library(tidyverse)
library(openintro)

Exercise 1

What does a streak length of 1 mean, i.e. how many hits and misses are in a streak of 1? What about a streak length of 0?

A streak length of 1 means that the shooter shot 1 basket or hit before missing the next few shots. A streak length of 0 means that the shooter made no hits or scored consecutive misses without any hits.

Exercise 2

The distribution of kobe’s streak length appears to be right-skewed where most of the data is concentrated on the streak lengths of 1 and 0.Kobe’s typical streak length is 0 with a count of around 38 or 39 and his streak length of 1 is around a count of 23 or 24. His longest streak of baskets is 4 with a count of 1.

kobe_streak <- calc_streak(kobe_basket$shot)
ggplot(data = kobe_streak, aes(x = length)) +
  geom_bar()

Exercise 3

In my simulation of flipping the unfair coin 100 time I had got 14 heads and 86 tails

set.seed(1997)              # make sure to change the seed
coin_outcomes <- c("heads", "tails")
sample(coin_outcomes, size = 1, replace = TRUE)
## [1] "tails"
sim_unfair_coin <- sample(coin_outcomes, size = 100, replace = TRUE, 
                          prob = c(0.2, 0.8))
table(sim_unfair_coin)
## sim_unfair_coin
## heads tails 
##    14    86

Exercise 4

I adjusted the sample function to reflect a percentage of 45% to sample 133 shots.

shot_outcomes <- c("H", "M")
sim_basket <- sample(shot_outcomes, size = 133, replace = TRUE,prob=c(0.45,0.65))

Exercise 5

set.seed(3)
shot_outcomes <- c("H", "M")
sim_basket <- sample(shot_outcomes, size = 133, replace = TRUE,prob=c(0.45,0.55))
sim_streak <- calc_streak(sim_basket)

Exercise 6

The distribution of the streak length is skewed to the right again and the typical streak is 0 with shoots around 40. In this simulation the player’s longest streak was 5 and it was only occurred once.

library(ggplot2)
ggplot(data=sim_streak,aes(x=length))+
  geom_bar()

Exercise 7

If I were to run the simulation a second time I would expect the streak distribution to be the same because the probablity of the number of hits is 45% we should expect to hit more misses than hits in those 133 total shots. So as a result we should not be too surprised if the shooter goes on a long streak of length 0 because the odds of missing are favored more than the number of hits.

Exercise 8:

They seem to be fairly similar they both tend to go on long streaks of length 0 a lot and the second highest would be a streak length of 1. The bar graphs also show that they are both skewed to the right and barely go on long streaks of length greater than 1. I believe the hot hand model fits Kobe’s shooting patterns because running the simulation a couple of times I can see that though there may slight diffrences the data more or less looks similar to Kobe’s shooting patterns.

