Inflows adalah uang yang masuk ke Bank Indonesia melalui kegiatan penyetoran, dan outflows adalah uang yang keluar dari Bank Indonesia melalui kegiatan penarikan. Setiap daerah memiliki prediksi data inflow-outflow uang kartal yang berbeda-beda. Berikut komparasi visualisasi prediksi data inflow-outflow uang kartal antara Sumatera Selatan dengan Riau menggunakan bahasa pemrograman R.
library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "inflowdata.xlsx")
datainflow
## # A tibble: 11 x 12
## Tahun Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau `Kep. Riau`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 57900. 2308. 23238. 9385. 3012. 1426.
## 2 2012 65911. 2620. 25981. 11192. 4447. 2236.
## 3 2013 98369. 36337. 18120. 14056. 8933. 3378.
## 4 2014 86024. 4567. 30503. 14103. 6358. 2563.
## 5 2015 86549. 4710. 30254. 13309. 7156. 3218.
## 6 2016 97764. 5775. 34427. 14078. 8211. 4317.
## 7 2017 103748. 5514. 35617. 15312. 8553. 4412.
## 8 2018 117495. 5799. 41769. 15058. 10730. 5134.
## 9 2019 133762. 7509. 47112. 14750. 10915. 6077.
## 10 2020 109345. 6641. 36609. 10696. 9148. 6175.
## 11 2021 89270. 3702. 31840. 10748. 7769. 5009.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## # Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Belitung <dbl>
library(readxl)
dataoutflow <- read_excel(path = "outflowdata.xlsx")
dataoutflow
## # A tibble: 11 x 12
## Tahun Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau `Kep. Riau`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 80092. 6338. 22176. 5300. 12434. 5819.
## 2 2012 85235. 6378. 22495. 6434. 13014. 6966.
## 3 2013 103288. 23278. 19235. 6511. 15460. 8747.
## 4 2014 102338. 8630. 26391. 7060. 15158. 10122.
## 5 2015 109186. 9637. 27877. 7471. 15789. 9803.
## 6 2016 121992. 11311. 31959. 9198. 17645. 10068.
## 7 2017 133606. 11760. 35243. 10754. 18128. 10749.
## 8 2018 135676. 11450. 36908. 8447. 17926. 12597.
## 9 2019 153484. 13087. 44051. 9465. 19277. 12644.
## 10 2020 140589. 12874. 39758. 8763. 19139. 8461.
## 11 2021 86627. 5770. 23453. 5941. 12631. 5128.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## # Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Belitung <dbl>
plot(datainflow$Tahun,datainflow$`Sumatera Selatan`,type = "l", col= "dodgerblue")
lines(datainflow$Tahun,datainflow$Riau,col="red")
legend("top",c("Inflow Sumatera Selatan","Inflow Riau"),fill=c("dodgerblue","red"))
plot(dataoutflow$Tahun,dataoutflow$`Sumatera Selatan`,type = "l", col= "green")
lines(dataoutflow$Tahun,dataoutflow$Riau,col="mediumorchid")
legend("top",c("Outflow Sumatera Selatan","Outflow Riau"),fill=c("green","mediumorchid"))
plot(datainflow$Tahun,datainflow$`Sumatera Selatan`,type = "l", col= "dodgerblue")
lines(datainflow$Tahun,datainflow$Riau,col="red")
lines(dataoutflow$Tahun,dataoutflow$`Sumatera Selatan`, col= "green")
lines(dataoutflow$Tahun,dataoutflow$Riau,col="mediumorchid")
legend("top",c("Inflow Sumatera Selatan","Inflow Riau","Outflow Sumatera Selatan","Outflow Riau"),fill=c("dodgerblue","red","green","mediumorchid"))
library(readxl)
datainflowperbulan <- read_excel(path = "datainperbulan.xlsx")
dataoutflowperbulan <- read_excel(path = "dataoutperbulan.xlsx")
