Dosen Pengempu : Prof. Dr. Suhartono, M.Kom
UIN Maulana Malik Ibrahim Malang - Teknik Informatika
library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflowkelasC <- read_excel(path = "kelascup.xlsx")
dataoutflowkelasB <- read_excel(path = "kelasout.xlsx")
library(readxl)
datainflowkelasC <- read_excel(path = "kelascup.xlsx")
datainflowkelasC
## # A tibble: 11 x 12
## Keterangan Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 57900. 2308. 23238. 9385. 3012.
## 2 2012 65911. 2620. 25981. 11192. 4447.
## 3 2013 98369. 36337. 18120. 14056. 8933.
## 4 2014 86024. 4567. 30503. 14103. 6358.
## 5 2015 86549. 4710. 30254. 13309. 7156.
## 6 2016 97764. 5775. 34427. 14078. 8211.
## 7 2017 103748. 5514. 35617. 15312. 8553.
## 8 2018 117495. 5799. 41769. 15058. 10730.
## 9 2019 133762. 7509. 47112. 14750. 10915.
## 10 2020 109345. 6641. 36609. 10696. 9148.
## 11 2021 89270. 3702. 31840. 10748. 7769.
## # ... with 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## # Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # Kep. Bangka Belitung <dbl>
dataoutflowkelasB <- read_excel(path = "kelasout.xlsx")
dataoutflowkelasB
## # A tibble: 11 x 12
## Keterangan Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 80092. 6338. 22176. 5300. 12434.
## 2 2012 85235. 6378. 22495. 6434. 13014.
## 3 2013 103288. 23278. 19235. 6511. 15460.
## 4 2014 102338. 8630. 26391. 7060. 15158.
## 5 2015 109186. 9637. 27877. 7471. 15789.
## 6 2016 121992. 11311. 31959. 9198. 17645.
## 7 2017 133606. 11760. 35243. 10754. 18128.
## 8 2018 135676. 11450. 36908. 8447. 17926.
## 9 2019 153484. 13087. 44051. 9465. 19277.
## 10 2020 140589. 12874. 39758. 8763. 19139.
## 11 2021 86627. 5770. 23453. 5941. 12631.
## # ... with 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## # Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # Kep. Bangka Belitung <dbl>
datainflowkelasC$Sumatera
## [1] 57900.30 65910.57 98369.30 86023.55 86549.30 97763.55 103747.82
## [8] 117494.94 133762.18 109344.58 89270.03
plot(datainflowkelasC$Sumatera, type = "l", col = "red")
dataoutflowkelasB$Sumatera
## [1] 80092.18 85234.64 103287.72 102338.21 109185.81 121991.73 133605.71
## [8] 135676.35 153484.27 140588.81 86627.29
plot(dataoutflowkelasB$Sumatera, type = "l", col = "blue")
datainflowkelasC$Aceh
## [1] 2307.985 2619.567 36336.547 4566.588 4709.829 5774.937 5514.223
## [8] 5799.114 7508.835 6640.830 3701.603
plot(datainflowkelasC$Aceh, type = "l", col = "red")
dataoutflowkelasB$Aceh
## [1] 6338.054 6378.008 23278.066 8629.870 9636.560 11310.606 11760.247
## [8] 11449.810 13086.971 12873.680 5769.832
plot(dataoutflowkelasB$Aceh, type = "l", col = "blue")
datainflowkelasC$`Sumatera Utara`
## [1] 23237.76 25980.64 18120.07 30502.75 30253.58 34426.87 35616.72 41768.66
## [9] 47112.32 36609.31 31840.25
plot(datainflowkelasC$`Sumatera Utara`, type = "l", col = "red")
dataoutflowkelasB$`Sumatera Utara`
## [1] 22176.48 22494.62 19234.70 26390.94 27877.11 31958.77 35243.16 36908.29
## [9] 44050.90 39757.56 23452.91
plot(dataoutflowkelasB$`Sumatera Utara`, type = "l", col = "blue")
datainflowkelasC$`Sumatera Barat`
