Naturalness Pilot Data: Climate Change Methods Project

Sarah Coffin

February 7, 2022

#Summary Goal: to provide a pilot data overview for the Climate Change Methods naturalness project. The variables of main focus are perceptions of naturalness and risk, as well as endorsement for climate change methods. Ten methods of climate change technology were included in pilot data collection, with each participant being randomly assigned a survey regarding 3 of the 10 total methods. Final data will be aggregated for a cross random effects analysis to account for relationships between key variables for all 10 methods.

#Climate Change Methods Descriptions

#Climate Change Methods Scale List

CC <- read.csv("ClimateChangeFull.csv", header = T, na.strings=c(".", "", " ", "NA", "-99"))

#Participants

#Number of responses (rows)
nrow(CC)
## [1] 105
#Age range
range(CC$Dem_Age, na.rm = T)
## [1] 20 85
#Average age
mean(CC$Dem_Age, na.rm = T)
## [1] 46.67961
#Standard deviation of age
sd(CC$Dem_Age, na.rm = T)
## [1] 16.9047
#Gender frequencies
table(CC$Dem_Gen)
## 
##  1  2 
## 61 42
#Ethnicity frequencies
table(CC$Dem_Ethnicity)
## 
##  1  2  3  4  6 
##  3 13  2  4 81

#Familiarity/Understanding

#Familiarity and understanding were each measured with 1 item on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

#Understanding Item 1: I understand how this works. #Familiarity Item 1: This is familiar.

#AF/SCS Understanding/Familiarity Descriptives 

#AFSCS Understanding 
CC$Understanding_AFSCS <- CC$Risk_AFSCS_30

psych::describe(CC$Understanding_AFSCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 31 64.32 24.78     71    65.4 26.69   0 100   100 -0.46    -0.38 4.45
range(CC$Understanding_AFSCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Understanding_AFSCS, main = 'AFSCS Understanding Item #1: "I understand how this works."')

#AFSCS Familiarity 
CC$Familiarity_AFSCS <-CC$Risk_AFSCS_31

psych::describe(CC$Familiarity_AFSCS)
##    vars  n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 31 56.52 27.8     59   56.32 34.1   4 100    96 -0.02    -1.22 4.99
range(CC$Familiarity_AFSCS, na.rm=TRUE)
## [1]   4 100
hist(CC$Familiarity_AFSCS, main = 'AFSCS Familiarity Item #1: "This is familiar."')

#Biochar Understanding/Familiarity Descriptives 

#BIO Understanding 
CC$Understanding_BIO <- CC$Risk_BIO_30

psych::describe(CC$Understanding_BIO)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 37 61.51 24.87     64   62.35 29.65  12 100    88 -0.22    -1.08 4.09
range(CC$Understanding_BIO, na.rm=TRUE)
## [1]  12 100
hist(CC$Understanding_BIO, main = 'BIO Understanding Item #1: "I understand how this works."')

#BIO Familiarity 
CC$Familiarity_BIO <-CC$Risk_BIO_31

psych::describe(CC$Familiarity_BIO)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 37 51.14 29.43     47   50.68 31.13   0 100   100 0.25    -1.13 4.84
range(CC$Familiarity_BIO, na.rm=TRUE)
## [1]   0 100
hist(CC$Familiarity_BIO, main = 'BIO Familiarity Item #1: "This is familiar."')

#BECCS Understanding/Familiarity Descriptives

#BECCS Understanding 
CC$Understanding_BECCS <- CC$Risk_BECCS_30

psych::describe(CC$Understanding_BECCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 53.53 31.67     60   54.23 36.32   0 100   100 -0.23    -1.28 5.28
range(CC$Understanding_BECCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Understanding_BECCS, main = 'BECCS Understanding Item #1: "I understand how this works."')

#BECCS Familiarity 
CC$Familiarity_BECCS <-CC$Risk_BECCS_31

psych::describe(CC$Familiarity_BECCS)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 35 41.97 32.88     31   40.28 37.06   0 100   100 0.36    -1.36 5.56
range(CC$Familiarity_BECCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Familiarity_BECCS, main = 'BECCS Familiarity Item #1: "This is familiar."')

#DACCS Understanding/Familiarity Descriptives 

#DACCS Understanding 
CC$Understanding_DACCS <- CC$Risk_DACCS_30

psych::describe(CC$Understanding_DACCS)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 36 48.86 27.52   52.5   48.63 31.88   0 100   100 0.08    -0.77 4.59
range(CC$Understanding_DACCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Understanding_DACCS, main = 'DACCS Understanding Item #1: "I understand how this works."')