datainflowperbulan
## # A tibble: 128 x 41
## Bulan Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 4164. 124. 2068. 545. 94.2
## 2 2011-02-01 00:00:00 3338. 115. 1826. 450. 96.4
## 3 2011-03-01 00:00:00 4878. 154. 2028. 849. 288.
## 4 2011-04-01 00:00:00 3157. 122. 1429. 539. 160.
## 5 2011-05-01 00:00:00 3821. 123. 1539. 692. 195.
## 6 2011-06-01 00:00:00 3686. 151. 1637. 592. 101.
## 7 2011-07-01 00:00:00 4370. 107. 1791. 800. 143.
## 8 2011-08-01 00:00:00 3668. 184. 1256. 586. 134.
## 9 2011-09-01 00:00:00 12875. 606. 4172. 2176. 1014.
## 10 2011-10-01 00:00:00 4777. 158. 1941. 787. 341.
## # ... with 118 more rows, and 35 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## # Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # Kep. Bangka Belitung <dbl>, DKI Jakarta <dbl>, Jawa <dbl>,
## # Jawa Barat <dbl>, Jawa Tengah <dbl>, Yogyakarta <dbl>, Jawa Timur <dbl>,
## # Banten <dbl>, Bali Nusra <dbl>, Bali <dbl>, Nusa Tenggara Barat <dbl>,
## # Nusa Tenggara Timur <dbl>, Kalimantan <dbl>, Kalimantan Barat <dbl>,
## # Kalimantan Tengah <dbl>, Kalimantan Selatan <dbl>, ...
dataoutflowperbulan
## # A tibble: 128 x 41
## Bulan Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 3442. 350. 941. 307. 478.
## 2 2011-02-01 00:00:00 3989. 193. 990. 228. 400.
## 3 2011-03-01 00:00:00 4229. 230. 1209. 347. 621.
## 4 2011-04-01 00:00:00 6721. 529. 1653. 336. 1006.
## 5 2011-05-01 00:00:00 5787. 523. 1465. 328. 1000.
## 6 2011-06-01 00:00:00 7395. 406. 2167. 399. 1366.
## 7 2011-07-01 00:00:00 7154. 958. 1695. 449. 815.
## 8 2011-08-01 00:00:00 16043. 1046. 4104. 1376. 2729.
## 9 2011-09-01 00:00:00 1915. 124. 824. 148. 154.
## 10 2011-10-01 00:00:00 5174. 634. 1392. 299. 830.
## # ... with 118 more rows, and 35 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## # Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # Kep. Bangka Belitung <dbl>, DKI Jakarta <dbl>, Jawa <dbl>,
## # Jawa Barat <dbl>, Jawa Tengah <dbl>, Yogyakarta <dbl>, Jawa Timur <dbl>,
## # Banten <dbl>, Bali Nusra <dbl>, Bali <dbl>, Nusa Tenggara Barat <dbl>,
## # Nusa Tenggara Timur <dbl>, Kalimantan <dbl>, Kalimantan Barat <dbl>,
## # Kalimantan Tengah <dbl>, Kalimantan Selatan <dbl>, ...
plot(datainflowperbulan$`Sumatera Selatan`, type = "l", col = "tomato")
lines(datainflowperbulan$Riau,col="darkorchid")
lines(dataoutflowperbulan$`Sumatera Selatan`, col = "green")
lines(dataoutflowperbulan$Riau,col="purple")
legend("top",c("Inflow Sumatera Selatan","Inflow Riau","Outflow Sumatera Selatan","Outflow Riau"),fill=c("tomato","darkorchid","green","purple"))
SumateraSelatantimeseries <- datainflowperbulan$`Sumatera Selatan`
Riautimeseries <- datainflowperbulan$Riau
plot.ts(SumateraSelatantimeseries , type = "l", col = "cyan")
lines(Riautimeseries , type = "l", col = "darkorchid")
legend("top",c("Sumatera Selatan Timeseries","Riau Timeseries"),fill=c("cyan","darkorchid"))
logSumateraSelatan <- log(datainflowperbulan$`Sumatera Selatan`)
logRiau <- log(datainflowperbulan$`Riau`)
plot.ts(logSumateraSelatan, type = "l", col = "peachpuff")
lines(logRiau , type = "l", col = "gold")
legend("top",c("logSumateraSelatan","logRiau"),fill=c("peachpuff","gold"))
library(TTR)
