Dosen Pengampu : Prof. Dr. Suhartono, M.Kom

Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

Pengertian Inflow-Outflow Uang Kartal

Inflows adalah uang yang masuk ke Bank Indonesia melalui kegiatan penyetoran, dan outflows adalah uang yang keluar dari Bank Indonesia melalui kegiatan penarikan. Setiap daerah memiliki prediksi data inflow-outflow uang kartal yang berbeda-beda. Berikut komparasi visualisasi prediksi data inflow-outflow uang kartal antara Aceh dengan Bengkulu menggunakan bahasa pemrograman R.

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "inflowdata.xlsx")
datainflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   57900.  2308.           23238.            9385.  3012.       1426.
##  2  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  3  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  4  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  5  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  6  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  7  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  8  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  9  2019  133762.  7509.           47112.           14750. 10915.       6077.
## 10  2020  109345.  6641.           36609.           10696.  9148.       6175.
## 11  2021   89270.  3702.           31840.           10748.  7769.       5009.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Belitung <dbl>
library(readxl)
dataoutflow <- read_excel(path = "outflowdata.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## 11  2021   86627.  5770.           23453.            5941. 12631.       5128.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Belitung <dbl>

1. Komparasi Visualisasi Prediksi Data Inflow Uang Kartal antara Aceh dengan Bengkulu Setiap Periode

plot(datainflow$Tahun,datainflow$Aceh,type = "l", col= "dodgerblue")
lines(datainflow$Tahun,datainflow$Bengkulu,col="red")
legend("top",c("Inflow Aceh","Inflow Bengkulu"),fill=c("dodgerblue","red"))

2. Komparasi Visualisasi Prediksi Data Outflow Uang Kartal antara Aceh dengan Bengkulu Setiap Periode

plot(dataoutflow$Tahun,dataoutflow$`Aceh`,type = "l", col= "green")
lines(dataoutflow$Tahun,dataoutflow$Bengkulu,col="mediumorchid")
legend("top",c("Outflow Aceh","Outflow Bengkulu"),fill=c("green","mediumorchid"))

3. Komparasi Visualisasi Prediksi Data Inflow-Outflow Uang Kartal antara Aceh dengan Bengkulu Setiap Periode

plot(datainflow$Tahun,datainflow$`Aceh`,type = "l", col= "dodgerblue")
lines(datainflow$Tahun,datainflow$Bengkulu,col="red")
lines(dataoutflow$Tahun,dataoutflow$`Aceh`, col= "green")
lines(dataoutflow$Tahun,dataoutflow$Bengkulu,col="mediumorchid")
legend("top",c("Inflow Aceh","Inflow Bengkulu","Outflow Aceh","Outflow Bengkulu"),fill=c("dodgerblue","red","green","mediumorchid"))

4. Komparasi Visualisasi Prediksi Data Inflow-Outflow Uang Kartal antara Aceh dengan Bengkulu Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "datainperbulan.xlsx")
dataoutflowperbulan <- read_excel(path = "dataoutperbulan.xlsx")
datainflowperbulan
## # A tibble: 128 x 41
##    Bulan               Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## # ... with 118 more rows, and 35 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>, DKI Jakarta <dbl>, Jawa <dbl>,
## #   Jawa Barat <dbl>, Jawa Tengah <dbl>, Yogyakarta <dbl>, Jawa Timur <dbl>,
## #   Banten <dbl>, Bali Nusra <dbl>, Bali <dbl>, Nusa Tenggara Barat <dbl>,
## #   Nusa Tenggara Timur <dbl>, Kalimantan <dbl>, Kalimantan Barat <dbl>,
## #   Kalimantan Tengah <dbl>, Kalimantan Selatan <dbl>, ...
dataoutflowperbulan
## # A tibble: 128 x 41
##    Bulan               Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## # ... with 118 more rows, and 35 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>, DKI Jakarta <dbl>, Jawa <dbl>,
## #   Jawa Barat <dbl>, Jawa Tengah <dbl>, Yogyakarta <dbl>, Jawa Timur <dbl>,
## #   Banten <dbl>, Bali Nusra <dbl>, Bali <dbl>, Nusa Tenggara Barat <dbl>,
## #   Nusa Tenggara Timur <dbl>, Kalimantan <dbl>, Kalimantan Barat <dbl>,
## #   Kalimantan Tengah <dbl>, Kalimantan Selatan <dbl>, ...
plot(datainflowperbulan$`Aceh`, type = "l", col = "tomato")
lines(datainflowperbulan$Bengkulu,col="pink")
lines(dataoutflowperbulan$`Aceh`, col = "green")
lines(dataoutflowperbulan$Bengkulu,col="purple")
legend("top",c("Inflow Aceh","Inflow Bengkulu","Outflow Aceh","Outflow Bengkulu"),fill=c("tomato","pink","green","purple"))

