Dosen Pengampu : Prof. Dr. Suhartono, M.Kom

Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Jurusan : Teknik Informatika

Pengertian Inflow-Outflow Uang Kartal

Inflows adalah uang yang masuk ke Bank Indonesia melalui kegiatan penyetoran, dan outflows adalah uang yang keluar dari Bank Indonesia melalui kegiatan penarikan. Setiap daerah memiliki prediksi data inflow-outflow uang kartal yang berbeda-beda. Berikut komparasi visualisasi prediksi data inflow-outflow uang kartal antara Sumatera Selatan dengan Riau menggunakan bahasa pemrograman R.

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflow <- read_excel(path = "inflowdata.xlsx")
datainflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   57900.  2308.           23238.            9385.  3012.       1426.
##  2  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  3  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  4  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  5  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  6  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  7  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  8  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  9  2019  133762.  7509.           47112.           14750. 10915.       6077.
## 10  2020  109345.  6641.           36609.           10696.  9148.       6175.
## 11  2021   89270.  3702.           31840.           10748.  7769.       5009.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Belitung <dbl>
library(readxl)
dataoutflow <- read_excel(path = "outflowdata.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## 11  2021   86627.  5770.           23453.            5941. 12631.       5128.
## # ... with 5 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Belitung <dbl>

1. Komparasi Visualisasi Prediksi Data Inflow Uang Kartal antara Sumatera Selatan dengan Riau Setiap Periode

plot(datainflow$Tahun,datainflow$`Sumatera Selatan`,type = "l", col= "dodgerblue")
lines(datainflow$Tahun,datainflow$Riau,col="red")
legend("top",c("Inflow Sumatera Selatan","Inflow Riau"),fill=c("dodgerblue","red"))

2. Komparasi Visualisasi Prediksi Data Outflow Uang Kartal antara Sumatera Selatan dengan Riau Setiap Periode

plot(dataoutflow$Tahun,dataoutflow$`Sumatera Selatan`,type = "l", col= "green")
lines(dataoutflow$Tahun,dataoutflow$Riau,col="mediumorchid")
legend("top",c("Outflow Sumatera Selatan","Outflow Riau"),fill=c("green","mediumorchid"))

3. Komparasi Visualisasi Prediksi Data Inflow-Outflow Uang Kartal antara Sumatera Selatan dengan Riau Setiap Periode

plot(datainflow$Tahun,datainflow$`Sumatera Selatan`,type = "l", col= "dodgerblue")
lines(datainflow$Tahun,datainflow$Riau,col="red")
lines(dataoutflow$Tahun,dataoutflow$`Sumatera Selatan`, col= "green")
lines(dataoutflow$Tahun,dataoutflow$Riau,col="mediumorchid")
legend("top",c("Inflow Sumatera Selatan","Inflow Riau","Outflow Sumatera Selatan","Outflow Riau"),fill=c("dodgerblue","red","green","mediumorchid"))

4. Komparasi Visualisasi Prediksi Data Inflow-Outflow Uang Kartal antara Sumatera Selatan dengan Riau Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "datainperbulan.xlsx")
dataoutflowperbulan <- read_excel(path = "dataoutperbulan.xlsx")
datainflowperbulan
## # A tibble: 128 x 41
##    Bulan               Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## # ... with 118 more rows, and 35 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>, DKI Jakarta <dbl>, Jawa <dbl>,
## #   Jawa Barat <dbl>, Jawa Tengah <dbl>, Yogyakarta <dbl>, Jawa Timur <dbl>,
## #   Banten <dbl>, Bali Nusra <dbl>, Bali <dbl>, Nusa Tenggara Barat <dbl>,
## #   Nusa Tenggara Timur <dbl>, Kalimantan <dbl>, Kalimantan Barat <dbl>,
## #   Kalimantan Tengah <dbl>, Kalimantan Selatan <dbl>, ...
dataoutflowperbulan
## # A tibble: 128 x 41
##    Bulan               Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## # ... with 118 more rows, and 35 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>, DKI Jakarta <dbl>, Jawa <dbl>,
## #   Jawa Barat <dbl>, Jawa Tengah <dbl>, Yogyakarta <dbl>, Jawa Timur <dbl>,
## #   Banten <dbl>, Bali Nusra <dbl>, Bali <dbl>, Nusa Tenggara Barat <dbl>,
## #   Nusa Tenggara Timur <dbl>, Kalimantan <dbl>, Kalimantan Barat <dbl>,
## #   Kalimantan Tengah <dbl>, Kalimantan Selatan <dbl>, ...
plot(datainflowperbulan$`Sumatera Selatan`, type = "l", col = "tomato")
lines(datainflowperbulan$Riau,col="darkorchid")
lines(dataoutflowperbulan$`Sumatera Selatan`, col = "green")
lines(dataoutflowperbulan$Riau,col="purple")
legend("top",c("Inflow Sumatera Selatan","Inflow Riau","Outflow Sumatera Selatan","Outflow Riau"),fill=c("tomato","darkorchid","green","purple"))