#DACCS Familiarity 
CC$Familiarity_DACCS <-CC$Risk_DACCS_31

psych::describe(CC$Familiarity_DACCS)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 36 41.89 28.97   40.5   40.53 29.65   0 100   100 0.28    -0.88 4.83
range(CC$Familiarity_DACCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Familiarity_DACCS, main = 'DACCS Familiarity Item #1: "This is familiar."')

#EW Understanding/Familiarity Descriptives 

#EW Understanding 
CC$Understanding_EW <- CC$Risk_EW_30

psych::describe(CC$Understanding_EW)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 33 51.39 26.19     54      52 28.17   2 100    98 -0.19    -0.84 4.56
range(CC$Understanding_EW, na.rm=TRUE)
## [1]   2 100
hist(CC$Understanding_EW, main = 'EW Understanding Item #1: "I understand how this works."')

#EW Familiarity 
CC$Familiarity_EW <-CC$Risk_EW_31

psych::describe(CC$Familiarity_EW)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 33 39.64 29.26     39      38 35.58   1 100    99 0.35    -1.01 5.09
range(CC$Familiarity_EW, na.rm=TRUE)
## [1]   1 100
hist(CC$Familiarity_EW, main = 'EW Familiarity Item #1: "This is familiar."')

#OF Understanding/Familiarity Descriptives 

#OF Understanding 
CC$Understanding_OF <- CC$Risk_OF_30

psych::describe(CC$Understanding_OF)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 32 47.56 26.22   50.5   48.69 24.46   0  95    95 -0.37    -0.83 4.64
range(CC$Understanding_OF, na.rm=TRUE)
## [1]  0 95
hist(CC$Understanding_OF, main = 'OF Understanding Item #1: "I understand how this works."')

#OF Familiarity 
CC$Familiarity_OF <-CC$Risk_OF_31

psych::describe(CC$Familiarity_OF)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis  se
## X1    1 31 37.03 23.38     39      37 26.69   0  78    78 -0.12     -1.2 4.2
range(CC$Familiarity_OF, na.rm=TRUE)
## [1]  0 78
hist(CC$Familiarity_OF, main = 'OF Familiarity Item #1: "This is familiar."')

#BF Understanding/Familiarity Descriptives 

#BF Understanding 
CC$Understanding_BF <- CC$Risk_BF_30

psych::describe(CC$Understanding_BF)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 23 59.61 28.94     62   61.63 25.2   0 100   100 -0.35     -0.6 6.03
range(CC$Understanding_BF, na.rm=TRUE)
## [1]   0 100
hist(CC$Understanding_BF, main = 'BF Understanding Item #1: "I understand how this works."')

#BF Familiarity 
CC$Familiarity_BF <-CC$Risk_BF_31

psych::describe(CC$Familiarity_BF)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis  se
## X1    1 23 58.57 22.08     60   59.58 14.83   0  99    99 -0.59      0.4 4.6
range(CC$Familiarity_BF, na.rm=TRUE)
## [1]  0 99
hist(CC$Familiarity_BF, main = 'BF Familiarity Item #1: "This is familiar."')

#NE Understanding/Familiarity Descriptives 

#NE Understanding 
CC$Understanding_NE <- CC$Risk_NE_30

psych::describe(CC$Understanding_NE)
##    vars  n  mean   sd median trimmed   mad min max range skew kurtosis   se
## X1    1 29 61.24 28.1     68   62.32 29.65   5 100    95 -0.4    -1.12 5.22
range(CC$Understanding_NE, na.rm=TRUE)
## [1]   5 100
hist(CC$Understanding_NE, main = 'NE Understanding Item #1: "I understand how this works."')

#NE Familiarity 
CC$Familiarity_NE <-CC$Risk_NE_31

psych::describe(CC$Familiarity_NE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 29 66.31 24.08     76   68.12 19.27   9 100    91 -0.76    -0.36 4.47
range(CC$Familiarity_NE, na.rm=TRUE)
## [1]   9 100
hist(CC$Familiarity_NE, main = 'NE Familiarity Item #1: "This is familiar."')

#SE Understanding/Familiarity Descriptives 

#SE Understanding 
CC$Understanding_SE <- CC$Risk_SE_30

psych::describe(CC$Understanding_SE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 24 76.71 26.06   80.5   80.35 28.91  14 100    86 -0.95    -0.13 5.32
range(CC$Understanding_SE, na.rm=TRUE)
## [1]  14 100
hist(CC$Understanding_SE, main = 'SE Understanding Item #1: "I understand how this works."')

#BIO Familiarity 
CC$Familiarity_SE <-CC$Risk_SE_31

psych::describe(CC$Familiarity_SE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis  se
## X1    1 25 73.04 26.02     74   75.76 32.62   3 100    97 -0.78    -0.02 5.2
range(CC$Familiarity_SE, na.rm=TRUE)
## [1]   3 100
hist(CC$Familiarity_SE, main = 'SE Familiarity Item #1: "This is familiar."')