## [1] 9384.547 11192.106 14055.942 14102.965 13308.811 14078.233 15311.835
## [8] 15058.219 14749.693 10695.537 10747.900
plot(datainflowkelasC$`Sumatera Barat`, type = "l", col = "red")
dataoutflowkelasB$`Sumatera Barat`
## [1] 5299.730 6434.293 6511.012 7060.048 7470.659 9197.817 10754.454
## [8] 8446.809 9464.966 8762.758 5940.540
plot(dataoutflowkelasB$`Sumatera Barat`, type = "l", col = "blue")
datainflowkelasC$Riau
## [1] 3012.477 4447.292 8933.449 6358.208 7156.474 8210.920 8553.380
## [8] 10729.537 10915.403 9148.066 7769.061
plot(datainflowkelasC$Riau, type = "l", col = "red")
dataoutflowkelasB$`Riau`
## [1] 12434.14 13013.80 15460.36 15157.54 15788.57 17645.03 18127.74 17925.60
## [9] 19277.25 19138.58 12630.75
plot(dataoutflowkelasB$`Riau`, type = "l", col = "blue")
datainflowkelasC$`Kep. Riau`
## [1] 1426.343 2236.041 3377.823 2563.001 3217.655 4316.508 4411.558 5133.658
## [9] 6077.325 6175.460 5008.786
plot(datainflowkelasC$`Kep. Riau`, type = "l", col = "red")
dataoutflowkelasB$`Kep. Riau`
## [1] 5818.626 6965.628 8747.383 10122.259 9802.519 10067.635 10749.453
## [8] 12597.089 12643.718 8461.416 5127.551
plot(dataoutflowkelasB$`Kep. Riau`, type = "l", col = "blue")
datainflowkelasC$Jambi
## [1] 1867.621 2138.463 3046.784 5169.097 4978.134 4398.161 4403.638 5656.590
## [9] 6486.166 5628.402 4979.747
plot(datainflowkelasC$Jambi, type = "l", col = "red")
dataoutflowkelasB$`Jambi`
## [1] 5216.694 5013.235 6302.359 8361.178 8324.512 7773.966 8433.893 8459.397
## [9] 9204.041 8949.968 6046.364
plot(dataoutflowkelasB$`Jambi`, type = "l", col = "blue")
datainflowkelasC$`Sumatera Selatan`
## [1] 7820.341 9125.976 8647.320 10037.880 10797.201 12751.708 13075.276
## [8] 14266.500 14811.729 11756.282 9105.942
plot(datainflowkelasC$`Sumatera Selatan`, type = "l", col = "red")
dataoutflowkelasB$`Sumatera Selatan`
## [1] 14523.56 15600.08 12693.21 13372.22 13483.73 15755.86 16981.14 17931.03
## [9] 19121.28 18308.87 11435.81
plot(dataoutflowkelasB$`Sumatera Selatan`, type = "l", col = "blue")
datainflowkelasC$Bengkulu
## [1] 1153.108 1201.255 2377.537 3261.511 2791.263 2888.863 3619.596 4149.988
## [9] 5789.151 4971.071 4160.367
plot(datainflowkelasC$Bengkulu, type = "l", col = "red")
dataoutflowkelasB$Bengkulu
## [1] 2560.502 2959.332 6489.611 4582.922 4851.534 5162.737 5446.743 5495.251
## [9] 6841.649 6564.020 4680.854
plot(dataoutflowkelasB$Bengkulu, type = "l", col = "blue")
datainflowkelasC$Lampung
## [1] 7690.123 6969.230 3473.825 9447.838 8159.769 9373.141 12078.088
## [8] 13415.256 17046.457 15157.525 10697.166
plot(datainflowkelasC$Lampung, type = "l", col = "red")
dataoutflowkelasB$Lampung
## [1] 5724.398 6375.646 4571.017 8339.149 9945.827 10435.507 13358.784
## [8] 13725.388 15626.394 13873.408 8050.092
plot(dataoutflowkelasB$Lampung, type = "l", col = "blue")
datainflowkelasC$`Kep. Bangka Belitung`
## [1] 0.00000 0.00000 0.00000 13.70908 1176.58339 1544.20832
## [7] 1163.50693 1517.42196 3265.10361 2562.09436 1259.21009
plot(datainflowkelasC$`Kep. Bangka Belitung`, type = "l", col = "red")
dataoutflowkelasB$`Kep. Bangka Belitung`
## [1] 0.0000 0.0000 0.0000 322.0841 2004.7861 2683.7941 2750.0952
## [8] 2737.6852 4167.0982 3898.5512 3492.5938
plot(dataoutflowkelasB$`Kep. Bangka Belitung`, type = "l", col = "blue")