SumateraSelatantimeseries <- datainflowperbulan$`Sumatera Selatan`
Riautimeseries <- datainflowperbulan$Riau
plot.ts(SumateraSelatantimeseries , type = "l", col = "cyan")
lines(Riautimeseries , type = "l", col = "darkorchid")
legend("top",c("Sumatera Selatan Timeseries","Riau Timeseries"),fill=c("cyan","darkorchid"))

logSumateraSelatan <- log(datainflowperbulan$`Sumatera Selatan`)
logRiau <- log(datainflowperbulan$`Riau`)
plot.ts(logSumateraSelatan, type = "l", col = "peachpuff")
lines(logRiau , type = "l", col = "gold")
legend("top",c("logSumateraSelatan","logRiau"),fill=c("peachpuff","gold"))

library(TTR)
## Warning: package 'TTR' was built under R version 4.1.2
SumateraSelatanSMA3 <- SMA(datainflowperbulan$`Sumatera Selatan`,n=3)
RiauSMA3 <- SMA(datainflowperbulan$`Riau`,n=3)
plot.ts(SumateraSelatanSMA3, type = "l", col = "black")
lines(RiauSMA3, type = "l", col = "red")
legend("top",c("SumateraSelatanSMA3","RiauSMA3"),fill=c("black","red"))

library(TTR)
SumateraSelatanSMA3 <- SMA(datainflowperbulan$`Sumatera Selatan`,n=8)
RiauSMA3 <- SMA(datainflowperbulan$`Riau`,n=8)
plot.ts(SumateraSelatanSMA3, type = "l", col = "black")
lines(RiauSMA3, type = "l", col = "red")
legend("top",c("SumateraSelatanSMA3","RiauSMA3"),fill=c("black","red"))

