#Summary Goal: to provide a pilot data overview for the Climate Change Methods naturalness project. The variables of main focus are perceptions of naturalness and risk, as well as endorsement for climate change methods. Ten methods of climate change technology were included in pilot data collection, with each participant being randomly assigned a survey regarding 3 of the 10 total methods. Final data will be aggregated for a cross random effects analysis to account for relationships between key variables for all 10 methods.
#Climate Change Methods Descriptions
#Climate Change Methods Scale List
CC <- read.csv("ClimateChangeFull.csv", header = T, na.strings=c(".", "", " ", "NA", "-99"))#Participants
#Number of responses (rows)
nrow(CC)## [1] 105
#Age range
range(CC$Dem_Age, na.rm = T)## [1] 20 85
#Average age
mean(CC$Dem_Age, na.rm = T)## [1] 46.67961
#Standard deviation of age
sd(CC$Dem_Age, na.rm = T)## [1] 16.9047
#Gender frequencies
table(CC$Dem_Gen)##
## 1 2
## 61 42
#Ethnicity frequencies
table(CC$Dem_Ethnicity)##
## 1 2 3 4 6
## 3 13 2 4 81
#Familiarity/Understanding
#Familiarity and understanding were each measured with 1 item on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).
#Understanding Item 1: I understand how this works. #Familiarity Item 1: This is familiar.
#AF/SCS Understanding/Familiarity Descriptives
#AFSCS Understanding
CC$Understanding_AFSCS <- CC$Risk_AFSCS_30
psych::describe(CC$Understanding_AFSCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 31 64.32 24.78 71 65.4 26.69 0 100 100 -0.46 -0.38 4.45
range(CC$Understanding_AFSCS, na.rm=TRUE)## [1] 0 100
hist(CC$Understanding_AFSCS, main = 'AFSCS Understanding Item #1: "I understand how this works."')#AFSCS Familiarity
CC$Familiarity_AFSCS <-CC$Risk_AFSCS_31
psych::describe(CC$Familiarity_AFSCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 31 56.52 27.8 59 56.32 34.1 4 100 96 -0.02 -1.22 4.99
range(CC$Familiarity_AFSCS, na.rm=TRUE)## [1] 4 100
hist(CC$Familiarity_AFSCS, main = 'AFSCS Familiarity Item #1: "This is familiar."')#Biochar Understanding/Familiarity Descriptives
#BIO Understanding
CC$Understanding_BIO <- CC$Risk_BIO_30
psych::describe(CC$Understanding_BIO)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 37 61.51 24.87 64 62.35 29.65 12 100 88 -0.22 -1.08 4.09
range(CC$Understanding_BIO, na.rm=TRUE)## [1] 12 100
hist(CC$Understanding_BIO, main = 'BIO Understanding Item #1: "I understand how this works."')#BIO Familiarity
CC$Familiarity_BIO <-CC$Risk_BIO_31
psych::describe(CC$Familiarity_BIO)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 37 51.14 29.43 47 50.68 31.13 0 100 100 0.25 -1.13 4.84
range(CC$Familiarity_BIO, na.rm=TRUE)## [1] 0 100
hist(CC$Familiarity_BIO, main = 'BIO Familiarity Item #1: "This is familiar."')#BECCS Understanding/Familiarity Descriptives
#BECCS Understanding
CC$Understanding_BECCS <- CC$Risk_BECCS_30
psych::describe(CC$Understanding_BECCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 53.53 31.67 60 54.23 36.32 0 100 100 -0.23 -1.28 5.28
range(CC$Understanding_BECCS, na.rm=TRUE)## [1] 0 100
hist(CC$Understanding_BECCS, main = 'BECCS Understanding Item #1: "I understand how this works."')#BECCS Familiarity
CC$Familiarity_BECCS <-CC$Risk_BECCS_31
psych::describe(CC$Familiarity_BECCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 35 41.97 32.88 31 40.28 37.06 0 100 100 0.36 -1.36 5.56
range(CC$Familiarity_BECCS, na.rm=TRUE)## [1] 0 100
hist(CC$Familiarity_BECCS, main = 'BECCS Familiarity Item #1: "This is familiar."')#DACCS Understanding/Familiarity Descriptives
#DACCS Understanding
CC$Understanding_DACCS <- CC$Risk_DACCS_30
psych::describe(CC$Understanding_DACCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 48.86 27.52 52.5 48.63 31.88 0 100 100 0.08 -0.77 4.59
range(CC$Understanding_DACCS, na.rm=TRUE)## [1] 0 100
hist(CC$Understanding_DACCS, main = 'DACCS Understanding Item #1: "I understand how this works."')#DACCS Familiarity
CC$Familiarity_DACCS <-CC$Risk_DACCS_31
psych::describe(CC$Familiarity_DACCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 41.89 28.97 40.5 40.53 29.65 0 100 100 0.28 -0.88 4.83
range(CC$Familiarity_DACCS, na.rm=TRUE)## [1] 0 100
hist(CC$Familiarity_DACCS, main = 'DACCS Familiarity Item #1: "This is familiar."')#EW Understanding/Familiarity Descriptives
#EW Understanding
CC$Understanding_EW <- CC$Risk_EW_30
psych::describe(CC$Understanding_EW)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 33 51.39 26.19 54 52 28.17 2 100 98 -0.19 -0.84 4.56
range(CC$Understanding_EW, na.rm=TRUE)## [1] 2 100
hist(CC$Understanding_EW, main = 'EW Understanding Item #1: "I understand how this works."')#EW Familiarity
CC$Familiarity_EW <-CC$Risk_EW_31
psych::describe(CC$Familiarity_EW)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 33 39.64 29.26 39 38 35.58 1 100 99 0.35 -1.01 5.09
range(CC$Familiarity_EW, na.rm=TRUE)## [1] 1 100
hist(CC$Familiarity_EW, main = 'EW Familiarity Item #1: "This is familiar."')#OF Understanding/Familiarity Descriptives
#OF Understanding
CC$Understanding_OF <- CC$Risk_OF_30
psych::describe(CC$Understanding_OF)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 32 47.56 26.22 50.5 48.69 24.46 0 95 95 -0.37 -0.83 4.64
range(CC$Understanding_OF, na.rm=TRUE)## [1] 0 95
hist(CC$Understanding_OF, main = 'OF Understanding Item #1: "I understand how this works."')#OF Familiarity
CC$Familiarity_OF <-CC$Risk_OF_31
psych::describe(CC$Familiarity_OF)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 31 37.03 23.38 39 37 26.69 0 78 78 -0.12 -1.2 4.2
range(CC$Familiarity_OF, na.rm=TRUE)## [1] 0 78
hist(CC$Familiarity_OF, main = 'OF Familiarity Item #1: "This is familiar."')#BF Understanding/Familiarity Descriptives
#BF Understanding
CC$Understanding_BF <- CC$Risk_BF_30
psych::describe(CC$Understanding_BF)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 23 59.61 28.94 62 61.63 25.2 0 100 100 -0.35 -0.6 6.03
range(CC$Understanding_BF, na.rm=TRUE)## [1] 0 100
hist(CC$Understanding_BF, main = 'BF Understanding Item #1: "I understand how this works."')#BF Familiarity
CC$Familiarity_BF <-CC$Risk_BF_31
psych::describe(CC$Familiarity_BF)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 23 58.57 22.08 60 59.58 14.83 0 99 99 -0.59 0.4 4.6
range(CC$Familiarity_BF, na.rm=TRUE)## [1] 0 99
hist(CC$Familiarity_BF, main = 'BF Familiarity Item #1: "This is familiar."')#NE Understanding/Familiarity Descriptives
#NE Understanding
CC$Understanding_NE <- CC$Risk_NE_30
psych::describe(CC$Understanding_NE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 29 61.24 28.1 68 62.32 29.65 5 100 95 -0.4 -1.12 5.22
range(CC$Understanding_NE, na.rm=TRUE)## [1] 5 100
hist(CC$Understanding_NE, main = 'NE Understanding Item #1: "I understand how this works."')#NE Familiarity
CC$Familiarity_NE <-CC$Risk_NE_31
psych::describe(CC$Familiarity_NE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 29 66.31 24.08 76 68.12 19.27 9 100 91 -0.76 -0.36 4.47
range(CC$Familiarity_NE, na.rm=TRUE)## [1] 9 100
hist(CC$Familiarity_NE, main = 'NE Familiarity Item #1: "This is familiar."')#SE Understanding/Familiarity Descriptives
#SE Understanding
CC$Understanding_SE <- CC$Risk_SE_30
psych::describe(CC$Understanding_SE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 24 76.71 26.06 80.5 80.35 28.91 14 100 86 -0.95 -0.13 5.32
range(CC$Understanding_SE, na.rm=TRUE)## [1] 14 100
hist(CC$Understanding_SE, main = 'SE Understanding Item #1: "I understand how this works."')#BIO Familiarity
CC$Familiarity_SE <-CC$Risk_SE_31
psych::describe(CC$Familiarity_SE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 25 73.04 26.02 74 75.76 32.62 3 100 97 -0.78 -0.02 5.2
range(CC$Familiarity_SE, na.rm=TRUE)## [1] 3 100
hist(CC$Familiarity_SE, main = 'SE Familiarity Item #1: "This is familiar."')#WE Understanding/Familiarity Descriptives
#WE Understanding
CC$Understanding_WE <- CC$Risk_WE_30
psych::describe(CC$Understanding_WE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 63.46 25.41 66.5 64.23 23.72 15 100 85 -0.3 -1.04 4.98
range(CC$Understanding_WE, na.rm=TRUE)## [1] 15 100
hist(CC$Understanding_WE, main = 'WE Understanding Item #1: "I understand how this works."')#WE Familiarity
CC$Familiarity_WE <-CC$Risk_WE_31
psych::describe(CC$Familiarity_WE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 62.12 26.92 62.5 63.64 22.98 0 100 100 -0.42 -0.57 5.28
range(CC$Familiarity_WE, na.rm=TRUE)## [1] 0 100
hist(CC$Familiarity_WE, main = 'WE Familiarity Item #1: "This is familiar."')#Risk Perception
#Risk perception was measured with 2 items on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).