#WE Understanding/Familiarity Descriptives 

#WE Understanding 
CC$Understanding_WE <- CC$Risk_WE_30

psych::describe(CC$Understanding_WE)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 26 63.46 25.41   66.5   64.23 23.72  15 100    85 -0.3    -1.04 4.98
range(CC$Understanding_WE, na.rm=TRUE)
## [1]  15 100
hist(CC$Understanding_WE, main = 'WE Understanding Item #1: "I understand how this works."')

#WE Familiarity 
CC$Familiarity_WE <-CC$Risk_WE_31

psych::describe(CC$Familiarity_WE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 26 62.12 26.92   62.5   63.64 22.98   0 100   100 -0.42    -0.57 5.28
range(CC$Familiarity_WE, na.rm=TRUE)
## [1]   0 100
hist(CC$Familiarity_WE, main = 'WE Familiarity Item #1: "This is familiar."')

#Risk Perception

#Risk perception was measured with 2 items on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

#Risk Item 1: This is risky to deploy. #Risk Item 2: This is frightening.

#AF/SCS Risk Descriptives 

#AFSCS Risk Scale
CC$Risk_Score_AFSCS <- rowMeans(CC [, c("Risk_AFSCS_32", "Risk_AFSCS_33")], na.rm=TRUE)

#AFSCS Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_AFSCS_32, CC$Risk_AFSCS_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_AFSCS_32, CC$Risk_AFSCS_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.89      0.89     0.8       0.8 7.9 0.022   43 31      0.8
## 
##  lower alpha upper     95% confidence boundaries
## 0.84 0.89 0.93 
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_AFSCS_32      0.82       0.8    0.64       0.8   4       NA     0   0.8
## CC.Risk_AFSCS_33      0.77       0.8    0.64       0.8   4       NA     0   0.8
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Risk_AFSCS_32 31  0.95  0.95  0.85    0.8   47 33
## CC.Risk_AFSCS_33 31  0.95  0.95  0.85    0.8   39 32
hist(CC$Risk_Score_AFSCS, main = 'AF/SCS Risk Scale Score')

#AFSCS Individual Risk Items
psych::describe(CC$Risk_AFSCS_32)
##    vars  n  mean    sd median trimmed mad min max range skew kurtosis   se
## X1    1 31 46.65 33.09     49   45.88  43   0 100   100 0.07    -1.17 5.94
range(CC$Risk_AFSCS_32, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_AFSCS_32, main = 'AFSCS Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_AFSCS_33)
##    vars  n mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 31   39 32.09     37   36.72 41.51   0 100   100 0.34     -1.1 5.76
range(CC$Risk_AFSCS_33, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_AFSCS_33, main = 'AFSCS Risk Item #2: "This is frightening."')

#BIOCHAR Risk Descriptives 

#BIO Risk Scale
CC$Risk_Score_BIO <- rowMeans(CC [, c("Risk_BIO_32", "Risk_BIO_33")], na.rm=TRUE)

#BIO Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_BIO_32, CC$Risk_BIO_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_BIO_32, CC$Risk_BIO_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.92      0.92    0.85      0.85  12 0.016   42 28     0.85
## 
##  lower alpha upper     95% confidence boundaries
## 0.89 0.92 0.95 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_BIO_32      0.84      0.85    0.73      0.85 5.8       NA     0  0.85
## CC.Risk_BIO_33      0.87      0.85    0.73      0.85 5.8       NA     0  0.85
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## CC.Risk_BIO_32 37  0.96  0.96  0.89   0.85   44 29
## CC.Risk_BIO_33 36  0.96  0.96  0.89   0.85   39 29
hist(CC$Risk_Score_BIO, main = 'BIO Risk Scale Score')

#BIO Individual Risk Items
psych::describe(CC$Risk_BIO_32)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 37 43.78 28.74     45   43.13 29.65   0 100   100  0.1    -1.01 4.72
range(CC$Risk_BIO_32, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_BIO_32, main = 'BIO Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_BIO_33)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 36 39.17 29.31     34    37.5 34.84   0  98    98 0.36    -1.05 4.89
range(CC$Risk_BIO_33, na.rm=TRUE)
## [1]  0 98
hist(CC$Risk_BIO_33, main = 'BIO Risk Item #2: "This is frightening."')