5. Komparasi Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal antara Sumatera Selatan dengan Riau

SumateraSelataninflowtimeseries <- ts(datainflowperbulan$`Sulawesi Selatan`, frequency=12, start=c(2011,1))
Riauinflowtimeseries <- ts(datainflowperbulan$Riau, frequency=12, start=c(2011,1))
SumateraSelataninflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  737.2701  681.9942  910.0269  634.0787  697.3718  768.1180  742.7741
## 2012 1825.5671 1188.5240  857.6867  740.7358 1106.8802  906.3162 1168.7513
## 2013 2351.4793 1368.2980 1094.8123 1243.7820 1322.5633 1087.1937 1253.6472
## 2014 2732.2070 1503.5450 1039.9472 1315.0485 1264.3109 1572.9139 1109.0895
## 2015 3352.9496 1704.0220 1150.3860 1310.9590 1026.3442 1495.2299 2945.2499
## 2016 3002.2932 2041.5394 1291.9515 1111.7549 1267.5116 1264.3756 3935.5280
## 2017 2902.7937 1344.6431  876.9484 1336.9740 1605.1893  581.3572 3638.3386
## 2018 3539.6905 1393.2126  874.1457 1285.0432 1451.2186 3097.2785 2757.6692
## 2019 3493.4415 1808.0409 1188.0854 1464.0796 1705.3327 4474.1179 2360.2352
## 2020 4119.1319 2311.2332 1720.2440  809.5786 1135.8491 2606.6298 1359.0222
## 2021 4336.9419 2411.6856 1839.7368 1679.5252 2757.1762 2221.8949 1541.3612
##            Aug       Sep       Oct       Nov       Dec
## 2011  647.3934 2324.1407  832.8167 1026.7175  590.7962
## 2012 1699.7772 1068.5728  988.4976 1354.5523  795.6488
## 2013 3010.8676  959.0225 1722.4662 1467.0511  888.6079
## 2014 3359.5185 1096.1824 1921.2403 1384.3146 1086.1001
## 2015 1477.0931 1288.5123 1604.9752 1340.7632  886.6034
## 2016 1231.0532 1397.8638 1635.0335 1628.3034 1236.0943
## 2017 1290.0620 1258.9023 1858.8599 1402.9977  706.0825
## 2018 1147.0689 1380.6095 2200.5911 1950.7287  816.4931
## 2019 1448.0190 1832.4393 2337.3045 1729.5425  908.7993
## 2020 1327.9169 1718.9034 1249.1544 2010.3617 1182.8652
## 2021 1547.1478
Riauinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   94.24460   96.39424  287.98845  160.06180  194.70583  100.67608
## 2012  445.71970  364.44861  274.48827  235.70588  341.36393  250.99083
## 2013 1548.75771  724.83408  666.22356 1146.69694  714.10313  628.70916
## 2014  897.55475  597.76572  391.46587  414.92963  399.11419  324.09467
## 2015 1095.88812  347.44105  369.02908  424.74718  505.67346  498.57889
## 2016 1332.16109  622.76483  564.49565  377.26617  501.64829  415.02464
## 2017 1228.76098  692.52354  787.21834  671.46804  700.20181  173.00907
## 2018 1545.34390  887.66466  697.71403  627.84201  422.92181 1972.65304
## 2019 1663.41486  723.68853  671.06970  670.02297  372.20685 2633.04629
## 2020 1566.80990  900.25231  656.60197  465.35740  832.48125 1646.18946
## 2021 2241.25936  910.24470  683.86349  608.93339 1522.46355  829.78643
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  143.32160  134.02960 1013.73676  341.22178  285.25779  160.83875
## 2012  390.91878  802.77936  408.83238  299.94057  391.02488  241.07860
## 2013  666.15895 1389.62436  454.88185  526.87296  302.26685  164.31963
## 2014  230.89241 1726.82385  377.03621  427.15336  334.94644  236.43117
## 2015 1399.11338  924.21942  357.65246  492.53688  457.74194  283.85194
## 2016 1858.40120  454.01158  563.71821  617.78181  426.00867  477.63763
## 2017 2114.71229  662.80534  502.47310  396.17308  428.57649  195.45782
## 2018 1293.01149  794.86546  685.77238  761.58086  774.35900  265.80837
## 2019  792.15569  841.10671  817.22178  825.61507  713.15676  192.69741
## 2020  754.19735  643.18320  372.80961  524.47867  611.53183  174.17311
## 2021  454.26751  518.24240
SumateraSelatanoutflowtimeseries <- ts(dataoutflowperbulan$`Sulawesi Selatan`, frequency=12, start=c(2011,1))