#Risk Item 1: This is risky to deploy. #Risk Item 2: This is frightening.
#AF/SCS Risk Descriptives
#AFSCS Risk Scale
CC$Risk_Score_AFSCS <- rowMeans(CC [, c("Risk_AFSCS_32", "Risk_AFSCS_33")], na.rm=TRUE)
#AFSCS Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_AFSCS_32, CC$Risk_AFSCS_33))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Risk_AFSCS_32, CC$Risk_AFSCS_33))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.89 0.89 0.8 0.8 7.9 0.022 43 31 0.8
##
## lower alpha upper 95% confidence boundaries
## 0.84 0.89 0.93
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_AFSCS_32 0.82 0.8 0.64 0.8 4 NA 0 0.8
## CC.Risk_AFSCS_33 0.77 0.8 0.64 0.8 4 NA 0 0.8
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Risk_AFSCS_32 31 0.95 0.95 0.85 0.8 47 33
## CC.Risk_AFSCS_33 31 0.95 0.95 0.85 0.8 39 32
hist(CC$Risk_Score_AFSCS, main = 'AF/SCS Risk Scale Score')#AFSCS Individual Risk Items
psych::describe(CC$Risk_AFSCS_32)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 31 46.65 33.09 49 45.88 43 0 100 100 0.07 -1.17 5.94
range(CC$Risk_AFSCS_32, na.rm=TRUE)## [1] 0 100
hist(CC$Risk_AFSCS_32, main = 'AFSCS Risk Item #1: "This is risky to deploy."')psych::describe(CC$Risk_AFSCS_33)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 31 39 32.09 37 36.72 41.51 0 100 100 0.34 -1.1 5.76
range(CC$Risk_AFSCS_33, na.rm=TRUE)## [1] 0 100
hist(CC$Risk_AFSCS_33, main = 'AFSCS Risk Item #2: "This is frightening."')#BIOCHAR Risk Descriptives
#BIO Risk Scale
CC$Risk_Score_BIO <- rowMeans(CC [, c("Risk_BIO_32", "Risk_BIO_33")], na.rm=TRUE)
#BIO Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_BIO_32, CC$Risk_BIO_33))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Risk_BIO_32, CC$Risk_BIO_33))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.92 0.92 0.85 0.85 12 0.016 42 28 0.85
##
## lower alpha upper 95% confidence boundaries
## 0.89 0.92 0.95
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_BIO_32 0.84 0.85 0.73 0.85 5.8 NA 0 0.85
## CC.Risk_BIO_33 0.87 0.85 0.73 0.85 5.8 NA 0 0.85
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Risk_BIO_32 37 0.96 0.96 0.89 0.85 44 29
## CC.Risk_BIO_33 36 0.96 0.96 0.89 0.85 39 29
hist(CC$Risk_Score_BIO, main = 'BIO Risk Scale Score')#BIO Individual Risk Items
psych::describe(CC$Risk_BIO_32)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 37 43.78 28.74 45 43.13 29.65 0 100 100 0.1 -1.01 4.72
range(CC$Risk_BIO_32, na.rm=TRUE)## [1] 0 100
hist(CC$Risk_BIO_32, main = 'BIO Risk Item #1: "This is risky to deploy."')psych::describe(CC$Risk_BIO_33)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 39.17 29.31 34 37.5 34.84 0 98 98 0.36 -1.05 4.89
range(CC$Risk_BIO_33, na.rm=TRUE)## [1] 0 98
hist(CC$Risk_BIO_33, main = 'BIO Risk Item #2: "This is frightening."')#BECCS Risk Descriptives
#BECCS Risk Scale
CC$Risk_Score_BECCS <- rowMeans(CC [, c("Risk_BECCS_32", "Risk_BECCS_33")], na.rm=TRUE)
#BECCS Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_BECCS_32, CC$Risk_BECCS_33))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Risk_BECCS_32, CC$Risk_BECCS_33))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.83 0.83 0.72 0.72 5 0.032 48 24 0.72
##
## lower alpha upper 95% confidence boundaries
## 0.77 0.83 0.9
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_BECCS_32 0.75 0.72 0.51 0.72 2.5 NA 0 0.72
## CC.Risk_BECCS_33 0.69 0.72 0.51 0.72 2.5 NA 0 0.72
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Risk_BECCS_32 35 0.93 0.93 0.78 0.72 53 27
## CC.Risk_BECCS_33 36 0.92 0.93 0.78 0.72 43 26
hist(CC$Risk_Score_BECCS, main = 'BECCS Risk Scale Score')#BECCS Individual Risk Items
psych::describe(CC$Risk_BECCS_32)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 35 53.2 26.87 56 54.41 32.62 0 100 100 -0.35 -0.93 4.54
range(CC$Risk_BECCS_32, na.rm=TRUE)## [1] 0 100
hist(CC$Risk_BECCS_32, main = 'BECCS Risk Item #1: "This is risky to deploy."')psych::describe(CC$Risk_BECCS_33)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 43.31 25.77 39.5 42.93 25.95 0 99 99 0.11 -0.83 4.3
range(CC$Risk_BECCS_33, na.rm=TRUE)## [1] 0 99
hist(CC$Risk_BECCS_33, main = 'BECCS Risk Item #2: "This is frightening."')#DACCS Risk Descriptives
#DACCS Risk Scale
CC$Risk_Score_DACCS <- rowMeans(CC [, c("Risk_DACCS_32", "Risk_DACCS_33")], na.rm=TRUE)
#DACCS Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_DACCS_32, CC$Risk_DACCS_33))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Risk_DACCS_32, CC$Risk_DACCS_33))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.78 0.79 0.66 0.66 3.8 0.041 61 26 0.66
##
## lower alpha upper 95% confidence boundaries
## 0.7 0.78 0.86
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_DACCS_32 0.51 0.66 0.43 0.66 1.9 NA 0 0.66
## CC.Risk_DACCS_33 0.84 0.66 0.43 0.66 1.9 NA 0 0.66
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Risk_DACCS_32 36 0.89 0.91 0.74 0.66 64 25
## CC.Risk_DACCS_33 36 0.93 0.91 0.74 0.66 58 33
hist(CC$Risk_Score_DACCS, main = 'DACCS Risk Scale Score')#DACCS Individual Risk Items
psych::describe(CC$Risk_DACCS_32)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 63.64 25.47 66 65.33 22.24 0 100 100 -0.54 -0.34 4.24
range(CC$Risk_DACCS_32, na.rm=TRUE)## [1] 0 100
hist(CC$Risk_DACCS_32, main = 'DACCS Risk Item #1: "This is risky to deploy."')psych::describe(CC$Risk_DACCS_33)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 57.61 32.59 64 59.1 34.84 0 100 100 -0.42 -1.12 5.43
range(CC$Risk_DACCS_33, na.rm=TRUE)## [1] 0 100
hist(CC$Risk_DACCS_33, main = 'DACCS Risk Item #2: "This is frightening."')#EW Risk Descriptives
#EW Risk Scale
CC$Risk_Score_EW <- rowMeans(CC [, c("Risk_EW_32", "Risk_EW_33")], na.rm=TRUE)
#EW Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_EW_32, CC$Risk_EW_33))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Risk_EW_32, CC$Risk_EW_33))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.46 0.46 0.3 0.3 0.85 0.11 40 23 0.3
##
## lower alpha upper 95% confidence boundaries
## 0.25 0.46 0.67
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_EW_32 0.32 0.3 0.089 0.3 0.43 NA 0 0.3
## CC.Risk_EW_33 0.28 0.3 0.089 0.3 0.43 NA 0 0.3
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Risk_EW_32 33 0.82 0.81 0.44 0.3 45 29
## CC.Risk_EW_33 33 0.79 0.81 0.44 0.3 35 27
hist(CC$Risk_Score_EW, main = 'EW Risk Scale Score')#EW Individual Risk Items
psych::describe(CC$Risk_EW_32)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 33 45.21 28.91 46 44.74 28.17 0 100 100 0.01 -1.04 5.03
range(CC$Risk_EW_32, na.rm=TRUE)## [1] 0 100
hist(CC$Risk_EW_32, main = 'EW Risk Item #1: "This is risky to deploy."')psych::describe(CC$Risk_EW_33)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 33 34.61 27.08 35 33.3 41.51 0 83 83 0.16 -1.31 4.71
range(CC$Risk_EW_33, na.rm=TRUE)## [1] 0 83
hist(CC$Risk_EW_33, main = 'EW Risk Item #2: "This is frightening."')#OF Risk Descriptives