Acehtimeseries <- datainflowperbulan$`Aceh`
Bengkulutimeseries <- datainflowperbulan$Bengkulu
plot.ts(Acehtimeseries , type = "l", col = "cyan")
lines(Bengkulutimeseries , type = "l", col = "darkorchid")
legend("top",c("Aceh Timeseries","Bengkulu Timeseries"),fill=c("cyan","darkorchid"))

logAceh <- log(datainflowperbulan$`Aceh`)
logBengkulu <- log(datainflowperbulan$`Bengkulu`)
plot.ts(logAceh, type = "l", col = "peachpuff")
lines(logBengkulu , type = "l", col = "gold")
legend("top",c("logAceh","logBengkulu"),fill=c("peachpuff","gold"))

library(TTR)
## Warning: package 'TTR' was built under R version 4.1.2
AcehSMA3 <- SMA(datainflowperbulan$`Aceh`,n=3)
BengkuluSMA3 <- SMA(datainflowperbulan$`Bengkulu`,n=3)
plot.ts(AcehSMA3, type = "l", col = "black")
lines(BengkuluSMA3, type = "l", col = "red")
legend("top",c("AcehSMA3","BengkuluSMA3"),fill=c("black","red"))

library(TTR)
AcehSMA3 <- SMA(datainflowperbulan$`Aceh`,n=8)
BengkuluSMA3 <- SMA(datainflowperbulan$`Bengkulu`,n=8)
plot.ts(AcehSMA3, type = "l", col = "black")
lines(BengkuluSMA3, type = "l", col = "red")
legend("top",c("AcehSMA3","BengkuluSMA3"),fill=c("black","red"))