#BECCS Risk Descriptives

#BECCS Risk Scale
CC$Risk_Score_BECCS <- rowMeans(CC [, c("Risk_BECCS_32", "Risk_BECCS_33")], na.rm=TRUE)

#BECCS Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_BECCS_32, CC$Risk_BECCS_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_BECCS_32, CC$Risk_BECCS_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.83      0.83    0.72      0.72   5 0.032   48 24     0.72
## 
##  lower alpha upper     95% confidence boundaries
## 0.77 0.83 0.9 
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_BECCS_32      0.75      0.72    0.51      0.72 2.5       NA     0  0.72
## CC.Risk_BECCS_33      0.69      0.72    0.51      0.72 2.5       NA     0  0.72
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Risk_BECCS_32 35  0.93  0.93  0.78   0.72   53 27
## CC.Risk_BECCS_33 36  0.92  0.93  0.78   0.72   43 26
hist(CC$Risk_Score_BECCS, main = 'BECCS Risk Scale Score')

#BECCS Individual Risk Items
psych::describe(CC$Risk_BECCS_32)
##    vars  n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 35 53.2 26.87     56   54.41 32.62   0 100   100 -0.35    -0.93 4.54
range(CC$Risk_BECCS_32, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_BECCS_32, main = 'BECCS Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_BECCS_33)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis  se
## X1    1 36 43.31 25.77   39.5   42.93 25.95   0  99    99 0.11    -0.83 4.3
range(CC$Risk_BECCS_33, na.rm=TRUE)
## [1]  0 99
hist(CC$Risk_BECCS_33, main = 'BECCS Risk Item #2: "This is frightening."')

#DACCS Risk Descriptives 

#DACCS Risk Scale
CC$Risk_Score_DACCS <- rowMeans(CC [, c("Risk_DACCS_32", "Risk_DACCS_33")], na.rm=TRUE)

#DACCS Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_DACCS_32, CC$Risk_DACCS_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_DACCS_32, CC$Risk_DACCS_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.78      0.79    0.66      0.66 3.8 0.041   61 26     0.66
## 
##  lower alpha upper     95% confidence boundaries
## 0.7 0.78 0.86 
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_DACCS_32      0.51      0.66    0.43      0.66 1.9       NA     0  0.66
## CC.Risk_DACCS_33      0.84      0.66    0.43      0.66 1.9       NA     0  0.66
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Risk_DACCS_32 36  0.89  0.91  0.74   0.66   64 25
## CC.Risk_DACCS_33 36  0.93  0.91  0.74   0.66   58 33
hist(CC$Risk_Score_DACCS, main = 'DACCS Risk Scale Score')

#DACCS Individual Risk Items
psych::describe(CC$Risk_DACCS_32)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 63.64 25.47     66   65.33 22.24   0 100   100 -0.54    -0.34 4.24
range(CC$Risk_DACCS_32, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_DACCS_32, main = 'DACCS Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_DACCS_33)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 57.61 32.59     64    59.1 34.84   0 100   100 -0.42    -1.12 5.43
range(CC$Risk_DACCS_33, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_DACCS_33, main = 'DACCS Risk Item #2: "This is frightening."')

#EW Risk Descriptives 

#EW Risk Scale
CC$Risk_Score_EW <- rowMeans(CC [, c("Risk_EW_32", "Risk_EW_33")], na.rm=TRUE)

#EW Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_EW_32, CC$Risk_EW_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_EW_32, CC$Risk_EW_33))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##       0.46      0.46     0.3       0.3 0.85 0.11   40 23      0.3
## 
##  lower alpha upper     95% confidence boundaries
## 0.25 0.46 0.67 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Risk_EW_32      0.32       0.3   0.089       0.3 0.43       NA     0   0.3
## CC.Risk_EW_33      0.28       0.3   0.089       0.3 0.43       NA     0   0.3
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_EW_32 33  0.82  0.81  0.44    0.3   45 29
## CC.Risk_EW_33 33  0.79  0.81  0.44    0.3   35 27
hist(CC$Risk_Score_EW, main = 'EW Risk Scale Score')

#EW Individual Risk Items
psych::describe(CC$Risk_EW_32)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 33 45.21 28.91     46   44.74 28.17   0 100   100 0.01    -1.04 5.03
range(CC$Risk_EW_32, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_EW_32, main = 'EW Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_EW_33)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 33 34.61 27.08     35    33.3 41.51   0  83    83 0.16    -1.31 4.71
range(CC$Risk_EW_33, na.rm=TRUE)
## [1]  0 83
hist(CC$Risk_EW_33, main = 'EW Risk Item #2: "This is frightening."')