#OF Risk Scale
CC$Risk_Score_OF <- rowMeans(CC [, c("Risk_OF_32", "Risk_OF_33")], na.rm=TRUE)
#OF Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_OF_32, CC$Risk_OF_33))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Risk_OF_32, CC$Risk_OF_33))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.72 0.72 0.56 0.56 2.6 0.054 51 24 0.56
##
## lower alpha upper 95% confidence boundaries
## 0.61 0.72 0.82
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_OF_32 0.49 0.56 0.32 0.56 1.3 NA 0 0.56
## CC.Risk_OF_33 0.65 0.56 0.32 0.56 1.3 NA 0 0.56
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Risk_OF_32 32 0.87 0.88 0.66 0.56 52 26
## CC.Risk_OF_33 32 0.90 0.88 0.66 0.56 51 29
hist(CC$Risk_Score_OF, main = 'OF Risk Scale Score')#OF Individual Risk Items
psych::describe(CC$Risk_OF_32)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 32 51.69 25.67 48 50.92 25.2 0 100 100 0.32 -0.76 4.54
range(CC$Risk_OF_32, na.rm=TRUE)## [1] 0 100
hist(CC$Risk_OF_32, main = 'OF Risk Item #1: "This is risky to deploy."')psych::describe(CC$Risk_OF_33)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 32 50.69 29.48 51.5 50.65 28.91 0 100 100 0.16 -0.91 5.21
range(CC$Risk_OF_33, na.rm=TRUE)## [1] 0 100
hist(CC$Risk_OF_33, main = 'OF Risk Item #2: "This is frightening."')#BIOFUEL Risk Descriptives
#BF Risk Scale
CC$Risk_Score_BF <- rowMeans(CC [, c("Risk_BF_32", "Risk_BF_33")], na.rm=TRUE)
#DACCS Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_BF_32, CC$Risk_BF_33))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Risk_BF_32, CC$Risk_BF_33))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.88 0.88 0.79 0.79 7.4 0.023 44 28 0.79
##
## lower alpha upper 95% confidence boundaries
## 0.84 0.88 0.93
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_BF_32 0.78 0.79 0.62 0.79 3.7 NA 0 0.79
## CC.Risk_BF_33 0.80 0.79 0.62 0.79 3.7 NA 0 0.79
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Risk_BF_32 23 0.94 0.95 0.84 0.79 49 30
## CC.Risk_BF_33 23 0.95 0.95 0.84 0.79 40 30
hist(CC$Risk_Score_BF, main = 'BF Risk Scale Score')#DACCS Individual Risk Items
psych::describe(CC$Risk_BF_32)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 23 49.26 29.61 54 50.11 35.58 0 91 91 -0.26 -1.28 6.17
range(CC$Risk_BF_32, na.rm=TRUE)## [1] 0 91
hist(CC$Risk_BF_32, main = 'BF Risk Item #1: "This is risky to deploy."')psych::describe(CC$Risk_BF_33)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 23 39.7 30.04 34 38.21 34.1 0 97 97 0.31 -1.2 6.26
range(CC$Risk_BF_33, na.rm=TRUE)## [1] 0 97
hist(CC$Risk_BF_33, main = 'BF Risk Item #2: "This is frightening."')#NE Risk Descriptives
#NE Risk Scale
CC$Risk_Score_NE <- rowMeans(CC [, c("Risk_NE_32", "Risk_NE_33")], na.rm=TRUE)
#NE Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_NE_32, CC$Risk_NE_33))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Risk_NE_32, CC$Risk_NE_33))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.97 0.97 0.93 0.93 28 0.0067 57 29 0.93
##
## lower alpha upper 95% confidence boundaries
## 0.95 0.97 0.98
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_NE_32 0.88 0.93 0.87 0.93 14 NA 0 0.93
## CC.Risk_NE_33 0.99 0.93 0.87 0.93 14 NA 0 0.93
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Risk_NE_32 29 0.98 0.98 0.95 0.93 58 29
## CC.Risk_NE_33 29 0.98 0.98 0.95 0.93 56 31
hist(CC$Risk_Score_NE, main = 'NE Risk Scale Score')#NE Individual Risk Items
psych::describe(CC$Risk_NE_32)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 29 57.9 29.04 62 58.88 37.06 1 100 99 -0.33 -1.24 5.39
range(CC$Risk_NE_32, na.rm=TRUE)## [1] 1 100
hist(CC$Risk_NE_32, main = 'NE Risk Item #1: "This is risky to deploy."')psych::describe(CC$Risk_NE_33)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 29 55.52 30.76 62 56.2 37.06 0 100 100 -0.22 -1.15 5.71
range(CC$Risk_NE_33, na.rm=TRUE)## [1] 0 100
hist(CC$Risk_NE_33, main = 'NE Risk Item #2: "This is frightening."')#SE Risk Descriptives
#SE Risk Scale
CC$Risk_Score_SE <- rowMeans(CC [, c("Risk_SE_32", "Risk_SE_33")], na.rm=TRUE)
#DACCS Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_SE_32, CC$Risk_SE_33))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Risk_SE_32, CC$Risk_SE_33))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.96 0.96 0.92 0.92 22 0.0084 33 32 0.92
##
## lower alpha upper 95% confidence boundaries
## 0.94 0.96 0.97
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_SE_32 0.92 0.92 0.84 0.92 11 NA 0 0.92
## CC.Risk_SE_33 0.91 0.92 0.84 0.92 11 NA 0 0.92
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Risk_SE_32 25 0.98 0.98 0.94 0.92 35 33
## CC.Risk_SE_33 25 0.98 0.98 0.94 0.92 31 33
hist(CC$Risk_Score_SE, main = 'SE Risk Scale Score')#DACCS Individual Risk Items
psych::describe(CC$Risk_SE_32)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 25 34.68 32.73 19 32.67 28.17 0 100 100 0.46 -1.4 6.55
range(CC$Risk_SE_32, na.rm=TRUE)## [1] 0 100
hist(CC$Risk_SE_32, main = 'SE Risk Item #1: "This is risky to deploy."')psych::describe(CC$Risk_SE_33)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 25 31.44 32.6 17 28.86 25.2 0 100 100 0.63 -1.15 6.52
range(CC$Risk_SE_33, na.rm=TRUE)## [1] 0 100
hist(CC$Risk_SE_33, main = 'SE Risk Item #2: "This is frightening."')#WE Risk Descriptives
#WE Risk Scale
CC$Risk_Score_WE <- rowMeans(CC [, c("Risk_WE_32", "Risk_WE_33")], na.rm=TRUE)
#WE Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_WE_32, CC$Risk_WE_33))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Risk_WE_32, CC$Risk_WE_33))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.79 0.79 0.66 0.66 3.8 0.041 36 25 0.66
##
## lower alpha upper 95% confidence boundaries
## 0.71 0.79 0.87
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_WE_32 0.56 0.66 0.43 0.66 1.9 NA 0 0.66
## CC.Risk_WE_33 0.77 0.66 0.43 0.66 1.9 NA 0 0.66
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Risk_WE_32 26 0.89 0.91 0.74 0.66 35 25
## CC.Risk_WE_33 26 0.92 0.91 0.74 0.66 37 30
hist(CC$Risk_Score_WE, main = 'WE Risk Scale Score')#WE Individual Risk Items
psych::describe(CC$Risk_WE_32)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 34.54 25.39 33 33.95 37.06 0 77 77 0 -1.51 4.98
range(CC$Risk_WE_32, na.rm=TRUE)## [1] 0 77
hist(CC$Risk_WE_32, main = 'WE Risk Item #1: "This is risky to deploy."')psych::describe(CC$Risk_WE_33)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 36.77 29.96 34 34.91 31.88 0 97 97 0.46 -1.06 5.88
range(CC$Risk_WE_33, na.rm=TRUE)## [1] 0 97
hist(CC$Risk_WE_33, main = 'WE Risk Item #2: "This is frightening."')#Naturalness Descriptives
#Naturalness perception was measured for 3 items on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).
#Naturalness Item 1: This is natural. #Naturalness Item 2: This involves humans altering naturally occurring processes. #Naturalness Item 3: This relies on science-based technology.
