is.even = function(n) {if (n %% 2 == 0) TRUE else FALSE}
collatz_num = function(n) {if (is.even(n)) n/2 else 3 * n + 1}
collatz_sequence = function(n) {
seq = n
while (n != 1) {
n <- collatz_num(n)
seq <- c(seq, n)
}
return(seq)
}
is.even = function(n) {if (n %% 2 == 0) TRUE else FALSE}
collatz_num = function(n) {if (is.even(n)) n/2 else 3 * n + 1}
collatz_sequence = function(n) {
seq = n
while (n != 1) {
n <- collatz_num(n)
if (n %in% seq) {seq <- c(seq, n)
return(seq)}
else{seq <- c(seq, n)}
}
return(seq)
}
conf.interval = function(vector) {
if (length(unique(vector)) == 2) {
return(prop.test(table(vector))$conf.int)
}
else {
if (class(vector) == 'numeric') {
return(t.test(vector)$conf.int)
}
else {
cat('Unable to perform a confidence interval with this data')
return(NA)
}
}
}
data = Forbes2000
head(sort(table(data$country), decreasing = TRUE), n = 8)
##
## United States Japan United Kingdom Germany France
## 751 316 137 65 63
## Canada South Korea Italy
## 56 45 41
## [1] "United States"
## [1] "Number of companies in the United States is 751"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.190 2.025 4.350 10.058 9.845 256.330
## [1] "Japan"
## [1] "Number of companies in the Japan is 316"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.240 2.087 4.550 10.191 10.207 135.820
## [1] "United Kingdom"
## [1] "Number of companies in the United Kingdom is 137"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.33 2.75 5.27 10.45 9.32 232.57
## [1] "Germany"
## [1] "Number of companies in the Germany is 65"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.01 4.80 8.84 20.78 22.43 157.13
## [1] "France"
## [1] "Number of companies in the France is 63"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.31 4.74 11.04 20.10 24.86 131.64
## [1] "Canada"
## [1] "Number of companies in the Canada is 56"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.320 2.620 4.175 6.430 10.182 18.820
## [1] "South Korea"
## [1] "Number of companies in the South Korea is 45"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.380 3.280 4.720 7.969 6.300 50.220
## [1] "Italy"
## [1] "Number of companies in the Italy is 41"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.59 2.34 3.95 10.21 8.17 58.22
a = c()
for (i in 1:nrow(data)) {
if (data[i, 4] == 'Banking') {
a = c(a, FALSE)
next
}
if (grepl('bank', tolower(data[i,2]),fixed=TRUE)) {
a = c(a, TRUE)
}
else {
a = c(a, FALSE)
}
}
data[a,][c('name', 'category', 'country')]
## name category country
## 34 Deutsche Bank Group Diversified financials Germany
## 451 Depfa Bank Diversified financials Ireland
## 932 Macquarie Bank Diversified financials Australia
## 1024 Softbank Software & services Japan
## 1349 Aareal Bank Diversified financials Germany
text <- scan(file="UDHR.txt", what = character())
for (i in 1:length(text)) {
text[i] <- tolower(gsub("[[:punct:]]", "", text[i]))
}
head(sort(table(text), decreasing = TRUE),50)
## text
## the and of to in right
## 120 106 90 83 43 33
## be article everyone or has shall
## 31 30 30 30 28 27
## his rights a any for by
## 21 21 19 18 17 13
## is all human as equal freedom
## 13 12 12 11 11 11
## this freedoms no one entitled law
## 11 10 10 10 9 9
## protection which with are education have
## 9 9 9 8 8 8
## nations social free whereas against at
## 8 8 7 7 6 6
## declaration family full fundamental other country
## 6 6 6 6 6 5
## dignity from
## 5 5
free_words = 0
liberty_words = 0
for (i in 1:length(table(text))) {
if (grepl('free', names(table(text))[i])) {
free_words = free_words + as.numeric(table(text)[i])
}
if (grepl('liberty', names(table(text))[i])) {
liberty_words = liberty_words + as.numeric(table(text)[i])
}
}
print(paste('Number of words derived from free:', free_words))
## [1] "Number of words derived from free: 30"
print(paste('Number of words derived from liberty:', liberty_words))
## [1] "Number of words derived from liberty: 1"