#OF Risk Descriptives 

#OF Risk Scale
CC$Risk_Score_OF <- rowMeans(CC [, c("Risk_OF_32", "Risk_OF_33")], na.rm=TRUE)

#OF Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_OF_32, CC$Risk_OF_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_OF_32, CC$Risk_OF_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.72      0.72    0.56      0.56 2.6 0.054   51 24     0.56
## 
##  lower alpha upper     95% confidence boundaries
## 0.61 0.72 0.82 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_OF_32      0.49      0.56    0.32      0.56 1.3       NA     0  0.56
## CC.Risk_OF_33      0.65      0.56    0.32      0.56 1.3       NA     0  0.56
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_OF_32 32  0.87  0.88  0.66   0.56   52 26
## CC.Risk_OF_33 32  0.90  0.88  0.66   0.56   51 29
hist(CC$Risk_Score_OF, main = 'OF Risk Scale Score')

#OF Individual Risk Items
psych::describe(CC$Risk_OF_32)
##    vars  n  mean    sd median trimmed  mad min max range skew kurtosis   se
## X1    1 32 51.69 25.67     48   50.92 25.2   0 100   100 0.32    -0.76 4.54
range(CC$Risk_OF_32, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_OF_32, main = 'OF Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_OF_33)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 32 50.69 29.48   51.5   50.65 28.91   0 100   100 0.16    -0.91 5.21
range(CC$Risk_OF_33, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_OF_33, main = 'OF Risk Item #2: "This is frightening."')

#BIOFUEL Risk Descriptives 

#BF Risk Scale
CC$Risk_Score_BF <- rowMeans(CC [, c("Risk_BF_32", "Risk_BF_33")], na.rm=TRUE)

#DACCS Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_BF_32, CC$Risk_BF_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_BF_32, CC$Risk_BF_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.88      0.88    0.79      0.79 7.4 0.023   44 28     0.79
## 
##  lower alpha upper     95% confidence boundaries
## 0.84 0.88 0.93 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_BF_32      0.78      0.79    0.62      0.79 3.7       NA     0  0.79
## CC.Risk_BF_33      0.80      0.79    0.62      0.79 3.7       NA     0  0.79
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_BF_32 23  0.94  0.95  0.84   0.79   49 30
## CC.Risk_BF_33 23  0.95  0.95  0.84   0.79   40 30
hist(CC$Risk_Score_BF, main = 'BF Risk Scale Score')

#DACCS Individual Risk Items
psych::describe(CC$Risk_BF_32)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 23 49.26 29.61     54   50.11 35.58   0  91    91 -0.26    -1.28 6.17
range(CC$Risk_BF_32, na.rm=TRUE)
## [1]  0 91
hist(CC$Risk_BF_32, main = 'BF Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_BF_33)
##    vars  n mean    sd median trimmed  mad min max range skew kurtosis   se
## X1    1 23 39.7 30.04     34   38.21 34.1   0  97    97 0.31     -1.2 6.26
range(CC$Risk_BF_33, na.rm=TRUE)
## [1]  0 97
hist(CC$Risk_BF_33, main = 'BF Risk Item #2: "This is frightening."')

#NE Risk Descriptives 

#NE Risk Scale
CC$Risk_Score_NE <- rowMeans(CC [, c("Risk_NE_32", "Risk_NE_33")], na.rm=TRUE)

#NE Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_NE_32, CC$Risk_NE_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_NE_32, CC$Risk_NE_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.97      0.97    0.93      0.93  28 0.0067   57 29     0.93
## 
##  lower alpha upper     95% confidence boundaries
## 0.95 0.97 0.98 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_NE_32      0.88      0.93    0.87      0.93  14       NA     0  0.93
## CC.Risk_NE_33      0.99      0.93    0.87      0.93  14       NA     0  0.93
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_NE_32 29  0.98  0.98  0.95   0.93   58 29
## CC.Risk_NE_33 29  0.98  0.98  0.95   0.93   56 31
hist(CC$Risk_Score_NE, main = 'NE Risk Scale Score')

#NE Individual Risk Items
psych::describe(CC$Risk_NE_32)
##    vars  n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 29 57.9 29.04     62   58.88 37.06   1 100    99 -0.33    -1.24 5.39
range(CC$Risk_NE_32, na.rm=TRUE)
## [1]   1 100
hist(CC$Risk_NE_32, main = 'NE Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_NE_33)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 29 55.52 30.76     62    56.2 37.06   0 100   100 -0.22    -1.15 5.71
range(CC$Risk_NE_33, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_NE_33, main = 'NE Risk Item #2: "This is frightening."')

#SE Risk Descriptives 

#SE Risk Scale
CC$Risk_Score_SE <- rowMeans(CC [, c("Risk_SE_32", "Risk_SE_33")], na.rm=TRUE)

#DACCS Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_SE_32, CC$Risk_SE_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_SE_32, CC$Risk_SE_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.96      0.96    0.92      0.92  22 0.0084   33 32     0.92
## 
##  lower alpha upper     95% confidence boundaries
## 0.94 0.96 0.97 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_SE_32      0.92      0.92    0.84      0.92  11       NA     0  0.92
## CC.Risk_SE_33      0.91      0.92    0.84      0.92  11       NA     0  0.92
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_SE_32 25  0.98  0.98  0.94   0.92   35 33
## CC.Risk_SE_33 25  0.98  0.98  0.94   0.92   31 33
hist(CC$Risk_Score_SE, main = 'SE Risk Scale Score')

#DACCS Individual Risk Items
psych::describe(CC$Risk_SE_32)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 25 34.68 32.73     19   32.67 28.17   0 100   100 0.46     -1.4 6.55
range(CC$Risk_SE_32, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_SE_32, main = 'SE Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_SE_33)
##    vars  n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 25 31.44 32.6     17   28.86 25.2   0 100   100 0.63    -1.15 6.52
range(CC$Risk_SE_33, na.rm=TRUE)
## [1]   0 100
hist(CC$Risk_SE_33, main = 'SE Risk Item #2: "This is frightening."')