#AF/SCS Naturalness Descriptives
#Reverse Code Items 2 and 3
CC$Naturalness_1_AFSCS<- CC$Naturalness_AFSCS_30
CC$Naturalness_2R_AFSCS <- abs(CC$Naturalness_AFSCS_31 -100)
CC$Naturalness_3R_AFSCS <- abs(CC$Naturalness_AFSCS_35 -100)
#AFSCS Naturalness Scale
CC$Naturalness_Score_AFSCS <- rowMeans(CC [, c("Naturalness_1_AFSCS", "Naturalness_2R_AFSCS", "Naturalness_3R_AFSCS")], na.rm=TRUE)
#AFSCS Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_AFSCS, CC$Naturalness_2R_AFSCS, CC$Naturalness_3R_AFSCS))## Number of categories should be increased in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_AFSCS, CC$Naturalness_2R_AFSCS, : Some items were negatively correlated with the total scale and probably
## should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_1_AFSCS ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_AFSCS, CC$Naturalness_2R_AFSCS,
## CC$Naturalness_3R_AFSCS))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.087 0.076 0.12 0.027 0.082 0.15 47 16 0.036
##
## lower alpha upper 95% confidence boundaries
## -0.21 0.09 0.39
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se
## CC.Naturalness_1_AFSCS 0.384 0.384 0.238 0.238 0.624 0.12
## CC.Naturalness_2R_AFSCS -0.480 -0.480 -0.194 -0.194 -0.325 0.29
## CC.Naturalness_3R_AFSCS 0.068 0.069 0.036 0.036 0.074 0.18
## var.r med.r
## CC.Naturalness_1_AFSCS NA 0.238
## CC.Naturalness_2R_AFSCS NA -0.194
## CC.Naturalness_3R_AFSCS NA 0.036
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_AFSCS 31 0.46 0.47 -0.19 -0.098 61 27
## CC.Naturalness_2R_AFSCS 31 0.73 0.72 0.56 0.217 39 28
## CC.Naturalness_3R_AFSCS 31 0.59 0.59 0.23 0.040 41 27
hist(CC$Naturalness_Score_AFSCS, main = 'AFSCS Naturalness Scale Score')#Individual AFSCS Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_AFSCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 31 60.77 26.62 63 62.36 17.79 0 100 100 -0.42 -0.15 4.78
range(CC$Naturalness_1_AFSCS, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_1_AFSCS, main = 'AFSCS Naturalness Item #1: "This is natural."')#Item 2 (Not reverse coded)
psych::describe(CC$Naturalness_AFSCS_31)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 31 60.65 28.23 64 62.16 29.65 2 100 98 -0.29 -0.82 5.07
range(CC$NNaturalness_AFSCS_31, na.rm=TRUE)## Warning in min(x, na.rm = na.rm): no non-missing arguments to min; returning Inf
## Warning in max(x, na.rm = na.rm): no non-missing arguments to max; returning
## -Inf
## [1] Inf -Inf
hist(CC$Naturalness_AFSCS_31, main = 'AFSCS Naturalness Item #2: "This involves humans altering naturally occurring processes."')#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_AFSCS_35)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 31 59.29 27.27 63 62.56 25.2 0 98 98 -0.92 -0.14 4.9
range(CC$Naturalness_AFSCS_35, na.rm=TRUE)## [1] 0 98
hist(CC$Naturalness_AFSCS_35, main = 'AFSCS Naturalness Item #3: "This relies on science-based technology."')#BIOCHAR Naturalness Descriptives
#Reverse Code Items 2 and 3
CC$Naturalness_1_BIO<- CC$Naturalness_BIO_30
CC$Naturalness_2R_BIO <- abs(CC$Naturalness_BIO_31 -100)
CC$Naturalness_3R_BIO <- abs(CC$Naturalness_BIO_35 -100)
#BIO Naturalness Scale
CC$Naturalness_Score_BIO <- rowMeans(CC [, c("Naturalness_1_BIO", "Naturalness_2R_BIO", "Naturalness_3R_BIO")], na.rm=TRUE)
#BIO Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_BIO, CC$Naturalness_2R_BIO, CC$Naturalness_3R_BIO))## Number of categories should be increased in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_BIO, CC$Naturalness_2R_BIO, : Some items were negatively correlated with the total scale and probably
## should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_1_BIO ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Warning in sqrt(Vtc): NaNs produced
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_BIO, CC$Naturalness_2R_BIO,
## CC$Naturalness_3R_BIO))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## -0.43 -0.39 -0.072 -0.1 -0.28 0.24 42 11 -0.18
##
## lower alpha upper 95% confidence boundaries
## -0.91 -0.43 0.05
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se
## CC.Naturalness_1_BIO 0.42 0.43 0.27 0.27 0.74 0.11
## CC.Naturalness_2R_BIO -0.44 -0.44 -0.18 -0.18 -0.31 0.28
## CC.Naturalness_3R_BIO -1.32 -1.32 -0.40 -0.40 -0.57 0.45
## var.r med.r
## CC.Naturalness_1_BIO NA 0.27
## CC.Naturalness_2R_BIO NA -0.18
## CC.Naturalness_3R_BIO NA -0.40
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_BIO 37 0.30 0.27 NaN -0.370 57 23
## CC.Naturalness_2R_BIO 36 0.58 0.57 NaN -0.124 40 23
## CC.Naturalness_3R_BIO 37 0.67 0.71 NaN 0.088 29 20
hist(CC$Naturalness_Score_BIO, main = 'BIO Naturalness Scale Score')#Individual BIO Naturalness Items
#Item 1 (Not reverse coded)
psych::describe(CC$Naturalness_1_BIO)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 37 56.54 22.61 61 56.58 17.79 9 100 91 -0.19 -0.7 3.72
range(CC$Naturalness_1_BIO, na.rm=TRUE)## [1] 9 100
hist(CC$Naturalness_1_BIO, main = 'BIO Naturalness Item #1: "This is natural."')#Item 2 (Not reverse coded)
psych::describe(CC$Naturalness_BIO_31)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 59.67 23.25 62 60.73 20.76 11 97 86 -0.36 -0.76 3.87
range(CC$Naturalness_BIO_31, na.rm=TRUE)## [1] 11 97
hist(CC$Naturalness_BIO_31, main = 'BIO Naturalness Item #2: "This involves humans altering naturally occurring processes."')#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_BIO_35)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 37 70.65 20.47 71 72 22.24 15 100 85 -0.53 -0.11 3.36
range(CC$Naturalness_BIO_35, na.rm=TRUE)## [1] 15 100
hist(CC$Naturalness_BIO_35, main = 'BIO Naturalness Item #3: "This relies on science-based technology."')#BECCS Naturalness Descriptives
#Reverse Code Items 2 and 3
CC$Naturalness_1_BECCS<- CC$Naturalness_BECCS_30
CC$Naturalness_2R_BECCS <- abs(CC$Naturalness_BECCS_31 -100)
CC$Naturalness_3R_BECCS <- abs(CC$Naturalness_BECCS_35 -100)
#BECCS Naturalness Scale
CC$Naturalness_Score_BECCS <- rowMeans(CC [, c("Naturalness_1_BECCS", "Naturalness_2R_BECCS", "Naturalness_3R_BECCS")], na.rm=TRUE)
#BECCS Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_BECCS, CC$Naturalness_2R_BECCS, CC$Naturalness_3R_BECCS))## Number of categories should be increased in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_BECCS, CC$Naturalness_2R_BECCS, : Some items were negatively correlated with the total scale and probably
## should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_1_BECCS ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_BECCS, CC$Naturalness_2R_BECCS,
## CC$Naturalness_3R_BECCS))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## -0.087 -0.067 0.21 -0.021 -0.063 0.18 41 15 -0.084
##
## lower alpha upper 95% confidence boundaries
## -0.45 -0.09 0.27
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se
## CC.Naturalness_1_BECCS 0.61 0.61 0.441 0.441 1.58 0.076
## CC.Naturalness_2R_BECCS -1.42 -1.46 -0.422 -0.422 -0.59 0.465
## CC.Naturalness_3R_BECCS -0.18 -0.18 -0.084 -0.084 -0.15 0.231
## var.r med.r
## CC.Naturalness_1_BECCS NA 0.441
## CC.Naturalness_2R_BECCS NA -0.422
## CC.Naturalness_3R_BECCS NA -0.084
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_BECCS 36 0.36 0.29 -0.40 -0.2825 51 29
## CC.Naturalness_2R_BECCS 35 0.80 0.80 0.72 0.2882 39 28
## CC.Naturalness_3R_BECCS 36 0.54 0.60 0.46 0.0079 32 24
hist(CC$Naturalness_Score_BECCS, main = 'BECCS Naturalness Scale Score')#Individual BECCS Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_BECCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 50.81 28.51 51.5 51.4 40.77 0 100 100 -0.06 -1.16 4.75
range(CC$Naturalness_1_BECCS, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_1_BECCS, main = 'BECCS Naturalness Item #1: "This is natural."')#Item 2 (Not reverse coded)
psych::describe(CC$Naturalness_BECCS_31)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 35 60.97 27.92 69 62.41 25.2 2 100 98 -0.48 -0.89 4.72
range(CC$Naturalness_BECCS_31, na.rm=TRUE)## [1] 2 100
hist(CC$Naturalness_BECCS_31, main = 'BECCS Naturalness Item #2: "This involves humans altering naturally occurring processes."')#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_BECCS_35)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 67.69 24.02 73 70.13 17.79 0 100 100 -0.91 0.58 4
range(CC$Naturalness_BECCS_35, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_BECCS_35, main = 'BECCS Naturalness Item #3: "This relies on science-based technology."')#DACCS Naturalness Descriptives
#Reverse Code Items 2 and 3
CC$Naturalness_1_DACCS<- CC$Naturalness_DACCS_30
CC$Naturalness_2R_DACCS <- abs(CC$Naturalness_DACCS_31 -100)
CC$Naturalness_3R_DACCS <- abs(CC$Naturalness_DACCS_35 -100)
#DACCS Naturalness Scale
CC$Naturalness_Score_DACCS <- rowMeans(CC [, c("Naturalness_1_DACCS", "Naturalness_2R_DACCS", "Naturalness_3R_DACCS")], na.rm=TRUE)
#DACCS Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_DACCS, CC$Naturalness_2R_DACCS, CC$Naturalness_3R_DACCS))## Number of categories should be increased in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_DACCS, CC$Naturalness_2R_DACCS, : Some items were negatively correlated with the total scale and probably
## should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_3R_DACCS ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_DACCS, CC$Naturalness_2R_DACCS,
## CC$Naturalness_3R_DACCS))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.096 0.11 0.088 0.038 0.12 0.15 34 15 0.0091
##
## lower alpha upper 95% confidence boundaries
## -0.2 0.1 0.39
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se
## CC.Naturalness_1_DACCS 0.018 0.018 0.0091 0.0091 0.018 0.19
## CC.Naturalness_2R_DACCS -0.113 -0.116 -0.0549 -0.0549 -0.104 0.21
## CC.Naturalness_3R_DACCS 0.261 0.275 0.1594 0.1594 0.379 0.14
## var.r med.r
## CC.Naturalness_1_DACCS NA 0.0091
## CC.Naturalness_2R_DACCS NA -0.0549
## CC.Naturalness_3R_DACCS NA 0.1594
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_DACCS 36 0.71 0.61 0.25 0.064 45 29