## Warning: package 'TTR' was built under R version 4.1.2
SumateraSelatanSMA3 <- SMA(datainflowperbulan$`Sumatera Selatan`,n=3)
RiauSMA3 <- SMA(datainflowperbulan$`Riau`,n=3)
plot.ts(SumateraSelatanSMA3, type = "l", col = "black")
lines(RiauSMA3, type = "l", col = "red")
legend("top",c("SumateraSelatanSMA3","RiauSMA3"),fill=c("black","red"))
library(TTR)
SumateraSelatanSMA3 <- SMA(datainflowperbulan$`Sumatera Selatan`,n=8)
RiauSMA3 <- SMA(datainflowperbulan$`Riau`,n=8)
plot.ts(SumateraSelatanSMA3, type = "l", col = "black")
lines(RiauSMA3, type = "l", col = "red")
legend("top",c("SumateraSelatanSMA3","RiauSMA3"),fill=c("black","red"))
SumateraSelataninflowtimeseries <- ts(datainflowperbulan$`Sulawesi Selatan`, frequency=12, start=c(2011,1))
Riauinflowtimeseries <- ts(datainflowperbulan$Riau, frequency=12, start=c(2011,1))
SumateraSelataninflowtimeseries
## Jan Feb Mar Apr May Jun Jul
## 2011 737.2701 681.9942 910.0269 634.0787 697.3718 768.1180 742.7741
## 2012 1825.5671 1188.5240 857.6867 740.7358 1106.8802 906.3162 1168.7513
## 2013 2351.4793 1368.2980 1094.8123 1243.7820 1322.5633 1087.1937 1253.6472
## 2014 2732.2070 1503.5450 1039.9472 1315.0485 1264.3109 1572.9139 1109.0895
## 2015 3352.9496 1704.0220 1150.3860 1310.9590 1026.3442 1495.2299 2945.2499
## 2016 3002.2932 2041.5394 1291.9515 1111.7549 1267.5116 1264.3756 3935.5280
## 2017 2902.7937 1344.6431 876.9484 1336.9740 1605.1893 581.3572 3638.3386
## 2018 3539.6905 1393.2126 874.1457 1285.0432 1451.2186 3097.2785 2757.6692
## 2019 3493.4415 1808.0409 1188.0854 1464.0796 1705.3327 4474.1179 2360.2352
## 2020 4119.1319 2311.2332 1720.2440 809.5786 1135.8491 2606.6298 1359.0222
## 2021 4336.9419 2411.6856 1839.7368 1679.5252 2757.1762 2221.8949 1541.3612
## Aug Sep Oct Nov Dec
## 2011 647.3934 2324.1407 832.8167 1026.7175 590.7962
## 2012 1699.7772 1068.5728 988.4976 1354.5523 795.6488
## 2013 3010.8676 959.0225 1722.4662 1467.0511 888.6079
## 2014 3359.5185 1096.1824 1921.2403 1384.3146 1086.1001
## 2015 1477.0931 1288.5123 1604.9752 1340.7632 886.6034
## 2016 1231.0532 1397.8638 1635.0335 1628.3034 1236.0943
## 2017 1290.0620 1258.9023 1858.8599 1402.9977 706.0825
## 2018 1147.0689 1380.6095 2200.5911 1950.7287 816.4931
## 2019 1448.0190 1832.4393 2337.3045 1729.5425 908.7993
## 2020 1327.9169 1718.9034 1249.1544 2010.3617 1182.8652
## 2021 1547.1478
Riauinflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 94.24460 96.39424 287.98845 160.06180 194.70583 100.67608
## 2012 445.71970 364.44861 274.48827 235.70588 341.36393 250.99083
## 2013 1548.75771 724.83408 666.22356 1146.69694 714.10313 628.70916
## 2014 897.55475 597.76572 391.46587 414.92963 399.11419 324.09467
## 2015 1095.88812 347.44105 369.02908 424.74718 505.67346 498.57889
## 2016 1332.16109 622.76483 564.49565 377.26617 501.64829 415.02464
## 2017 1228.76098 692.52354 787.21834 671.46804 700.20181 173.00907
## 2018 1545.34390 887.66466 697.71403 627.84201 422.92181 1972.65304
## 2019 1663.41486 723.68853 671.06970 670.02297 372.20685 2633.04629
## 2020 1566.80990 900.25231 656.60197 465.35740 832.48125 1646.18946
## 2021 2241.25936 910.24470 683.86349 608.93339 1522.46355 829.78643
## Jul Aug Sep Oct Nov Dec
## 2011 143.32160 134.02960 1013.73676 341.22178 285.25779 160.83875
## 2012 