Riauoutflowtimeseries <- ts(dataoutflowperbulan$Riau, frequency=12, start=c(2011,1))
SumateraSelatanoutflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  308.8302  237.8154  704.9791  738.6864  573.7936  593.2387  697.0496
## 2012  510.4450  454.6563  931.5922 1184.4716  912.5994 1076.4658 1011.8941
## 2013  154.0943  456.5932  538.6588  450.5097  726.9099  762.7118 1715.5574
## 2014  571.5631  669.3362 1082.1114 1236.1172 1142.5821  978.4584 3281.9684
## 2015  449.8504  624.7593 1184.9137 1558.5959 1136.3951 1374.2081 3073.0906
## 2016  343.9866  641.9787  824.1808 1442.7011 1391.4076 3169.4211 1467.6018
## 2017  488.8822  582.9862 1170.1978  862.8797  878.1953 3410.4420  721.6211
## 2018  163.1490  578.0414 1446.4317 1365.6673 1504.9645 3092.2174  880.0667
## 2019  343.7722  509.6206 1602.1095 2025.2509 4346.8133  141.9142 1323.0795
## 2020  414.5397 1016.5017 1727.2575 1794.6297 3671.4842  634.0485 1261.8806
## 2021  237.7465  809.6438 1897.2916 2804.0416 2712.6154  972.5763 1553.6345
##            Aug       Sep       Oct       Nov       Dec
## 2011 2067.3531  489.8115  724.9256  731.3198 1099.4002
## 2012 1894.6604  681.6072  968.0655  616.1420 1630.0031
## 2013  975.9749 1480.8559 1165.7191 1060.4188 1996.6188
## 2014  833.3638 1668.2002  909.6691 1107.7162 2163.5076
## 2015 1402.7793 1483.1910  848.9114 1283.1252 1815.9132
## 2016 1009.3475 1233.0616  893.9218 1163.5838 1912.4182
## 2017 1746.5581 1122.7270  800.9915 1375.4004 1997.9313
## 2018 1660.2147 1270.9735 1219.2608 1317.6617 2280.1121
## 2019 1607.7889 1145.5304  909.9568 1620.9901 2511.9732
## 2020 1815.4617 1463.4415 2319.1946 1609.1700 2775.8378
## 2021 1029.6811
Riauoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  478.18402  400.24595  621.35321 1005.56107 1000.35374 1365.96130
## 2012  292.47450  399.76750  880.86006 1049.68113 1055.29479 1142.69911
## 2013  116.34632  569.05345 2345.35727  412.85210 1045.96329 1004.92649
## 2014  517.96101  526.24079 1089.97967 1000.53879 1182.86056 1199.39334
## 2015  133.58209  757.00411 1048.19275 1317.24918 1173.47065 1965.00327
## 2016  264.81101  670.51938  998.35476 1250.91662 1523.48445 4170.88866
## 2017  733.56292  981.17365 1359.41399 1239.79585 1413.94085 3856.69476
## 2018  233.11415 1118.03060 1545.86969 1215.64481 2476.59753 3343.03974
## 2019  455.48443 1012.74002 1340.33344 1521.82191 4902.80531  241.49091
## 2020  739.71921  831.87016 1264.41224 1774.60350 2925.82841  282.77052
## 2021  311.09352  805.14586 1430.24476 2632.46893 3111.28761 1073.67143
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  815.43379 2729.10217  154.42178  829.93388  873.64100 2159.95096
## 2012 1196.25287 2392.32861  381.04524  883.96286  968.57206 2370.85940
## 2013 1473.20994 1758.54800  892.49248 1341.31082 1558.92781 2941.37515
## 2014 3974.55298   13.89336  971.59826  969.79530 1076.07146 2634.65301
## 2015 3286.54673  393.89838  718.78270  935.00142 1054.45513 3005.38270
## 2016  515.04790 1100.53865 1629.71683 1273.01584 1438.08721 2809.65000
## 2017  330.25241 1530.30977  896.72821 1317.25781 1705.10587 2763.50350
## 2018  735.25593 1364.76585  955.53100 1303.13335 1240.43316 2394.18052
## 2019 1223.33771 1452.78989 1124.43995 1242.01385 1649.73723 3110.25361
## 2020 1530.19271 1470.10144 1394.12769 2017.60832 1409.04284 3498.29809
## 2021 1692.92089 1573.91533
plot.ts(SumateraSelataninflowtimeseries,type = "l", col = "khaki")
lines(Riauinflowtimeseries, type = "l", col = "sienna")
legend("top",c("SumateraSelataninflowtimeseries","Riauinflowtimeseries"),fill=c("khaki","sienna"))