## CC.Naturalness_2R_DACCS 36 0.58 0.65 0.36 0.134 27 20
## CC.Naturalness_3R_DACCS 36 0.50 0.53 -0.08 -0.037 30 23
hist(CC$Naturalness_Score_DACCS, main = 'DACCS Naturalness Scale Score')#Individual DACCS Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_DACCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 45.08 28.96 48.5 43.93 37.81 0 100 100 0.26 -1.02 4.83
range(CC$Naturalness_1_DACCS, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_1_DACCS, main = 'DACCS Naturalness Item #1: "This is natural."')#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_DACCS_31)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 73.17 20.43 73 74.47 17.79 29 100 71 -0.28 -0.76 3.41
range(CC$Naturalness_DACCS_31, na.rm=TRUE)## [1] 29 100
hist(CC$Naturalness_DACCS_31, main = 'DACCS Naturalness Item #2: "This involves humans altering naturally occurring processes."')#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_DACCS_35)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 70.08 23.31 69 72.07 18.53 0 100 100 -0.68 0.47 3.89
range(CC$Naturalness_DACCS_35, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_DACCS_35, main = 'DACCS Naturalness Item #3: "This relies on science-based technology."')#EW Naturalness Descriptives
#Reverse Code Items 2 and 3
CC$Naturalness_1_EW<- CC$Naturalness_EW_30
CC$Naturalness_2R_EW <- abs(CC$Naturalness_EW_31 -100)
CC$Naturalness_3R_EW <- abs(CC$Naturalness_EW_35 -100)
#EW Naturalness Scale
CC$Naturalness_Score_EW <- rowMeans(CC [, c("Naturalness_1_EW", "Naturalness_2R_EW", "Naturalness_3R_EW")], na.rm=TRUE)
#EW Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_EW, CC$Naturalness_2R_EW, CC$Naturalness_3R_EW))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_EW, CC$Naturalness_2R_EW,
## CC$Naturalness_3R_EW))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.53 0.56 0.61 0.3 1.3 0.084 41 20 0.15
##
## lower alpha upper 95% confidence boundaries
## 0.37 0.53 0.7
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Naturalness_1_EW 0.842 0.842 0.727 0.727 5.321 0.031 NA
## CC.Naturalness_2R_EW 0.018 0.018 0.009 0.009 0.018 0.190 NA
## CC.Naturalness_3R_EW 0.258 0.260 0.150 0.150 0.352 0.144 NA
## med.r
## CC.Naturalness_1_EW 0.727
## CC.Naturalness_2R_EW 0.009
## CC.Naturalness_3R_EW 0.150
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_EW 34 0.57 0.53 0.12 0.085 52 30
## CC.Naturalness_2R_EW 34 0.84 0.86 0.84 0.593 39 27
## CC.Naturalness_3R_EW 34 0.77 0.79 0.75 0.454 33 27
hist(CC$Naturalness_Score_EW, main = 'EW Naturalness Scale Score')#Individual EW Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_EW)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 34 52.09 30.36 52.5 52.39 36.32 1 100 99 -0.12 -1.15 5.21
range(CC$Naturalness_1_EW, na.rm=TRUE)## [1] 1 100
hist(CC$Naturalness_1_EW, main = 'EW Naturalness Item #1: "This is natural."')#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_EW_31)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 34 61.15 26.67 66 63.11 19.27 0 100 100 -0.71 -0.22 4.57
range(CC$Naturalness_EW_31, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_EW_31, main = 'EW Naturalness Item #2: "This involves humans altering naturally occurring processes."')#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_EW_35)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 34 67.06 27.08 74 70.21 23.72 0 100 100 -1.01 0.23 4.64
range(CC$Naturalness_EW_35, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_EW_35, main = 'EW Naturalness Item #3: "This relies on science-based technology."')#OF Naturalness Descriptives
#Reverse Code Items 2 and 3
CC$Naturalness_1_OF <- CC$Naturalness_OF_30
CC$Naturalness_2R_OF <- abs(CC$Naturalness_OF_31 -100)
CC$Naturalness_3R_OF <- abs(CC$Naturalness_OF_35 -100)
#OF Naturalness Scale
CC$Naturalness_Score_OF <- rowMeans(CC [, c("Naturalness_1_OF", "Naturalness_2R_OF", "Naturalness_3R_OF")], na.rm=TRUE)
#OF Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_OF, CC$Naturalness_2R_OF, CC$Naturalness_3R_OF))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_OF, CC$Naturalness_2R_OF,
## CC$Naturalness_3R_OF))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.52 0.54 0.59 0.28 1.2 0.085 43 20 0.098
##
## lower alpha upper 95% confidence boundaries
## 0.36 0.52 0.69
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Naturalness_1_OF 0.844 0.844 0.730 0.730 5.399 0.031 NA
## CC.Naturalness_2R_OF 0.044 0.044 0.023 0.023 0.046 0.186 NA
## CC.Naturalness_3R_OF 0.178 0.179 0.098 0.098 0.218 0.160 NA
## med.r
## CC.Naturalness_1_OF 0.730
## CC.Naturalness_2R_OF 0.023
## CC.Naturalness_3R_OF 0.098
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_OF 31 0.54 0.52 0.081 0.065 46 30
## CC.Naturalness_2R_OF 32 0.83 0.84 0.819 0.560 42 27
## CC.Naturalness_3R_OF 32 0.79 0.81 0.771 0.483 43 28
hist(CC$Naturalness_Score_OF, main = 'OF Naturalness Scale Score')#Individual OF Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_OF)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 31 45.81 29.99 41 44.8 34.1 0 100 100 0.19 -1.14 5.39
range(CC$Naturalness_1_OF, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_1_OF, main = 'OF Naturalness Item #1: "This is natural."')#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_OF_31)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 32 57.69 27.14 63.5 59.46 19.27 0 100 100 -0.63 -0.5 4.8
range(CC$Naturalness_OF_31, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_OF_31, main = 'OF Naturalness Item #2: "This involves humans altering naturally occurring processes."')#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_OF_35)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 32 57.38 27.54 65 58.92 21.5 0 100 100 -0.56 -0.83 4.87
range(CC$Naturalness_OF_35, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_OF_35, main = 'OF Naturalness Item #3: "This relies on science-based technology."')#BIOFUEL Naturalness Descriptives
#Reverse Code Items 2 and 3
CC$Naturalness_1_BF<- CC$Naturalness_BF_30
CC$Naturalness_2R_BF <- abs(CC$Naturalness_BF_31 -100)
CC$Naturalness_3R_BF <- abs(CC$Naturalness_BF_35 -100)
#DACCS Naturalness Scale
CC$Naturalness_Score_BF <- rowMeans(CC [, c("Naturalness_1_BF", "Naturalness_2R_BF", "Naturalness_3R_BF")], na.rm=TRUE)
#BF Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_BF, CC$Naturalness_2R_BF, CC$Naturalness_3R_BF))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_BF, CC$Naturalness_2R_BF,
## CC$Naturalness_3R_BF))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.39 0.41 0.32 0.19 0.69 0.098 38 18 0.19
##
## lower alpha upper 95% confidence boundaries
## 0.2 0.39 0.59
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Naturalness_1_BF 0.25 0.27 0.16 0.16 0.37 0.13 NA
## CC.Naturalness_2R_BF 0.32 0.35 0.21 0.21 0.54 0.12 NA
## CC.Naturalness_3R_BF 0.32 0.32 0.19 0.19 0.48 0.13 NA
## med.r
## CC.Naturalness_1_BF 0.16
## CC.Naturalness_2R_BF 0.21
## CC.Naturalness_3R_BF 0.19
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_BF 23 0.74 0.69 0.42 0.26 58 31
## CC.Naturalness_2R_BF 23 0.72 0.66 0.35 0.23 34 31
## CC.Naturalness_3R_BF 23 0.56 0.67 0.37 0.24 20 19
hist(CC$Naturalness_Score_BF, main = 'BF Naturalness Scale Score')#Individual BF Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_BF)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 23 58.04 30.85 66 59.79 26.69 0 100 100 -0.58 -0.87 6.43
range(CC$Naturalness_1_BF, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_1_BF, main = 'BF Naturalness Item #1: "This is natural."')#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_BF_31)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 23 65.74 30.64 72 68.58 31.13 2 100 98 -0.64 -0.89 6.39
range(CC$Naturalness_BF_31, na.rm=TRUE)## [1] 2 100
hist(CC$Naturalness_BF_31, main = 'BF Naturalness Item #2: "This involves humans altering naturally occurring processes."')#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_BF_35)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 23 79.7 19.44 79 82.11 23.72 33 100 67 -0.81 -0.23 4.05
range(CC$Naturalness_BF_35, na.rm=TRUE)## [1] 33 100
hist(CC$Naturalness_BF_35, main = 'BF Naturalness Item #3: "This relies on science-based technology."')#NE Naturalness Descriptives
#Reverse Code Items 2 and 3
CC$Naturalness_1_NE<- CC$Naturalness_NE_30
CC$Naturalness_2R_NE <- abs(CC$Naturalness_NE_31 -100)
CC$Naturalness_3R_NE <- abs(CC$Naturalness_NE_35 -100)
#NE Naturalness Scale
CC$Naturalness_Score_NE <- rowMeans(CC [, c("Naturalness_1_NE", "Naturalness_2R_NE", "Naturalness_3R_NE")], na.rm=TRUE)
#NE Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_NE, CC$Naturalness_2R_NE, CC$Naturalness_3R_NE))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_NE, CC$Naturalness_2R_NE,
## CC$Naturalness_3R_NE))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.41 0.43 0.4 0.2 0.77 0.1 38 17 0.13
##
## lower alpha upper 95% confidence boundaries
## 0.21 0.41 0.61
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Naturalness_1_NE 0.624 0.624 0.454 0.454 1.661 0.073 NA
## CC.Naturalness_2R_NE 0.048 0.048 0.025 0.025 0.051 0.182 NA
## CC.Naturalness_3R_NE 0.233 0.237 0.134 0.134 0.310 0.147 NA
## med.r
## CC.Naturalness_1_NE 0.454
## CC.Naturalness_2R_NE 0.025
## CC.Naturalness_3R_NE 0.134
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_NE 29 0.63 0.56 0.14 0.093 47 29
## CC.Naturalness_2R_NE 29 0.74 0.77 0.63 0.387 37 24
## CC.Naturalness_3R_NE 29 0.68 0.72 0.53 0.290 30 24
hist(CC$Naturalness_Score_NE, main = 'NE Naturalness Scale Score')#Individual DACCS Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_NE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 29 47.38 28.96 43 46.68 35.58 4 100 96 0.22 -1.23 5.38