390.91878 802.77936 408.83238 299.94057 391.02488 241.07860
## 2013 666.15895 1389.62436 454.88185 526.87296 302.26685 164.31963
## 2014 230.89241 1726.82385 377.03621 427.15336 334.94644 236.43117
## 2015 1399.11338 924.21942 357.65246 492.53688 457.74194 283.85194
## 2016 1858.40120 454.01158 563.71821 617.78181 426.00867 477.63763
## 2017 2114.71229 662.80534 502.47310 396.17308 428.57649 195.45782
## 2018 1293.01149 794.86546 685.77238 761.58086 774.35900 265.80837
## 2019 792.15569 841.10671 817.22178 825.61507 713.15676 192.69741
## 2020 754.19735 643.18320 372.80961 524.47867 611.53183 174.17311
## 2021 454.26751 518.24240
SumateraSelatanoutflowtimeseries <- ts(dataoutflowperbulan$`Sulawesi Selatan`, frequency=12, start=c(2011,1))
Riauoutflowtimeseries <- ts(dataoutflowperbulan$Riau, frequency=12, start=c(2011,1))
SumateraSelatanoutflowtimeseries
## Jan Feb Mar Apr May Jun Jul
## 2011 308.8302 237.8154 704.9791 738.6864 573.7936 593.2387 697.0496
## 2012 510.4450 454.6563 931.5922 1184.4716 912.5994 1076.4658 1011.8941
## 2013 154.0943 456.5932 538.6588 450.5097 726.9099 762.7118 1715.5574
## 2014 571.5631 669.3362 1082.1114 1236.1172 1142.5821 978.4584 3281.9684
## 2015 449.8504 624.7593 1184.9137 1558.5959 1136.3951 1374.2081 3073.0906
## 2016 343.9866 641.9787 824.1808 1442.7011 1391.4076 3169.4211 1467.6018
## 2017 488.8822 582.9862 1170.1978 862.8797 878.1953 3410.4420 721.6211
## 2018 163.1490 578.0414 1446.4317 1365.6673 1504.9645 3092.2174 880.0667
## 2019 343.7722 509.6206 1602.1095 2025.2509 4346.8133 141.9142 1323.0795
## 2020 414.5397 1016.5017 1727.2575 1794.6297 3671.4842 634.0485 1261.8806
## 2021 237.7465 809.6438 1897.2916 2804.0416 2712.6154 972.5763 1553.6345
## Aug Sep Oct Nov Dec
## 2011 2067.3531 489.8115 724.9256 731.3198 1099.4002
## 2012 1894.6604 681.6072 968.0655 616.1420 1630.0031
## 2013 975.9749 1480.8559 1165.7191 1060.4188 1996.6188
## 2014 833.3638 1668.2002 909.6691 1107.7162 2163.5076
## 2015 1402.7793 1483.1910 848.9114 1283.1252 1815.9132
## 2016 1009.3475 1233.0616 893.9218 1163.5838 1912.4182
## 2017 1746.5581 1122.7270 800.9915 1375.4004 1997.9313
## 2018 1660.2147 1270.9735 1219.2608 1317.6617 2280.1121
## 2019 1607.7889 1145.5304 909.9568 1620.9901 2511.9732
## 2020 1815.4617 1463.4415 2319.1946 1609.1700 2775.8378
## 2021 1029.6811
Riauoutflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 478.18402 400.24595 621.35321 1005.56107 1000.35374 1365.96130
## 2012 292.47450 399.76750 880.86006 1049.68113 1055.29479 1142.69911
## 2013 116.34632 569.05345 2345.35727 412.85210 1045.96329 1004.92649
## 2014 517.96101 526.24079 1089.97967 1000.53879 1182.86056 1199.39334
## 2015 133.58209 757.00411 1048.19275 1317.24918 1173.47065 1965.00327
## 2016 264.81101 670.51938 998.35476 1250.91662 1523.48445 4170.88866
## 2017 733.56292 981.17365 1359.41399 1239.79585 1413.94085 3856.69476
## 2018 233.11415 1118.03060 1545.86969 1215.64481 2476.59753 3343.03974
## 2019 455.48443 1012.74002 1340.33344 1521.82191 4902.80531 241.49091
## 2020 739.71921 831.87016 1264.41224 1774.60350 2925.82841 282.77052
## 2021 311.09352 805.14586 1430.24476 2632.46893 3111.28761 1073.67143
## Jul Aug Sep Oct Nov Dec
## 2011 815.43379 2729.10217 154.42178 