LS0tDQp0aXRsZTogIkxhYiAzIFByb2JhYmlsaXR5Ig0KYXV0aG9yOiAiQWwgSGFxdWUiDQpkYXRlOiAiRmViIDEwLCAyMDIyIg0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQoNCmBgYHtyIGxvYWQtcGFja2FnZXMsIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkob3BlbmludHJvKQ0KYGBgDQoNCiMjIyBFeGVyY2lzZSAxDQoNCiAgV2hhdCBkb2VzIGEgc3RyZWFrIGxlbmd0aCBvZiAxIG1lYW4sIGkuZS4gaG93IG1hbnkgaGl0cyBhbmQgbWlzc2VzIGFyZSBpbiBhIHN0cmVhayBvZiAxPyBXaGF0IGFib3V0IGEgc3RyZWFrIGxlbmd0aCBvZiAwPw0KDQogIEEgc3RyZWFrIGxlbmd0aCBvZiAxIG1lYW5zIHRoYXQgdGhlIHNob290ZXIgc2hvdCAxIGJhc2tldCBvciBoaXQgYmVmb3JlIG1pc3NpbmcgdGhlIG5leHQgZmV3IHNob3RzLiBBIHN0cmVhayBsZW5ndGggb2YgMCBtZWFucyB0aGF0IHRoZSBzaG9vdGVyIG1hZGUgbm8gaGl0cyBvciBzY29yZWQgY29uc2VjdXRpdmUgbWlzc2VzIHdpdGhvdXQgYW55IGhpdHMuDQoNCg0KIyMjIEV4ZXJjaXNlIDINCg0KICBUaGUgZGlzdHJpYnV0aW9uIG9mIGtvYmUncyBzdHJlYWsgbGVuZ3RoIGFwcGVhcnMgdG8gYmUgcmlnaHQtc2tld2VkIHdoZXJlIG1vc3Qgb2YgdGhlIGRhdGEgaXMgY29uY2VudHJhdGVkIG9uIHRoZSBzdHJlYWsgbGVuZ3RocyBvZiAxIGFuZCAwLktvYmUncyB0eXBpY2FsIHN0cmVhayBsZW5ndGggaXMgMCB3aXRoIGEgY291bnQgb2YgYXJvdW5kIDM4IG9yIDM5IGFuZCBoaXMgc3RyZWFrIGxlbmd0aCBvZiAxIGlzIGFyb3VuZCBhIGNvdW50IG9mIDIzIG9yIDI0LiBIaXMgbG9uZ2VzdCBzdHJlYWsgb2YgYmFza2V0cyBpcyA0IHdpdGggYSBjb3VudCBvZiAxLg0KICANCmBgYHtyfQ0Ka29iZV9zdHJlYWsgPC0gY2FsY19zdHJlYWsoa29iZV9iYXNrZXQkc2hvdCkNCmdncGxvdChkYXRhID0ga29iZV9zdHJlYWssIGFlcyh4ID0gbGVuZ3RoKSkgKw0KICBnZW9tX2JhcigpDQpgYGANCiAgDQojIyMgRXhlcmNpc2UgMw0KDQogIEluIG15IHNpbXVsYXRpb24gb2YgZmxpcHBpbmcgdGhlIHVuZmFpciBjb2luIDEwMCB0aW1lIEkgaGFkIGdvdCAxNCBoZWFkcyBhbmQgODYgdGFpbHMNCg0KYGBge3J9DQpzZXQuc2VlZCgxOTk3KSAgICAgICAgICAgICAgIyBtYWtlIHN1cmUgdG8gY2hhbmdlIHRoZSBzZWVkDQpjb2luX291dGNvbWVzIDwtIGMoImhlYWRzIiwgInRhaWxzIikNCnNhbXBsZShjb2luX291dGNvbWVzLCBzaXplID0gMSwgcmVwbGFjZSA9IFRSVUUpDQpzaW1fdW5mYWlyX2NvaW4gPC0gc2FtcGxlKGNvaW5fb3V0Y29tZXMsIHNpemUgPSAxMDAsIHJlcGxhY2UgPSBUUlVFLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgcHJvYiA9IGMoMC4yLCAwLjgpKQ0KdGFibGUoc2ltX3VuZmFpcl9jb2luKQ0KYGBgDQoNCg0KIyMjIEV4ZXJjaXNlIDQgDQoNCiAgSSBhZGp1c3RlZCB0aGUgc2FtcGxlIGZ1bmN0aW9uIHRvIHJlZmxlY3QgYSBwZXJjZW50YWdlIG9mIDQ1JSB0byBzYW1wbGUgMTMzIHNob3RzLiANCg0KYGBge3J9DQpzaG90X291dGNvbWVzIDwtIGMoIkgiLCAiTSIpDQpzaW1fYmFza2V0IDwtIHNhbXBsZShzaG90X291dGNvbWVzLCBzaXplID0gMTMzLCByZXBsYWNlID0gVFJVRSxwcm9iPWMoMC40NSwwLjY1KSkNCg0KYGBgDQoNCiMjIyBFeGVyY2lzZSA1IA0KDQpgYGB7cn0NCnNldC5zZWVkKDMpDQpzaG90X291dGNvbWVzIDwtIGMoIkgiLCAiTSIpDQpzaW1fYmFza2V0IDwtIHNhbXBsZShzaG90X291dGNvbWVzLCBzaXplID0gMTMzLCByZXBsYWNlID0gVFJVRSxwcm9iPWMoMC40NSwwLjU1KSkNCnNpbV9zdHJlYWsgPC0gY2FsY19zdHJlYWsoc2ltX2Jhc2tldCkNCmBgYA0KDQojIyMgRXhlcmNpc2UgNg0KDQogIFRoZSBkaXN0cmlidXRpb24gb2YgdGhlIHN0cmVhayBsZW5ndGggaXMgc2tld2VkIHRvIHRoZSByaWdodCBhZ2FpbiBhbmQgdGhlIHR5cGljYWwgc3RyZWFrIGlzIDAgd2l0aCBzaG9vdHMgYXJvdW5kIDQwLiBJbiB0aGlzIHNpbXVsYXRpb24gdGhlIHBsYXllcidzIGxvbmdlc3Qgc3RyZWFrIHdhcyA1IGFuZCBpdCB3YXMgb25seSBvY2N1cnJlZCBvbmNlLg0KDQpgYGB7cn0NCmxpYnJhcnkoZ2dwbG90MikNCmdncGxvdChkYXRhPXNpbV9zdHJlYWssYWVzKHg9bGVuZ3RoKSkrDQogIGdlb21fYmFyKCkNCmBgYA0KDQojIyMgRXhlcmNpc2UgNw0KDQogIElmIEkgd2VyZSB0byBydW4gdGhlIHNpbXVsYXRpb24gIGEgc2Vjb25kIHRpbWUgSSB3b3VsZCBleHBlY3QgdGhlIHN0cmVhayBkaXN0cmlidXRpb24gdG8gYmUgdGhlIHNhbWUgYmVjYXVzZSB0aGUgcHJvYmFibGl0eSBvZiB0aGUgbnVtYmVyIG9mIGhpdHMgaXMgNDUlIHdlIHNob3VsZCBleHBlY3QgdG8gaGl0IG1vcmUgbWlzc2VzIHRoYW4gaGl0cyBpbiB0aG9zZSAxMzMgdG90YWwgc2hvdHMuIFNvIGFzIGEgcmVzdWx0IHdlIHNob3VsZCBub3QgYmUgdG9vIHN1cnByaXNlZCBpZiB0aGUgc2hvb3RlciBnb2VzIG9uIGEgbG9uZyBzdHJlYWsgb2YgbGVuZ3RoIDAgYmVjYXVzZSB0aGUgb2RkcyBvZiBtaXNzaW5nIGFyZSBmYXZvcmVkIG1vcmUgdGhhbiB0aGUgbnVtYmVyIG9mIGhpdHMuDQogIA0KICANCg0KIyMjIEV4ZXJjaXNlIDg6IA0KICBUaGV5IHNlZW0gdG8gYmUgZmFpcmx5IHNpbWlsYXIgdGhleSBib3RoIHRlbmQgdG8gZ28gb24gbG9uZyBzdHJlYWtzIG9mIGxlbmd0aCAwIGEgbG90IGFuZCB0aGUgc2Vjb25kIGhpZ2hlc3Qgd291bGQgYmUgYSBzdHJlYWsgbGVuZ3RoIG9mIDEuIA0KVGhlIGJhciBncmFwaHMgYWxzbyBzaG93IHRoYXQgdGhleSBhcmUgYm90aCBza2V3ZWQgdG8gdGhlIHJpZ2h0IGFuZCBiYXJlbHkgZ28gb24gbG9uZyBzdHJlYWtzIG9mIGxlbmd0aCBncmVhdGVyIHRoYW4gMS4gSSBiZWxpZXZlIHRoZSBob3QgaGFuZCBtb2RlbCBmaXRzIEtvYmUncyBzaG9vdGluZyBwYXR0ZXJucyBiZWNhdXNlIHJ1bm5pbmcgdGhlIHNpbXVsYXRpb24gYSBjb3VwbGUgb2YgdGltZXMgSSBjYW4gc2VlIHRoYXQgdGhvdWdoIHRoZXJlIG1heSBzbGlnaHQgZGlmZnJlbmNlcyB0aGUgZGF0YSBtb3JlIG9yIGxlc3MgbG9va3Mgc2ltaWxhciB0byBLb2JlJ3Mgc2hvb3RpbmcgcGF0dGVybnMuIA0KDQo=