range(CC$Naturalness_1_NE, na.rm=TRUE)## [1] 4 100
hist(CC$Naturalness_1_NE, main = 'NE Naturalness Item #1: "This is natural."')#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_DACCS_31)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 73.17 20.43 73 74.47 17.79 29 100 71 -0.28 -0.76 3.41
range(CC$Naturalness_NE_31, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_NE_31, main = 'NE Naturalness Item #2: "This involves humans altering naturally occurring processes."')#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_NE_35)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 29 70.38 23.82 74 72.8 20.76 1 100 99 -1.13 1.02 4.42
range(CC$Naturalness_NE_35, na.rm=TRUE)## [1] 1 100
hist(CC$Naturalness_NE_35, main = 'NE Naturalness Item #3: "This relies on science-based technology."')#SE Naturalness Descriptives
#Reverse Code Items 2 and 3
CC$Naturalness_1_SE<- CC$Naturalness_SE_30
CC$Naturalness_2R_SE <- abs(CC$Naturalness_SE_31 -100)
CC$Naturalness_3R_SE <- abs(CC$Naturalness_SE_35 -100)
#SE Naturalness Scale
CC$Naturalness_Score_SE <- rowMeans(CC [, c("Naturalness_1_SE", "Naturalness_2R_SE", "Naturalness_3R_SE")], na.rm=TRUE)
#SE Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_SE, CC$Naturalness_2R_SE, CC$Naturalness_3R_SE))## Number of categories should be increased in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_SE, CC$Naturalness_2R_SE, : Some items were negatively correlated with the total scale and probably
## should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_1_SE ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_SE, CC$Naturalness_2R_SE,
## CC$Naturalness_3R_SE))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## -0.1 -0.16 0.015 -0.048 -0.14 0.18 48 17 0.034
##
## lower alpha upper 95% confidence boundaries
## -0.46 -0.1 0.25
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se
## CC.Naturalness_1_SE 0.294 0.294 0.172 0.172 0.416 0.14
## CC.Naturalness_2R_SE -1.061 -1.079 -0.350 -0.350 -0.519 0.40
## CC.Naturalness_3R_SE 0.066 0.067 0.034 0.034 0.071 0.18
## var.r med.r
## CC.Naturalness_1_SE NA 0.172
## CC.Naturalness_2R_SE NA -0.350
## CC.Naturalness_3R_SE NA 0.034
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_SE 25 0.34 0.42 -0.9 -0.20 70 27
## CC.Naturalness_2R_SE 25 0.76 0.73 1.2 0.19 45 33
## CC.Naturalness_3R_SE 25 0.54 0.50 -0.1 -0.09 30 31
hist(CC$Naturalness_Score_SE, main = 'SE Naturalness Scale Score')#Individual DACCS Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_SE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 25 69.64 27.09 73 72.43 25.2 0 100 100 -0.88 -0.03 5.42
range(CC$Naturalness_1_SE, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_1_SE, main = 'SE Naturalness Item #1: "This is natural."')#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_SE_31)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 25 55.4 32.68 57 56.33 44.48 1 100 99 -0.07 -1.41 6.54
range(CC$Naturalness_SE_31, na.rm=TRUE)## [1] 1 100
hist(CC$Naturalness_SE_31, main = 'SE Naturalness Item #2: "This involves humans altering naturally occurring processes."')#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_SE_35)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 25 69.6 31.31 72 73.33 32.62 0 100 100 -0.89 -0.26 6.26
range(CC$Naturalness_SE_35, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_SE_35, main = 'SE Naturalness Item #3: "This relies on science-based technology."')#WE Naturalness Descriptives
#Reverse Code Items 2 and 3
CC$Naturalness_1_WE<- CC$Naturalness_WE_30
CC$Naturalness_2R_WE <- abs(CC$Naturalness_WE_31 -100)
CC$Naturalness_3R_WE <- abs(CC$Naturalness_WE_35 -100)
#WE Naturalness Scale
CC$Naturalness_Score_WE <- rowMeans(CC [, c("Naturalness_1_WE", "Naturalness_2R_WE", "Naturalness_3R_WE")], na.rm=TRUE)
#WE Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_WE, CC$Naturalness_2R_WE, CC$Naturalness_3R_WE))## Number of categories should be increased in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_WE, CC$Naturalness_2R_WE, : Some items were negatively correlated with the total scale and probably
## should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_3R_WE ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_WE, CC$Naturalness_2R_WE,
## CC$Naturalness_3R_WE))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## -1.4 -1.2 0.03 -0.23 -0.55 0.38 53 12 -0.22
##
## lower alpha upper 95% confidence boundaries
## -2.12 -1.37 -0.62
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Naturalness_1_WE -0.56 -0.56 -0.22 -0.22 -0.36 0.303 NA
## CC.Naturalness_2R_WE -7.58 -7.70 -0.79 -0.79 -0.89 1.659 NA
## CC.Naturalness_3R_WE 0.50 0.50 0.33 0.33 1.00 0.097 NA
## med.r
## CC.Naturalness_1_WE -0.22
## CC.Naturalness_2R_WE -0.79
## CC.Naturalness_3R_WE 0.33
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_WE 26 0.477 0.4211 0.89 -0.40 61 31
## CC.Naturalness_2R_WE 26 0.853 0.8700 1.05 0.21 57 27
## CC.Naturalness_3R_WE 26 -0.052 -0.0097 -1.72 -0.65 42 29
hist(CC$Naturalness_Score_WE, main = 'WE Naturalness Scale Score')#Individual WE Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_WE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 60.92 31.01 64.5 62.82 29.65 0 100 100 -0.51 -0.94 6.08
range(CC$Naturalness_1_WE, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_1_WE, main = 'WE Naturalness Item #1: "This is natural."')#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_WE_31)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 42.96 26.7 51.5 42.64 30.39 0 100 100 -0.01 -0.93 5.24
range(CC$Naturalness_WE_31, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_WE_31, main = 'WE Naturalness Item #2: "This involves humans altering naturally occurring processes."')#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_WE_35)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 58.38 28.58 67.5 59.91 23.72 0 100 100 -0.6 -0.66 5.61
range(CC$Naturalness_WE_35, na.rm=TRUE)## [1] 0 100
hist(CC$Naturalness_WE_35, main = 'WE Naturalness Item #3: "This relies on science-based technology."')#Benefit
#Perceived benefit of climate methods was measured with 1 item on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).
#Benefit Item 1: This is likely to lead to achieving carbon neutral climate goals.
#AF/SCS Benefit Descriptives
CC$Benefit_AFSCS <- CC$Ben_AFSCS_18
psych::describe(CC$Benefit_AFSCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 31 63.16 25.36 65 65.28 19.27 0 100 100 -0.76 0.29 4.55
range(CC$Benefit_AFSCS, na.rm=TRUE)## [1] 0 100
hist(CC$Benefit_AFSCS, main = 'AFSCS Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')#BIO Benefit Descriptives
CC$Benefit_BIO <- CC$Ben_BIO_18
psych::describe(CC$Benefit_BIO)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 37 62.14 25.77 66 63.81 22.24 3 100 97 -0.62 -0.44 4.24
range(CC$Benefit_BIO, na.rm=TRUE)## [1] 3 100
hist(CC$Benefit_BIO, main = 'BIO Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')#BECCS Benefit Descriptives
CC$Benefit_BECCS <- CC$Ben_BECCS_18
psych::describe(CC$Benefit_BECCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 34 58.85 21.85 63 60.32 18.53 8 97 89 -0.56 -0.16 3.75
range(CC$Benefit_BECCS, na.rm=TRUE)## [1] 8 97
hist(CC$Benefit_BECCS, main = 'BECCS Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')#DACCS Benefit Descriptives
CC$Benefit_DACCS <- CC$Ben_DACCS_18
psych::describe(CC$Benefit_DACCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 68.44 23.25 69 70.47 17.79 0 100 100 -0.66 0.52 3.88
range(CC$Benefit_DACCS, na.rm=TRUE)## [1] 0 100
hist(CC$Benefit_DACCS, main = 'DACCS Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')#EW Benefit Descriptives
CC$Benefit_EW <- CC$Ben_EW_18
psych::describe(CC$Benefit_EW)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 34 62.62 26.3 66 64.5 22.24 0 100 100 -0.54 -0.38 4.51
range(CC$Benefit_EW, na.rm=TRUE)## [1] 0 100
hist(CC$Benefit_EW, main = 'EW Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')#OF Benefit Descriptives
CC$Benefit_EW <- CC$Ben_EW_18
psych::describe(CC$Benefit_EW)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 34 62.62 26.3 66 64.5 22.24 0 100 100 -0.54 -0.38 4.51
range(CC$Benefit_EW, na.rm=TRUE)## [1] 0 100
hist(CC$Benefit_EW, main = 'EW Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')#BF Benefit Descriptives
CC$Benefit_BF <- CC$Ben_BF_18
psych::describe(CC$Benefit_BF)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 23 72.65 21.27 70 73.74 25.2 35 100 65 -0.16 -1.19 4.44
range(CC$Benefit_BF, na.rm=TRUE)## [1] 35 100
hist(CC$Benefit_BF, main = 'BF Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')#NE Benefit Descriptives
CC$Benefit_NE <- CC$Ben_NE_18
psych::describe(CC$Benefit_NE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 29 66.93 19.82 70 68.24 22.24 20 100 80 -0.56 -0.15 3.68
range(CC$Benefit_NE, na.rm=TRUE)## [1] 20 100
hist(CC$Benefit_NE, main = 'NE Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')#SE Benefit Descriptives
CC$Benefit_SE <- CC$Ben_SE_18
psych::describe(CC$Benefit_SE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 25 66.6 23.68 70 68.24 25.2 0 100 100 -0.62 0.49 4.74
range(CC$Benefit_SE, na.rm=TRUE)## [1] 0 100
hist(CC$Benefit_SE, main = 'SE Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')#WE Benefit Descriptives
CC$Benefit_WE <- CC$Ben_WE_18
psych::describe(CC$Benefit_WE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 25 61.92 23.4 65 63.33 14.83 0 100 100 -0.72 0.35 4.68
range(CC$Benefit_WE, na.rm=TRUE)## [1] 0 100
hist(CC$Benefit_WE, main = 'WE Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')#Behavioral Intent
#Behavioral intent was measured with 2 items on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).