829.93388 873.64100 2159.95096
## 2012 1196.25287 2392.32861 381.04524 883.96286 968.57206 2370.85940
## 2013 1473.20994 1758.54800 892.49248 1341.31082 1558.92781 2941.37515
## 2014 3974.55298 13.89336 971.59826 969.79530 1076.07146 2634.65301
## 2015 3286.54673 393.89838 718.78270 935.00142 1054.45513 3005.38270
## 2016 515.04790 1100.53865 1629.71683 1273.01584 1438.08721 2809.65000
## 2017 330.25241 1530.30977 896.72821 1317.25781 1705.10587 2763.50350
## 2018 735.25593 1364.76585 955.53100 1303.13335 1240.43316 2394.18052
## 2019 1223.33771 1452.78989 1124.43995 1242.01385 1649.73723 3110.25361
## 2020 1530.19271 1470.10144 1394.12769 2017.60832 1409.04284 3498.29809
## 2021 1692.92089 1573.91533
plot.ts(SumateraSelataninflowtimeseries,type = "l", col = "khaki")
lines(Riauinflowtimeseries, type = "l", col = "sienna")
legend("top",c("SumateraSelataninflowtimeseries","Riauinflowtimeseries"),fill=c("khaki","sienna"))
plot.ts(SumateraSelatanoutflowtimeseries,type = "l", col = "khaki")
lines(Riauoutflowtimeseries, type = "l", col = "sienna")
legend("top",c("SumateraSelatanoutflowtimeseries","Riauoutflowtimeseries"),fill=c("khaki","sienna"))
SumateraSelatanintimeseriescomponents <- decompose(SumateraSelataninflowtimeseries)
Riauintimeseriescomponents <- decompose(Riauinflowtimeseries)
SumateraSelatanintimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 1495.193991 29.942375 -516.735310 -457.666507 -323.342981 247.163478
## 2012 1495.193991 29.942375 -516.735310 -457.666507 -323.342981 247.163478
## 2013 1495.193991 29.942375 -516.735310 -457.666507 -323.342981 247.163478
## 2014 1495.193991 29.942375 -516.735310 -457.666507 -323.342981 247.163478
## 2015 1495.193991 29.942375 -516.735310 -457.666507 -323.342981 247.163478
## 2016 1495.193991 29.942375 -516.735310 -457.666507 -323.342981 247.163478
## 2017 1495.193991 29.942375 -516.735310 -457.666507 -323.342981 247.163478
## 2018 1495.193991 29.942375 -516.735310 -457.666507 -323.342981 247.163478
## 2019 1495.193991 29.942375 -516.735310 -457.666507 -323.342981 247.163478
## 2020 1495.193991 29.942375 -516.735310 -457.666507 -323.342981 247.163478
## 2021 1495.193991 29.942375 -516.735310 -457.666507 -323.342981 247.163478
## Jul Aug Sep Oct Nov Dec
## 2011 535.054604 49.695394 -192.747537 1.601677 -116.897535 -751.261648
## 2012 535.054604 49.695394 -192.747537 1.601677 -116.897535 -751.261648
## 2013 535.054604 49.695394 -192.747537 1.601677 -116.897535 -751.261648
## 2014 535.054604 49.695394 -192.747537 1.601677 -116.897535 -751.261648
## 2015 535.054604 49.695394 -192.747537 1.601677 -116.897535 -751.261648
## 2016 535.054604 49.695394 -192.747537 1.601677 -116.897535 -751.261648
## 2017 535.054604 49.695394 -192.747537 1.601677 -116.897535 -751.261648
## 2018 535.054604 49.695394 -192.747537 1.601677 -116.897535 -751.261648
## 2019 535.054604 49.695394 -192.747537 1.601677 -116.897535 -751.261648
## 2020 535.054604 49.695394 -192.747537 1.601677 -116.897535 -751.261648
## 2021 535.054604 49.695394
Riauintimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 657.38978 -24.91095 -126.73102 -129.53109 -159.03686 256.34435