plot.ts(SumateraSelatanoutflowtimeseries,type = "l", col = "khaki")
lines(Riauoutflowtimeseries, type = "l", col = "sienna")
legend("top",c("SumateraSelatanoutflowtimeseries","Riauoutflowtimeseries"),fill=c("khaki","sienna"))

SumateraSelatanintimeseriescomponents <- decompose(SumateraSelataninflowtimeseries)
Riauintimeseriescomponents <- decompose(Riauinflowtimeseries)
SumateraSelatanintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2012 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2013 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2014 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2015 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2016 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2017 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2018 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2019 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2020 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
## 2021 1495.193991   29.942375 -516.735310 -457.666507 -323.342981  247.163478
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2012  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2013  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2014  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2015  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2016  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2017  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2018  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2019  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2020  535.054604   49.695394 -192.747537    1.601677 -116.897535 -751.261648
## 2021  535.054604   49.695394
Riauintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2012  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2013  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2014  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2015  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2016  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2017  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2018  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2019  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2020  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2021  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2012  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2013  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2014  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2015  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2016  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2017  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2018  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2019  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2020  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2021  306.31477  167.03441
SumateraSelatanouttimeseriescomponents <- decompose(SumateraSelatanoutflowtimeseries)
Riauouttimeseriescomponents <- decompose(Riauoutflowtimeseries)
SumateraSelatanouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2012 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2013 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2014 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2015 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2016 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2017 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2018 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2019 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2020 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
## 2021 -941.40276 -674.03939  -98.98738   46.16529  455.89008  325.01312
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2012  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2013  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2014  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2015  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2016  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2017  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2018  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2019  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2020  290.34538  246.22820  -58.53264 -199.98463 -105.01084  714.31556
## 2021  290.34538  246.22820
Riauouttimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2012 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2013 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2014 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2015 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2016 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2017 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2018 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2019 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2020 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2021 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2012   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2013   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2014   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2015   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2016   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2017   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2018   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2019   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2020   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2021   140.29335    51.92179
plot(SumateraSelatanintimeseriescomponents$seasonal,type = "l", col = "purple")
lines(Riauintimeseriescomponents$seasonal,col="palegreen")
lines(SumateraSelatanouttimeseriescomponents$seasonal, type = "l", col = "lightskyblue")
lines(Riauouttimeseriescomponents$seasonal,col="orange")
legend("top",c("Sumatera Selatan Inflow","Riau Inflow", "Sumatera Selatan Outflow","Riau Outflow"),fill=c("purple","palegreen","lightskyblue","orange"))

plot(SumateraSelatanintimeseriescomponents$trend,type = "l", col = "purple")
lines(Riauintimeseriescomponents$trend,col="palegreen")
lines(SumateraSelatanouttimeseriescomponents$trend, type = "l", col = "lightskyblue")
lines(Riauouttimeseriescomponents$trend,col="orange")
legend("top",c("Sumatera Selatan Inflow","Riau Inflow", "Sumatera Selatan Outflow","Riau Outflow"),fill=c("purple","palegreen","lightskyblue","orange"))

plot(SumateraSelatanintimeseriescomponents$random,type = "l", col = "purple")
lines(Riauintimeseriescomponents$random,col="palegreen")
lines(SumateraSelatanouttimeseriescomponents$random, type = "l", col = "lightskyblue")
lines(Riauouttimeseriescomponents$random,col="orange")
legend("top",c("Sumatera Selatan Inflow","Riau Inflow", "Sumatera Selatan Outflow","Riau Outflow"),fill=c("purple","palegreen","lightskyblue","orange"))

plot(SumateraSelatanintimeseriescomponents$figure,type = "l", col = "purple")
lines(Riauintimeseriescomponents$figure,col="palegreen")
lines(SumateraSelatanouttimeseriescomponents$figure, type = "l", col = "lightskyblue")
lines(Riauouttimeseriescomponents$figure,col="orange")
legend("top",c("Sumatera Selatan Inflow","Riau Inflow", "Sumatera Selatan Outflow","Riau Outflow"),fill=c("purple","palegreen","lightskyblue","orange"))

Refrensi

<https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#:~:text=Inflow%20merupakan%20uang%20yang%20masuk,melalui%20kegiatan%20penarikan%20%5B2%5D.>

<https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx>

<https://rpubs.com/suhartono-uinmaliki/861286>