#Behavioral Intent Item 1: I would personally support non-government entities deploying these on a large scale. #Behavioral Intent Item 2: I would personally support spending government tax dollars to deploy these on a large scale.
#AF/SCS Behavioral Intent Descriptives
#Item 1
CC$BehavInt1_AFSCS <- CC$BI_AFSCS_18
psych::describe(CC$BehavInt1_AFSCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 31 60.71 29.59 57 63.08 29.65 0 100 100 -0.46 -0.65 5.31
range(CC$BehavInt1_AFSCS, na.rm=TRUE)## [1] 0 100
hist(CC$BehavInt1_AFSCS, main = 'AFSCS Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')#Item 2
CC$BehavInt2_AFSCS <- CC$BI_AFSCS_19
psych::describe(CC$BehavInt2_AFSCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 31 55.35 29.72 56 56.76 31.13 0 100 100 -0.31 -0.84 5.34
range(CC$BehavInt2_AFSCS, na.rm=TRUE)## [1] 0 100
hist(CC$BehavInt2_AFSCS, main = 'AFSCS Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')#AF/SCS Behavioral Intent Scale
CC$BI_Score_AFSCS <- rowMeans(CC [, c("BehavInt1_AFSCS", "BehavInt2_AFSCS")], na.rm=TRUE)
#AF/SCS Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_AFSCS, CC$BehavInt2_AFSCS))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$BehavInt1_AFSCS, CC$BehavInt2_AFSCS))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.9 0.9 0.83 0.83 9.5 0.019 58 28 0.83
##
## lower alpha upper 95% confidence boundaries
## 0.87 0.9 0.94
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.BehavInt1_AFSCS 0.82 0.83 0.68 0.83 4.7 NA 0
## CC.BehavInt2_AFSCS 0.83 0.83 0.68 0.83 4.7 NA 0
## med.r
## CC.BehavInt1_AFSCS 0.83
## CC.BehavInt2_AFSCS 0.83
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_AFSCS 31 0.96 0.96 0.87 0.83 61 30
## CC.BehavInt2_AFSCS 31 0.96 0.96 0.87 0.83 55 30
hist(CC$BI_Score_AFSCS, main = 'AFSCS Behavioral Intent Scale Score')#BIO Behavioral Intent Descriptives
#Item 1
CC$BehavInt1_BIO <- CC$BI_BIO_18
psych::describe(CC$BehavInt1_BIO)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 66.14 24.18 68.5 67.77 25.2 11 100 89 -0.52 -0.7 4.03
range(CC$BehavInt1_BIO, na.rm=TRUE)## [1] 11 100
hist(CC$BehavInt1_BIO, main = 'BIO Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')#Item 2
CC$BehavInt2_BIO <- CC$BI_BIO_19
psych::describe(CC$BehavInt2_BIO)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 37 60.35 26.04 64 60.97 25.2 15 100 85 -0.27 -1.05 4.28
range(CC$BehavInt2_BIO, na.rm=TRUE)## [1] 15 100
hist(CC$BehavInt2_BIO, main = 'BIO Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')#BIO Behavioral Intent Scale
CC$BI_Score_BIO <- rowMeans(CC [, c("BehavInt1_BIO", "BehavInt2_BIO")], na.rm=TRUE)
#BIO Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_BIO, CC$BehavInt2_BIO))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$BehavInt1_BIO, CC$BehavInt2_BIO))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.85 0.85 0.74 0.74 5.6 0.03 63 23 0.74
##
## lower alpha upper 95% confidence boundaries
## 0.79 0.85 0.9
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_BIO 0.68 0.74 0.54 0.74 2.8 NA 0 0.74
## CC.BehavInt2_BIO 0.79 0.74 0.54 0.74 2.8 NA 0 0.74
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_BIO 36 0.92 0.93 0.8 0.74 66 24
## CC.BehavInt2_BIO 37 0.93 0.93 0.8 0.74 60 26
hist(CC$BI_Score_BIO, main = 'BIO Naturalness Scale Score')#BECCS Behavioral Intent Descriptives
#Item 1
CC$BehavInt1_BECCS <- CC$BI_BACCS_18
psych::describe(CC$BehavInt1_BECCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 35 59.46 25.12 61 60.62 26.69 7 100 93 -0.47 -0.71 4.25
range(CC$BehavInt1_BECCS, na.rm=TRUE)## [1] 7 100
hist(CC$BehavInt1_BECCS, main = 'BECCS Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')#Item 2
CC$BehavInt2_BECCS <- CC$BI_BACCS_19
psych::describe(CC$BehavInt2_BECCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 35 54.94 31.63 65 55.9 34.1 0 100 100 -0.33 -1.32 5.35
range(CC$BehavInt2_BECCS, na.rm=TRUE)## [1] 0 100
hist(CC$BehavInt2_BECCS, main = 'BECCS Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')#BIO Behavioral Intent Scale
CC$BI_Score_BECCS <- rowMeans(CC [, c("BehavInt1_BECCS", "BehavInt2_BECCS")], na.rm=TRUE)
#BIO Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_BECCS, CC$BehavInt2_BECCS))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$BehavInt1_BECCS, CC$BehavInt2_BECCS))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.71 0.72 0.56 0.56 2.6 0.055 57 25 0.56
##
## lower alpha upper 95% confidence boundaries
## 0.6 0.71 0.82
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.BehavInt1_BECCS 0.45 0.56 0.32 0.56 1.3 NA 0
## CC.BehavInt2_BECCS 0.71 0.56 0.32 0.56 1.3 NA 0
## med.r
## CC.BehavInt1_BECCS 0.56
## CC.BehavInt2_BECCS 0.56
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_BECCS 35 0.85 0.88 0.66 0.56 59 25
## CC.BehavInt2_BECCS 35 0.91 0.88 0.66 0.56 55 32
hist(CC$BI_Score_BECCS, main = 'BECCS Naturalness Scale Score')#DACCS Behavioral Intent Descriptives
#Item 1
CC$BehavInt1_DACCS <- CC$BI_DACCS_18
psych::describe(CC$BehavInt1_DACCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 58.33 25.28 59.5 59.07 22.24 0 100 100 -0.37 -0.43 4.21
range(CC$BehavInt1_DACCS, na.rm=TRUE)## [1] 0 100
hist(CC$BehavInt1_DACCS, main = 'DACCS Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')#Item 2
CC$BehavInt2_DACCS <- CC$BI_DACCS_19
psych::describe(CC$BehavInt2_DACCS)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 36 51.14 27.16 53.5 51.83 30.39 0 100 100 -0.37 -0.63 4.53
range(CC$BehavInt2_DACCS, na.rm=TRUE)## [1] 0 100
hist(CC$BehavInt2_DACCS, main = 'DACCS Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')#DACCS Behavioral Intent Scale
CC$BI_Score_DACCS <- rowMeans(CC [, c("BehavInt1_DACCS", "BehavInt2_DACCS")], na.rm=TRUE)
#DACCS Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_DACCS, CC$BehavInt2_DACCS))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$BehavInt1_DACCS, CC$BehavInt2_DACCS))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.64 0.65 0.48 0.48 1.8 0.069 55 23 0.48
##
## lower alpha upper 95% confidence boundaries
## 0.51 0.64 0.78
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.BehavInt1_DACCS 0.44 0.48 0.23 0.48 0.91 NA 0
## CC.BehavInt2_DACCS 0.51 0.48 0.23 0.48 0.91 NA 0
## med.r
## CC.BehavInt1_DACCS 0.48
## CC.BehavInt2_DACCS 0.48
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_DACCS 36 0.85 0.86 0.59 0.48 58 25
## CC.BehavInt2_DACCS 36 0.87 0.86 0.59 0.48 51 27
hist(CC$BI_Score_DACCS, main = 'DACCS Naturalness Scale Score')#EW Behavioral Intent Descriptives
#Item 1
CC$BehavInt1_EW <- CC$BI_EW_18
psych::describe(CC$BehavInt1_EW)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 34 67.21 27.63 73 70.46 25.95 2 100 98 -0.85 -0.02 4.74
range(CC$BehavInt1_EW, na.rm=TRUE)## [1] 2 100
hist(CC$BehavInt1_EW, main = 'EW Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')#Item 2
CC$BehavInt2_EW <- CC$BI_EW_19
psych::describe(CC$BehavInt2_EW)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 34 59.24 30.05 68.5 60.71 27.43 2 100 98 -0.46 -0.97 5.15
range(CC$BehavInt2_EW, na.rm=TRUE)## [1] 2 100
hist(CC$BehavInt2_EW, main = 'EW Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')#EW Behavioral Intent Scale
CC$BI_Score_EW <- rowMeans(CC [, c("BehavInt1_EW", "BehavInt2_EW")], na.rm=TRUE)
#EW Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_EW, CC$BehavInt2_EW))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$BehavInt1_EW, CC$BehavInt2_EW))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.82 0.82 0.7 0.7 4.7 0.034 63 27 0.7
##
## lower alpha upper 95% confidence boundaries
## 0.75 0.82 0.89
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_EW 0.64 0.7 0.49 0.7 2.3 NA 0 0.7
## CC.BehavInt2_EW 0.76 0.7 0.49 0.7 2.3 NA 0 0.7
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_EW 34 0.92 0.92 0.77 0.7 67 28
## CC.BehavInt2_EW 34 0.93 0.92 0.77 0.7 59 30
hist(CC$BI_Score_EW, main = 'EW Naturalness Scale Score')#OF Behavioral Intent Descriptives
#Item 1
CC$BehavInt1_OF <- CC$BI_OF_18
psych::describe(CC$BehavInt1_OF)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 31 47.16 22.58 48 47.92 28.17 0 84 84 -0.23 -1.07 4.06