## 2012 657.38978 -24.91095 -126.73102 -129.53109 -159.03686 256.34435
## 2013 657.38978 -24.91095 -126.73102 -129.53109 -159.03686 256.34435
## 2014 657.38978 -24.91095 -126.73102 -129.53109 -159.03686 256.34435
## 2015 657.38978 -24.91095 -126.73102 -129.53109 -159.03686 256.34435
## 2016 657.38978 -24.91095 -126.73102 -129.53109 -159.03686 256.34435
## 2017 657.38978 -24.91095 -126.73102 -129.53109 -159.03686 256.34435
## 2018 657.38978 -24.91095 -126.73102 -129.53109 -159.03686 256.34435
## 2019 657.38978 -24.91095 -126.73102 -129.53109 -159.03686 256.34435
## 2020 657.38978 -24.91095 -126.73102 -129.53109 -159.03686 256.34435
## 2021 657.38978 -24.91095 -126.73102 -129.53109 -159.03686 256.34435
## Jul Aug Sep Oct Nov Dec
## 2011 306.31477 167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2012 306.31477 167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2013 306.31477 167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2014 306.31477 167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2015 306.31477 167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2016 306.31477 167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2017 306.31477 167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2018 306.31477 167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2019 306.31477 167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2020 306.31477 167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2021 306.31477 167.03441
SumateraSelatanouttimeseriescomponents <- decompose(SumateraSelatanoutflowtimeseries)
Riauouttimeseriescomponents <- decompose(Riauoutflowtimeseries)
SumateraSelatanouttimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 -941.40276 -674.03939 -98.98738 46.16529 455.89008 325.01312
## 2012 -941.40276 -674.03939 -98.98738 46.16529 455.89008 325.01312
## 2013 -941.40276 -674.03939 -98.98738 46.16529 455.89008 325.01312
## 2014 -941.40276 -674.03939 -98.98738 46.16529 455.89008 325.01312
## 2015 -941.40276 -674.03939 -98.98738 46.16529 455.89008 325.01312
## 2016 -941.40276 -674.03939 -98.98738 46.16529 455.89008 325.01312
## 2017 -941.40276 -674.03939 -98.98738 46.16529 455.89008 325.01312
## 2018 -941.40276 -674.03939 -98.98738 46.16529 455.89008 325.01312
## 2019 -941.40276 -674.03939 -98.98738 46.16529 455.89008 325.01312
## 2020 -941.40276 -674.03939 -98.98738 46.16529 455.89008 325.01312
## 2021 -941.40276 -674.03939 -98.98738 46.16529 455.89008 325.01312
## Jul Aug Sep Oct Nov Dec
## 2011 290.34538 246.22820 -58.53264 -199.98463 -105.01084 714.31556
## 2012 290.34538 246.22820 -58.53264 -199.98463 -105.01084 714.31556
## 2013 290.34538 246.22820 -58.53264 -199.98463 -105.01084 714.31556
## 2014 290.34538 246.22820 -58.53264 -199.98463 -105.01084 714.31556
## 2015 290.34538 246.22820 -58.53264 -199.98463 -105.01084 714.31556
## 2016 290.34538 246.22820 -58.53264 -199.98463 -105.01084 714.31556
## 2017 290.34538 246.22820 -58.53264 -199.98463 -105.01084 714.31556
## 2018 290.34538 246.22820 -58.53264 -199.98463 -105.01084 714.31556
## 2019 290.34538 246.22820 -58.53264 -199.98463 -105.01084 714.31556
## 2020 290.34538 246.22820 -58.53264 -199.98463 -105.01084 714.31556
## 2021 290.34538 246.22820
Riauouttimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 -1029.68788 -641.19116 -51.82000 -184.13231 576.46181 512.97160