#WE Risk Descriptives 

#WE Risk Scale
CC$Risk_Score_WE <- rowMeans(CC [, c("Risk_WE_32", "Risk_WE_33")], na.rm=TRUE)

#WE Cronbach's alpha for scale
psych::alpha(data.frame(CC$Risk_WE_32, CC$Risk_WE_33))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_WE_32, CC$Risk_WE_33))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.79      0.79    0.66      0.66 3.8 0.041   36 25     0.66
## 
##  lower alpha upper     95% confidence boundaries
## 0.71 0.79 0.87 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_WE_32      0.56      0.66    0.43      0.66 1.9       NA     0  0.66
## CC.Risk_WE_33      0.77      0.66    0.43      0.66 1.9       NA     0  0.66
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_WE_32 26  0.89  0.91  0.74   0.66   35 25
## CC.Risk_WE_33 26  0.92  0.91  0.74   0.66   37 30
hist(CC$Risk_Score_WE, main = 'WE Risk Scale Score')

#WE Individual Risk Items
psych::describe(CC$Risk_WE_32)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 26 34.54 25.39     33   33.95 37.06   0  77    77    0    -1.51 4.98
range(CC$Risk_WE_32, na.rm=TRUE)
## [1]  0 77
hist(CC$Risk_WE_32, main = 'WE Risk Item #1: "This is risky to deploy."')

psych::describe(CC$Risk_WE_33)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 26 36.77 29.96     34   34.91 31.88   0  97    97 0.46    -1.06 5.88
range(CC$Risk_WE_33, na.rm=TRUE)
## [1]  0 97
hist(CC$Risk_WE_33, main = 'WE Risk Item #2: "This is frightening."')

#Naturalness Descriptives

#Naturalness perception was measured for 3 items on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

#Naturalness Item 1: This is natural. #Naturalness Item 2: This involves humans altering naturally occurring processes. #Naturalness Item 3: This relies on science-based technology.

#AF/SCS Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_AFSCS<- CC$Naturalness_AFSCS_30
CC$Naturalness_2R_AFSCS <- abs(CC$Naturalness_AFSCS_31 -100)
CC$Naturalness_3R_AFSCS <- abs(CC$Naturalness_AFSCS_35 -100)

#AFSCS Naturalness Scale
CC$Naturalness_Score_AFSCS <- rowMeans(CC [, c("Naturalness_1_AFSCS", "Naturalness_2R_AFSCS", "Naturalness_3R_AFSCS")], na.rm=TRUE)

#AFSCS Cronbach's alpha for naturalness scale

psych::alpha(data.frame(CC$Naturalness_1_AFSCS, CC$Naturalness_2R_AFSCS, CC$Naturalness_3R_AFSCS))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_AFSCS, CC$Naturalness_2R_AFSCS, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_1_AFSCS ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_AFSCS, CC$Naturalness_2R_AFSCS, 
##     CC$Naturalness_3R_AFSCS))
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##      0.087     0.076    0.12     0.027 0.082 0.15   47 16    0.036
## 
##  lower alpha upper     95% confidence boundaries
## -0.21 0.09 0.39 
## 
##  Reliability if an item is dropped:
##                         raw_alpha std.alpha G6(smc) average_r    S/N alpha se
## CC.Naturalness_1_AFSCS      0.384     0.384   0.238     0.238  0.624     0.12
## CC.Naturalness_2R_AFSCS    -0.480    -0.480  -0.194    -0.194 -0.325     0.29
## CC.Naturalness_3R_AFSCS     0.068     0.069   0.036     0.036  0.074     0.18
##                         var.r  med.r
## CC.Naturalness_1_AFSCS     NA  0.238
## CC.Naturalness_2R_AFSCS    NA -0.194
## CC.Naturalness_3R_AFSCS    NA  0.036
## 
##  Item statistics 
##                          n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_AFSCS  31  0.46  0.47 -0.19 -0.098   61 27
## CC.Naturalness_2R_AFSCS 31  0.73  0.72  0.56  0.217   39 28
## CC.Naturalness_3R_AFSCS 31  0.59  0.59  0.23  0.040   41 27
hist(CC$Naturalness_Score_AFSCS, main = 'AFSCS Naturalness Scale Score')

#Individual AFSCS Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_AFSCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 31 60.77 26.62     63   62.36 17.79   0 100   100 -0.42    -0.15 4.78
range(CC$Naturalness_1_AFSCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_1_AFSCS, main = 'AFSCS Naturalness Item #1: "This is natural."')