range(CC$BehavInt1_OF, na.rm=TRUE)## [1] 0 84
hist(CC$BehavInt1_OF, main = 'OF Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')#Item 2
CC$BehavInt2_OF <- CC$BI_OF_19
psych::describe(CC$BehavInt2_OF)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 31 47.42 22.97 51 48.68 25.2 0 86 86 -0.39 -0.75 4.13
range(CC$BehavInt2_OF, na.rm=TRUE)## [1] 0 86
hist(CC$BehavInt2_OF, main = 'OF Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')#OF Behavioral Intent Scale
CC$BI_Score_OF <- rowMeans(CC [, c("BehavInt1_OF", "BehavInt2_OF")], na.rm=TRUE)
#OF Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_OF, CC$BehavInt2_OF))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$BehavInt1_OF, CC$BehavInt2_OF))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.91 0.91 0.84 0.84 10 0.017 47 22 0.84
##
## lower alpha upper 95% confidence boundaries
## 0.88 0.91 0.94
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_OF 0.82 0.84 0.7 0.84 5.1 NA 0 0.84
## CC.BehavInt2_OF 0.85 0.84 0.7 0.84 5.1 NA 0 0.84
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_OF 31 0.96 0.96 0.88 0.84 47 23
## CC.BehavInt2_OF 31 0.96 0.96 0.88 0.84 47 23
hist(CC$BI_Score_OF, main = 'OF Naturalness Scale Score')#BF Behavioral Intent Descriptives
#Item 1
CC$BehavInt1_BF <- CC$BI_BF_18
psych::describe(CC$BehavInt1_BF)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 23 66.61 23.76 70 68.37 26.69 0 100 100 -0.84 0.51 4.95
range(CC$BehavInt1_BF, na.rm=TRUE)## [1] 0 100
hist(CC$BehavInt1_BF, main = 'BF Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')#Item 2
CC$BehavInt2_BF <- CC$BI_BF_19
psych::describe(CC$BehavInt2_BF)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 23 57.39 26.28 63 59.84 28.17 0 95 95 -0.65 -0.4 5.48
range(CC$BehavInt2_BF, na.rm=TRUE)## [1] 0 95
hist(CC$BehavInt2_BF, main = 'BF Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')#BIO Behavioral Intent Scale
CC$BI_Score_BF <- rowMeans(CC [, c("BehavInt1_BF", "BehavInt2_BF")], na.rm=TRUE)
#BIO Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_BF, CC$BehavInt2_BF))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$BehavInt1_BF, CC$BehavInt2_BF))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.44 0.44 0.28 0.28 0.79 0.11 62 20 0.28
##
## lower alpha upper 95% confidence boundaries
## 0.23 0.44 0.65
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_BF 0.26 0.28 0.08 0.28 0.4 NA 0 0.28
## CC.BehavInt2_BF 0.31 0.28 0.08 0.28 0.4 NA 0 0.28
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_BF 23 0.78 0.8 0.43 0.28 67 24
## CC.BehavInt2_BF 23 0.82 0.8 0.43 0.28 57 26
hist(CC$BI_Score_BF, main = 'BF Naturalness Scale Score')#NE Behavioral Intent Descriptives
#Item 1
CC$BehavInt1_NE <- CC$BI_NE_18
psych::describe(CC$BehavInt1_NE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 29 56.07 28.34 62 56.88 25.2 0 100 100 -0.47 -0.98 5.26
range(CC$BehavInt1_NE, na.rm=TRUE)## [1] 0 100
hist(CC$BehavInt1_NE, main = 'NE Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')#Item 2
CC$BehavInt2_NE <- CC$BI_NE_19
psych::describe(CC$BehavInt2_NE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 29 49.69 31.1 51 49.8 35.58 0 100 100 -0.05 -1.33 5.77
range(CC$BehavInt2_NE, na.rm=TRUE)## [1] 0 100
hist(CC$BehavInt2_NE, main = 'NE Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')#NE Behavioral Intent Scale
CC$BI_Score_NE <- rowMeans(CC [, c("BehavInt1_NE", "BehavInt2_NE")], na.rm=TRUE)
#NE Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_NE, CC$BehavInt2_NE))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$BehavInt1_NE, CC$BehavInt2_NE))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.9 0.9 0.82 0.82 8.9 0.02 53 28 0.82
##
## lower alpha upper 95% confidence boundaries
## 0.86 0.9 0.94
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_NE 0.74 0.82 0.67 0.82 4.5 NA 0 0.82
## CC.BehavInt2_NE 0.90 0.82 0.67 0.82 4.5 NA 0 0.82
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_NE 29 0.95 0.95 0.86 0.82 56 28
## CC.BehavInt2_NE 29 0.96 0.95 0.86 0.82 50 31
hist(CC$BI_Score_NE, main = 'NE Naturalness Scale Score')#SE Behavioral Intent Descriptives
#Item 1
CC$BehavInt1_SE <- CC$BI_SE_18
psych::describe(CC$BehavInt1_SE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 25 68.2 25.14 72 71.62 13.34 0 100 100 -1.28 1.66 5.03
range(CC$BehavInt1_SE, na.rm=TRUE)## [1] 0 100
hist(CC$BehavInt1_SE, main = 'SE Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')#Item 2
CC$BehavInt2_SE <- CC$BI_SE_19
psych::describe(CC$BehavInt2_SE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 25 65.24 26.81 68 67.9 17.79 2 100 98 -0.88 0.23 5.36
range(CC$BehavInt2_SE, na.rm=TRUE)## [1] 2 100
hist(CC$BehavInt2_SE, main = 'SE Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')#SE Behavioral Intent Scale
CC$BI_Score_SE <- rowMeans(CC [, c("BehavInt1_SE", "BehavInt2_SE")], na.rm=TRUE)
#SE Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_SE, CC$BehavInt2_SE))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$BehavInt1_SE, CC$BehavInt2_SE))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.92 0.92 0.85 0.85 11 0.016 67 25 0.85
##
## lower alpha upper 95% confidence boundaries
## 0.88 0.92 0.95
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_SE 0.79 0.85 0.72 0.85 5.5 NA 0 0.85
## CC.BehavInt2_SE 0.90 0.85 0.72 0.85 5.5 NA 0 0.85
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_SE 25 0.96 0.96 0.88 0.85 68 25
## CC.BehavInt2_SE 25 0.96 0.96 0.88 0.85 65 27
hist(CC$BI_Score_SE, main = 'SE Naturalness Scale Score')#WE Behavioral Intent Descriptives
#Item 1
CC$BehavInt1_WE <- CC$BI_WI_18
psych::describe(CC$BehavInt1_WE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 59.85 29.68 62.5 61.64 34.84 0 100 100 -0.45 -0.83 5.82
range(CC$BehavInt1_WE, na.rm=TRUE)## [1] 0 100
hist(CC$BehavInt1_WE, main = 'WE Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')#Item 2
CC$BehavInt2_WE <- CC$BI_WI_19
psych::describe(CC$BehavInt2_WE)## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 26 53.27 27.09 52.5 54.27 34.84 0 97 97 -0.26 -0.86 5.31
range(CC$BehavInt2_WE, na.rm=TRUE)## [1] 0 97
hist(CC$BehavInt2_WE, main = 'WE Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')#WE Behavioral Intent Scale
CC$BI_Score_WE <- rowMeans(CC [, c("BehavInt1_WE", "BehavInt2_WE")], na.rm=TRUE)
#WE Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_WE, CC$BehavInt2_WE))## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(CC$BehavInt1_WE, CC$BehavInt2_WE))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.91 0.91 0.84 0.84 10 0.017 57 27 0.84
##
## lower alpha upper 95% confidence boundaries
## 0.88 0.91 0.94
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_WE 0.92 0.84 0.71 0.84 5.2 NA 0 0.84
## CC.BehavInt2_WE 0.77 0.84 0.71 0.84 5.2 NA 0 0.84
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_WE 26 0.96 0.96 0.88 0.84 60 30
## CC.BehavInt2_WE 26 0.96 0.96 0.88 0.84 53 27
hist(CC$BI_Score_WE, main = 'WE Naturalness Scale Score')#Individualism/Collectivism
#Individualism and collectivism were each measured with 4 items on a 1-7 scale of agreement (0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).
#Collectivism Items ##Individualism/Collectivism Item #3 (C): It is important to me to think of myself as a member of my religious, national, or ethnic group. ##Individualism/Collectivism Item #4 (C): Learning about the traditions, values, and beliefs of my family is important to me. ##Individualism/Collectivism Item #7 (C): In the end, a person feels closest to members of their own religious, national, or ethnic group. ##Individualism/Collectivism Item #8 (C): It is important to me to respect decisions made by my family.
#Individualism Items ##Individualism/Collectivism Item #1 (I): It is important to me to develop my own personal style. ##Individualism/Collectivism Item #2 (I): It is better for me to follow my own ideas than to follow those of anyone else.
##Individualism/Collectivism Item #5 (I): I enjoy being unique and different from others in many respects. ##Individualism/Collectivism Item #6 (I): My personal achievements and accomplishments are very important to who I am.