## 2012 -1029.68788 -641.19116 -51.82000 -184.13231 576.46181 512.97160
## 2013 -1029.68788 -641.19116 -51.82000 -184.13231 576.46181 512.97160
## 2014 -1029.68788 -641.19116 -51.82000 -184.13231 576.46181 512.97160
## 2015 -1029.68788 -641.19116 -51.82000 -184.13231 576.46181 512.97160
## 2016 -1029.68788 -641.19116 -51.82000 -184.13231 576.46181 512.97160
## 2017 -1029.68788 -641.19116 -51.82000 -184.13231 576.46181 512.97160
## 2018 -1029.68788 -641.19116 -51.82000 -184.13231 576.46181 512.97160
## 2019 -1029.68788 -641.19116 -51.82000 -184.13231 576.46181 512.97160
## 2020 -1029.68788 -641.19116 -51.82000 -184.13231 576.46181 512.97160
## 2021 -1029.68788 -641.19116 -51.82000 -184.13231 576.46181 512.97160
## Jul Aug Sep Oct Nov Dec
## 2011 140.29335 51.92179 -461.87487 -172.60911 -102.07941 1361.74622
## 2012 140.29335 51.92179 -461.87487 -172.60911 -102.07941 1361.74622
## 2013 140.29335 51.92179 -461.87487 -172.60911 -102.07941 1361.74622
## 2014 140.29335 51.92179 -461.87487 -172.60911 -102.07941 1361.74622
## 2015 140.29335 51.92179 -461.87487 -172.60911 -102.07941 1361.74622
## 2016 140.29335 51.92179 -461.87487 -172.60911 -102.07941 1361.74622
## 2017 140.29335 51.92179 -461.87487 -172.60911 -102.07941 1361.74622
## 2018 140.29335 51.92179 -461.87487 -172.60911 -102.07941 1361.74622
## 2019 140.29335 51.92179 -461.87487 -172.60911 -102.07941 1361.74622
## 2020 140.29335 51.92179 -461.87487 -172.60911 -102.07941 1361.74622
## 2021 140.29335 51.92179
plot(SumateraSelatanintimeseriescomponents$seasonal,type = "l", col = "purple")
lines(Riauintimeseriescomponents$seasonal,col="palegreen")
lines(SumateraSelatanouttimeseriescomponents$seasonal, type = "l", col = "lightskyblue")
lines(Riauouttimeseriescomponents$seasonal,col="orange")
legend("top",c("Sumatera Selatan Inflow","Riau Inflow", "Sumatera Selatan Outflow","Riau Outflow"),fill=c("purple","palegreen","lightskyblue","orange"))
plot(SumateraSelatanintimeseriescomponents$trend,type = "l", col = "purple")
lines(Riauintimeseriescomponents$trend,col="palegreen")
lines(SumateraSelatanouttimeseriescomponents$trend, type = "l", col = "lightskyblue")
lines(Riauouttimeseriescomponents$trend,col="orange")
legend("top",c("Sumatera Selatan Inflow","Riau Inflow", "Sumatera Selatan Outflow","Riau Outflow"),fill=c("purple","palegreen","lightskyblue","orange"))
plot(SumateraSelatanintimeseriescomponents$random,type = "l", col = "purple")
lines(Riauintimeseriescomponents$random,col="palegreen")
lines(SumateraSelatanouttimeseriescomponents$random, type = "l", col = "lightskyblue")
lines(Riauouttimeseriescomponents$random,col="orange")
legend("top",c("Sumatera Selatan Inflow","Riau Inflow", "Sumatera Selatan Outflow","Riau Outflow"),fill=c("purple","palegreen","lightskyblue","orange"))
plot(SumateraSelatanintimeseriescomponents$figure,type = "l", col = "purple")
lines(Riauintimeseriescomponents$figure,col="palegreen")
lines(SumateraSelatanouttimeseriescomponents$figure, type = "l", col = "lightskyblue")
lines(Riauouttimeseriescomponents$figure,col="orange")
legend("top",c("Sumatera Selatan Inflow","Riau Inflow", "Sumatera Selatan Outflow","Riau Outflow"),fill=c("purple","palegreen","lightskyblue","orange"))