#Item 2 (Not reverse coded)
psych::describe(CC$Naturalness_AFSCS_31)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 31 60.65 28.23     64   62.16 29.65   2 100    98 -0.29    -0.82 5.07
range(CC$NNaturalness_AFSCS_31, na.rm=TRUE)
## Warning in min(x, na.rm = na.rm): no non-missing arguments to min; returning Inf
## Warning in max(x, na.rm = na.rm): no non-missing arguments to max; returning
## -Inf
## [1]  Inf -Inf
hist(CC$Naturalness_AFSCS_31, main = 'AFSCS Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_AFSCS_35)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis  se
## X1    1 31 59.29 27.27     63   62.56 25.2   0  98    98 -0.92    -0.14 4.9
range(CC$Naturalness_AFSCS_35, na.rm=TRUE)
## [1]  0 98
hist(CC$Naturalness_AFSCS_35, main = 'AFSCS Naturalness Item #3: "This relies on science-based technology."')

#BIOCHAR Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_BIO<- CC$Naturalness_BIO_30
CC$Naturalness_2R_BIO <- abs(CC$Naturalness_BIO_31 -100)
CC$Naturalness_3R_BIO <- abs(CC$Naturalness_BIO_35 -100)

#BIO Naturalness Scale
CC$Naturalness_Score_BIO <- rowMeans(CC [, c("Naturalness_1_BIO", "Naturalness_2R_BIO", "Naturalness_3R_BIO")], na.rm=TRUE)

#BIO Cronbach's alpha for naturalness scale

psych::alpha(data.frame(CC$Naturalness_1_BIO, CC$Naturalness_2R_BIO, CC$Naturalness_3R_BIO))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_BIO, CC$Naturalness_2R_BIO, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_1_BIO ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Warning in sqrt(Vtc): NaNs produced
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_BIO, CC$Naturalness_2R_BIO, 
##     CC$Naturalness_3R_BIO))
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##      -0.43     -0.39  -0.072      -0.1 -0.28 0.24   42 11    -0.18
## 
##  lower alpha upper     95% confidence boundaries
## -0.91 -0.43 0.05 
## 
##  Reliability if an item is dropped:
##                       raw_alpha std.alpha G6(smc) average_r   S/N alpha se
## CC.Naturalness_1_BIO       0.42      0.43    0.27      0.27  0.74     0.11
## CC.Naturalness_2R_BIO     -0.44     -0.44   -0.18     -0.18 -0.31     0.28
## CC.Naturalness_3R_BIO     -1.32     -1.32   -0.40     -0.40 -0.57     0.45
##                       var.r med.r
## CC.Naturalness_1_BIO     NA  0.27
## CC.Naturalness_2R_BIO    NA -0.18
## CC.Naturalness_3R_BIO    NA -0.40
## 
##  Item statistics 
##                        n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_BIO  37  0.30  0.27   NaN -0.370   57 23
## CC.Naturalness_2R_BIO 36  0.58  0.57   NaN -0.124   40 23
## CC.Naturalness_3R_BIO 37  0.67  0.71   NaN  0.088   29 20
hist(CC$Naturalness_Score_BIO, main = 'BIO Naturalness Scale Score')

#Individual BIO Naturalness Items
#Item 1 (Not reverse coded)
psych::describe(CC$Naturalness_1_BIO)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 37 56.54 22.61     61   56.58 17.79   9 100    91 -0.19     -0.7 3.72
range(CC$Naturalness_1_BIO, na.rm=TRUE)
## [1]   9 100
hist(CC$Naturalness_1_BIO, main = 'BIO Naturalness Item #1: "This is natural."')

#Item 2 (Not reverse coded)
psych::describe(CC$Naturalness_BIO_31)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 59.67 23.25     62   60.73 20.76  11  97    86 -0.36    -0.76 3.87
range(CC$Naturalness_BIO_31, na.rm=TRUE)
## [1] 11 97
hist(CC$Naturalness_BIO_31, main = 'BIO Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_BIO_35)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 37 70.65 20.47     71      72 22.24  15 100    85 -0.53    -0.11 3.36
range(CC$Naturalness_BIO_35, na.rm=TRUE)
## [1]  15 100
hist(CC$Naturalness_BIO_35, main = 'BIO Naturalness Item #3: "This relies on science-based technology."')