5. Komparasi Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal antara Aceh dengan Bengkulu

Acehinflowtimeseries <- ts(datainflowperbulan$`Aceh`, frequency=12, start=c(2011,1))
Bengkuluinflowtimeseries <- ts(datainflowperbulan$Bengkulu, frequency=12, start=c(2011,1))
Acehinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  124.33329  115.14321  154.41614  122.18349  122.75253  151.37534
## 2012  315.65341  292.57807  170.13069  139.33374  167.56600  119.32971
## 2013 5571.15653 3457.27812 3253.57336 3775.08977 3705.38033 3449.77565
## 2014  779.00596  332.03457  248.89939  260.82180  168.17801  194.97802
## 2015  836.57498  376.45107  317.53476  263.06848  256.64615  398.59527
## 2016  883.11220  498.41373  242.45180  218.98473  298.46423  450.32018
## 2017 1120.37553  452.83734  347.32016  240.71874  299.60563  194.84441
## 2018 1279.35872  366.57150  278.86587  262.95066  288.49282 1005.08498
## 2019 1293.88334  565.87121  397.27368  342.84300  420.44274 1554.92585
## 2020 1641.95487  692.74998  297.06861  281.42142  489.21304 1095.11262
## 2021  762.78539  487.91516  368.91965  308.33410  566.54102  502.60975
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  107.22432  183.84525  605.62334  157.64630  287.24653  176.19523
## 2012  196.61835  420.06418  286.31394  142.89984  288.58842   80.49051
## 2013 3456.32173 8516.17096  243.91990  379.41362  322.99838  205.46842
## 2014  173.99322 1306.11875  271.45458  454.45573  219.11177  157.53593
## 2015  977.94399  495.56495  179.23767  257.65850  227.20326  123.34945
## 2016 1374.47417  310.75050  538.99459  432.31664  301.61184  225.04199
## 2017 1149.75614  264.01934  627.70230  365.36280  275.68807  175.99260
## 2018  784.64208  369.23511  426.04458  344.08223  243.18631  150.59965
## 2019  473.28934  684.81679  405.51614  467.20195  436.23339  466.53727
## 2020  257.81810  592.86464  410.39330  273.60601  438.09977  170.52803
## 2021  280.32142  424.17610
Bengkuluinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  122.17640   42.56978   56.79831   27.06372   33.27979   25.84131
## 2012  229.63010  125.41615   65.93120   27.71178   17.46938   17.46938
## 2013  225.33676  240.39147  247.97928  232.80433  158.28819   99.59913
## 2014  708.02522  269.13089  173.04810  221.13003  102.52019  131.58252
## 2015  644.62293  221.83713  163.04665  105.55613   96.35064   84.34825
## 2016  702.39709  293.29774  185.31632   73.73894  119.25824   76.02947
## 2017  705.34454  296.38089  218.07302  108.20777  124.26259   38.37514
## 2018  885.45535  277.07756  207.05547  156.74029  120.71976  669.85657
## 2019  902.06334  384.59633  283.98631  340.23492  256.59610 1294.68991
## 2020  983.83714  517.87037  322.68228  295.68625  330.78731  594.49286
## 2021 1134.14469  507.34820  410.99660  309.79568  798.17998  293.65593
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011   98.70596   64.44523  430.67254  100.84602  111.67560   39.03351
## 2012   74.43659  207.95245  172.87088  104.67443  134.41372   23.27873
## 2013  135.59282  392.32979  166.69236  194.90184  165.05959  118.56169
## 2014   83.35252  899.76893  204.79900  245.78856  146.50267   75.86238
## 2015  662.75459  223.16428  168.84114  212.90720  127.31721   80.51677
## 2016  661.14587  110.45568  243.85150  175.18164  136.70141  111.48900
## 2017  919.91900  300.75244  296.76196  275.01659  201.18931  135.31315
## 2018  423.32742  286.78781  368.53402  286.96586  286.34575  181.12197
## 2019  381.33964  428.71096  432.36290  498.97557  330.91527  254.67978
## 2020  289.77418  409.26120  438.92378  281.96995  320.24937  185.53660
## 2021  350.87090  355.37500
Acehoutflowtimeseries <- ts(dataoutflowperbulan$`Aceh`, frequency=12, start=c(2011,1))
Bengkuluoutflowtimeseries <- ts(dataoutflowperbulan$Bengkulu, frequency=12, start=c(2011,1))
Acehoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  349.57673  192.62487  230.35748  528.59007  523.47023  405.84701
## 2012  420.97459  217.70857  503.88607  600.25342  429.26734  606.25526
## 2013  758.75245 1850.82994 2442.65886 1618.83372 2777.13063 2209.74012
## 2014  288.10448  489.92887  504.83732  773.93194  485.84142  912.38357
## 2015  269.29171  255.71308  521.69449 1125.85624  564.44034 1011.07770
## 2016  307.32375  172.45727  730.75026  667.74179 1079.70825 2642.66616
## 2017  247.27680  344.01370  677.88709  850.88747 1157.54011 2346.78323
## 2018  120.03917  266.02669  996.17473  707.23188 1634.43230 1889.68997
## 2019   85.36298  400.92165  964.22663 1218.54729 3312.30047  122.91218
## 2020  182.38950  426.10026 1433.83382 1432.33902 1689.68700  436.00470
## 2021   56.98918   60.56520  591.41875 1789.00566 2112.99646  176.09492
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  957.58488 1046.09243  123.98156  634.45751  595.14381  750.32697
## 2012  600.85083  791.04331  303.81795  854.83456  207.40890  841.70726
## 2013 5383.25551 2570.21842  566.69494  895.80335  699.91951 1504.22825
## 2014 1538.16507  285.80192  611.06198  902.31059  586.60778 1250.89508
## 2015 1558.53777  301.57675 1040.79937  316.39942  824.14892 1847.02405
## 2016  692.69059  653.34617 1027.41562  515.70143  962.49370 1858.31057
## 2017  282.09425 1520.49864  354.31840  667.42332  766.85433 2544.67010
## 2018  278.98765 1155.80705  609.61619  549.33587  622.53291 2619.93560
## 2019  687.35821 1230.78590  600.44006  552.87679 1055.67352 2855.56524
## 2020 1768.67777  455.94178  829.58521 1174.85940  774.36491 2269.89617
## 2021  662.04381  320.71844
Bengkuluoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   43.00021   82.23542  143.53922  246.22066  202.80478  265.84634
## 2012   77.67069  136.45409  214.08931  230.04005  343.95133  343.95133
## 2013  150.23670  309.92998  431.93072  314.02314  742.58906  664.43864
## 2014  184.84757  233.07711  359.39862  524.14915  447.54582  377.69263
## 2015  103.40197  176.91637  236.82757  435.72702  510.20743  474.21976
## 2016   59.75611  134.50325  206.17499  355.34003  506.32330 1581.42961
## 2017  156.75645  191.46206  341.51406  410.43977  612.92546 1597.77779
## 2018  104.78294  200.91583  399.37190  498.39520  866.36789 1137.64484
## 2019  136.77104  354.05007  432.66657  755.79629 1646.68269  168.74806
## 2020  256.84547  331.85653  442.42736  531.24172  969.68490  209.58637
## 2021   95.04035  340.25426  457.19172  920.71828 1096.04779  629.30605
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  263.31558  497.98805   73.97831  188.67118  175.22115  377.68102
## 2012  205.01716  360.89097  153.25346  209.32113  202.05658  482.63553
## 2013 1563.65149  783.20289  262.44591  260.53121  382.27823  624.35333
## 2014  949.04614  161.37331  247.44909  317.04213  292.98312  488.31758
## 2015 1085.06420  246.35914  274.35432  250.71305  309.02593  748.71687
## 2016  212.21523  567.18382  238.44064  187.43127  384.85065  729.08792
## 2017  110.49356  216.10078  248.63583  249.51486  472.84165  838.28091
## 2018  233.48894  261.42442  225.52806  344.89425  470.11011  752.32699
## 2019  653.94175  479.32908  380.83854  386.78029  650.26438  795.78060
## 2020  680.85829  483.37874  506.16610  625.26947  575.95459  950.75046
## 2021  676.14611  466.14904
plot.ts(Acehinflowtimeseries,type = "l", col = "khaki")
lines(Bengkuluinflowtimeseries, type = "l", col = "sienna")
legend("top",c("Acehinflowtimeseries","Bengkuluinflowtimeseries"),fill=c("khaki","sienna"))

