilk
Q1 Q3 iqr low2 up2
25% 0 0 0 0 0
$milkproducts
Q1 Q3 iqr low2 up2
25% 0 0 0 0 0
$fats
Q1 Q3 iqr low2 up2
25% 0.7308 6.525 5.7942 -10.8576 18.1134
$beverages
Q1 Q3 iqr low2 up2
25% 0.5 25 24.5 -48.5 74
$condiments
Q1 Q3 iqr low2 up2
25% 0 1.85 1.85 -3.7 5.55
$miscellaneous
Q1 Q3 iqr low2 up2
25% 0 0 0 0 0
lapply(dtafood, function(x){
Q1 <- quantile(x$value, probs=c(.25), na.rm = FALSE)
Q3 <- quantile(x$value, probs=c(.75), na.rm = FALSE)
Q <- quantile(x$value, probs=c(.25, .75), na.rm = FALSE)
iqr <- IQR(x$value)
up3 <- Q[2]+3*iqr
low3<- Q[1]-3*iqr
cbind(Q1, Q3, iqr, low3, up3)
})
$rice
Q1 Q3 iqr low3 up3
25% 163.1304 357.6609 194.5305 -420.4611 941.2524
$corn
Q1 Q3 iqr low3 up3
25% 0 0 0 0 0
$othercereal
Q1 Q3 iqr low3 up3
25% 0 37.52625 37.52625 -112.5787 150.105
$roots
Q1 Q3 iqr low3 up3
25% 0 0 0 0 0
$Sugar
Q1 Q3 iqr low3 up3
25% 0 15.486 15.486 -46.458 61.944
$beans
Q1 Q3 iqr low3 up3
25% 0 3.35 3.35 -10.05 13.4
$leafy
Q1 Q3 iqr low3 up3
25% 0 43.12381 43.12381 -129.3714 172.4952
$othervegetables
Q1 Q3 iqr low3 up3
25% 0 69.20808 69.20808 -207.6242 276.8323
$vitCfruit
Q1 Q3 iqr low3 up3
25% 0 0 0 0 0
$otherfruit
Q1 Q3 iqr low3 up3
25% 0 14.7 14.7 -44.1 58.8
$fish
Q1 Q3 iqr low3 up3
25% 28.75 152.7396 123.9896 -343.2187 524.7082
$meat
Q1 Q3 iqr low3 up3
25% 0 77.81087 77.81087 -233.4326 311.2435
$poultry
Q1 Q3 iqr low3 up3
25% 0 35.28828 35.28828 -105.8649 141.1531
$Eggs
Q1 Q3 iqr low3 up3
25% 0 19.07069 19.07069 -57.21207 76.28276
$wholemilk
Q1 Q3 iqr low3 up3
25% 0 0 0 0 0
$milkproducts
Q1 Q3 iqr low3 up3
25% 0 0 0 0 0
$fats
Q1 Q3 iqr low3 up3
25% 0.7308 6.525 5.7942 -16.6518 23.9076
$beverages
Q1 Q3 iqr low3 up3
25% 0.5 25 24.5 -73 98.5
$condiments
Q1 Q3 iqr low3 up3
25% 0 1.85 1.85 -5.55 7.4
$miscellaneous
Q1 Q3 iqr low3 up3
25% 0 0 0 0 0
tbl_merge(tbls = list(IQR1.5,IQR2,IQR3),
tab_spanner = c(">1.5*IQR", ">2*IQR", ">3*IQR"))
Characteristic |
|
|
|
---|---|---|---|
N = 10,0411 | N = 10,0411 | N = 10,0411 | |
rice_out | |||
normal | 9,772 (97%) | 9,910 (99%) | 10,012 (100%) |
out | 269 (2.7%) | 131 (1.3%) | 29 (0.3%) |
corn_out | |||
normal | 8,749 (87%) | 8,749 (87%) | 8,749 (87%) |
out | 1,292 (13%) | 1,292 (13%) | 1,292 (13%) |
othercereal_out | |||
normal | 9,634 (96%) | 9,797 (98%) | 9,950 (99%) |
out | 407 (4.1%) | 244 (2.4%) | 91 (0.9%) |
roots_out | |||
normal | 7,868 (78%) | 7,868 (78%) | 7,868 (78%) |
out | 2,173 (22%) | 2,173 (22%) | 2,173 (22%) |
Sugar_out | |||
normal | 9,456 (94%) | 9,659 (96%) | 9,864 (98%) |
out | 585 (5.8%) | 382 (3.8%) | 177 (1.8%) |
beans_out | |||
normal | 8,419 (84%) | 8,652 (86%) | 8,847 (88%) |
out | 1,622 (16%) | 1,389 (14%) | 1,194 (12%) |
leafy_out | |||
normal | 9,361 (93%) | 9,557 (95%) | 9,752 (97%) |
out | 680 (6.8%) | 484 (4.8%) | 289 (2.9%) |
othervegetables_out | |||
normal | 9,489 (95%) | 9,687 (96%) | 9,874 (98%) |
out | 552 (5.5%) | 354 (3.5%) | 167 (1.7%) |
vitCfruit_out | |||
normal | 9,276 (92%) | 9,276 (92%) | 9,276 (92%) |
out | 765 (7.6%) | 765 (7.6%) | 765 (7.6%) |
otherfruit_out | |||
normal | 7,924 (79%) | 8,069 (80%) | 8,414 (84%) |
out | 2,117 (21%) | 1,972 (20%) | 1,627 (16%) |
fish_out | |||
normal | 9,605 (96%) | 9,787 (97%) | 9,941 (99%) |
out | 436 (4.3%) | 254 (2.5%) | 100 (1.0%) |
meat_out | |||
normal | 9,407 (94%) | 9,630 (96%) | 9,846 (98%) |
out | 634 (6.3%) | 411 (4.1%) | 195 (1.9%) |
poultry_out | |||
normal | 8,955 (89%) | 9,257 (92%) | 9,590 (96%) |
out | 1,086 (11%) | 784 (7.8%) | 451 (4.5%) |
Eggs_out | |||
normal | 9,517 (95%) | 9,695 (97%) | 9,930 (99%) |
out | 524 (5.2%) | 346 (3.4%) | 111 (1.1%) |
wholemilk_out | |||
normal | 8,870 (88%) | 8,870 (88%) | 8,870 (88%) |
out | 1,171 (12%) | 1,171 (12%) | 1,171 (12%) |
milkproducts_out | |||
normal | 9,467 (94%) | 9,467 (94%) | 9,467 (94%) |
out | 574 (5.7%) | 574 (5.7%) | 574 (5.7%) |
fats_out | |||
normal | 9,435 (94%) | 9,600 (96%) | 9,779 (97%) |
out | 606 (6.0%) | 441 (4.4%) | 262 (2.6%) |
beverages_out | |||
normal | 8,736 (87%) | 8,769 (87%) | 8,861 (88%) |
out | 1,305 (13%) | 1,272 (13%) | 1,180 (12%) |
condiments_out | |||
normal | 8,719 (87%) | 8,894 (89%) | 9,266 (92%) |
out | 1,322 (13%) | 1,147 (11%) | 775 (7.7%) |
miscellaneous_out | |||
normal | 8,537 (85%) | 8,537 (85%) | 8,537 (85%) |
out | 1,504 (15%) | 1,504 (15%) | 1,504 (15%) |
1
n (%)
|