plot.ts(Acehoutflowtimeseries,type = "l", col = "khaki")
lines(Bengkuluoutflowtimeseries, type = "l", col = "sienna")
legend("top",c("Acehoutflowtimeseries","Bengkuluoutflowtimeseries"),fill=c("khaki","sienna"))

Acehintimeseriescomponents <- decompose(Acehinflowtimeseries)
Bengkuluintimeseriescomponents <- decompose(Bengkuluinflowtimeseries)
Acehintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2012  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2013  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2014  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2015  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2016  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2017  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2018  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2019  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2020  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
## 2021  746.11568   48.27704 -118.98158  -92.82414  -59.75309  202.79450
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2012  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2013  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2014  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2015  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2016  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2017  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2018  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2019  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2020  209.38959  624.31306 -292.95893 -366.68400 -392.77633 -506.91179
## 2021  209.38959  624.31306
Bengkuluintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2012  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2013  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2014  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2015  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2016  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2017  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2018  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2019  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2020  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2021  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2012   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2013   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2014   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2015   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2016   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2017   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2018   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2019   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2020   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2021   99.818044   52.992951
Acehouttimeseriescomponents <- decompose(Acehoutflowtimeseries)
Bengkuluouttimeseriescomponents <- decompose(Bengkuluoutflowtimeseries)
Acehouttimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2012 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2013 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2014 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2015 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2016 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2017 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2018 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2019 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2020 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
## 2021 -708.278397 -529.248520  -10.306620    8.333003  464.415314  350.679991
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2012  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2013  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2014  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2015  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2016  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2017  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2018  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2019  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2020  414.184121   42.244469 -353.047814 -260.176871 -268.937025  850.138349
## 2021  414.184121   42.244469
Bengkuluouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2012 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2013 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2014 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2015 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2016 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2017 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2018 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2019 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2020 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2021 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2012  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2013  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2014  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2015  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2016  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2017  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2018  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2019  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2020  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2021  169.42047  -21.85756
plot(Acehintimeseriescomponents$seasonal,type = "l", col = "purple")
lines(Bengkuluintimeseriescomponents$seasonal,col="palegreen")
lines(Acehouttimeseriescomponents$seasonal, type = "l", col = "lightskyblue")
lines(Bengkuluouttimeseriescomponents$seasonal,col="orange")
legend("top",c("Aceh Inflow","Bengkulu Inflow", "Aceh Outflow","Bengkulu Outflow"),fill=c("purple","palegreen","lightskyblue","orange"))

plot(Acehintimeseriescomponents$trend,type = "l", col = "purple")
lines(Bengkuluintimeseriescomponents$trend,col="palegreen")
lines(Acehouttimeseriescomponents$trend, type = "l", col = "lightskyblue")
lines(Bengkuluouttimeseriescomponents$trend,col="orange")
legend("top",c("Aceh Inflow","Bengkulu Inflow", "Aceh Outflow","Bengkulu Outflow"),fill=c("purple","palegreen","lightskyblue","orange"))

plot(Acehintimeseriescomponents$random,type = "l", col = "purple")
lines(Bengkuluintimeseriescomponents$random,col="palegreen")
lines(Acehouttimeseriescomponents$random, type = "l", col = "lightskyblue")
lines(Bengkuluouttimeseriescomponents$random,col="orange")
legend("top",c("Aceh Inflow","Bengkulu Inflow", "Aceh Outflow","Bengkulu Outflow"),fill=c("purple","palegreen","lightskyblue","orange"))

plot(Acehintimeseriescomponents$figure,type = "l", col = "purple")
lines(Bengkuluintimeseriescomponents$figure,col="palegreen")
lines(Acehouttimeseriescomponents$figure, type = "l", col = "lightskyblue")
lines(Bengkuluouttimeseriescomponents$figure,col="orange")
legend("top",c("Aceh Inflow","Bengkulu Inflow", "Aceh Outflow","Bengkulu Outflow"),fill=c("purple","palegreen","lightskyblue","orange"))

Refrensi

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#:~:text=Inflow%20merupakan%20uang%20yang%20masuk,melalui%20kegiatan%20penarikan%20%5B2%5D.

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx

https://rpubs.com/suhartono-uinmaliki/861286