#BECCS Naturalness Descriptives

#Reverse Code Items 2 and 3
CC$Naturalness_1_BECCS<- CC$Naturalness_BECCS_30
CC$Naturalness_2R_BECCS <- abs(CC$Naturalness_BECCS_31 -100)
CC$Naturalness_3R_BECCS <- abs(CC$Naturalness_BECCS_35 -100)

#BECCS Naturalness Scale
CC$Naturalness_Score_BECCS <- rowMeans(CC [, c("Naturalness_1_BECCS", "Naturalness_2R_BECCS", "Naturalness_3R_BECCS")], na.rm=TRUE)

#BECCS Cronbach's alpha for naturalness scale

psych::alpha(data.frame(CC$Naturalness_1_BECCS, CC$Naturalness_2R_BECCS, CC$Naturalness_3R_BECCS))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_BECCS, CC$Naturalness_2R_BECCS, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_1_BECCS ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_BECCS, CC$Naturalness_2R_BECCS, 
##     CC$Naturalness_3R_BECCS))
## 
##   raw_alpha std.alpha G6(smc) average_r    S/N  ase mean sd median_r
##     -0.087    -0.067    0.21    -0.021 -0.063 0.18   41 15   -0.084
## 
##  lower alpha upper     95% confidence boundaries
## -0.45 -0.09 0.27 
## 
##  Reliability if an item is dropped:
##                         raw_alpha std.alpha G6(smc) average_r   S/N alpha se
## CC.Naturalness_1_BECCS       0.61      0.61   0.441     0.441  1.58    0.076
## CC.Naturalness_2R_BECCS     -1.42     -1.46  -0.422    -0.422 -0.59    0.465
## CC.Naturalness_3R_BECCS     -0.18     -0.18  -0.084    -0.084 -0.15    0.231
##                         var.r  med.r
## CC.Naturalness_1_BECCS     NA  0.441
## CC.Naturalness_2R_BECCS    NA -0.422
## CC.Naturalness_3R_BECCS    NA -0.084
## 
##  Item statistics 
##                          n raw.r std.r r.cor  r.drop mean sd
## CC.Naturalness_1_BECCS  36  0.36  0.29 -0.40 -0.2825   51 29
## CC.Naturalness_2R_BECCS 35  0.80  0.80  0.72  0.2882   39 28
## CC.Naturalness_3R_BECCS 36  0.54  0.60  0.46  0.0079   32 24
hist(CC$Naturalness_Score_BECCS, main = 'BECCS Naturalness Scale Score')

#Individual BECCS Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_BECCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 50.81 28.51   51.5    51.4 40.77   0 100   100 -0.06    -1.16 4.75
range(CC$Naturalness_1_BECCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_1_BECCS, main = 'BECCS Naturalness Item #1: "This is natural."')

#Item 2 (Not reverse coded)
psych::describe(CC$Naturalness_BECCS_31)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 35 60.97 27.92     69   62.41 25.2   2 100    98 -0.48    -0.89 4.72
range(CC$Naturalness_BECCS_31, na.rm=TRUE)
## [1]   2 100
hist(CC$Naturalness_BECCS_31, main = 'BECCS Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_BECCS_35)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis se
## X1    1 36 67.69 24.02     73   70.13 17.79   0 100   100 -0.91     0.58  4
range(CC$Naturalness_BECCS_35, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_BECCS_35, main = 'BECCS Naturalness Item #3: "This relies on science-based technology."')

#DACCS Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_DACCS<- CC$Naturalness_DACCS_30
CC$Naturalness_2R_DACCS <- abs(CC$Naturalness_DACCS_31 -100)
CC$Naturalness_3R_DACCS <- abs(CC$Naturalness_DACCS_35 -100)

#DACCS Naturalness Scale
CC$Naturalness_Score_DACCS <- rowMeans(CC [, c("Naturalness_1_DACCS", "Naturalness_2R_DACCS", "Naturalness_3R_DACCS")], na.rm=TRUE)

#DACCS Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_DACCS, CC$Naturalness_2R_DACCS, CC$Naturalness_3R_DACCS))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_DACCS, CC$Naturalness_2R_DACCS, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_3R_DACCS ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_DACCS, CC$Naturalness_2R_DACCS, 
##     CC$Naturalness_3R_DACCS))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##      0.096      0.11   0.088     0.038 0.12 0.15   34 15   0.0091
## 
##  lower alpha upper     95% confidence boundaries
## -0.2 0.1 0.39 
## 
##  Reliability if an item is dropped:
##                         raw_alpha std.alpha G6(smc) average_r    S/N alpha se
## CC.Naturalness_1_DACCS      0.018     0.018  0.0091    0.0091  0.018     0.19
## CC.Naturalness_2R_DACCS    -0.113    -0.116 -0.0549   -0.0549 -0.104     0.21
## CC.Naturalness_3R_DACCS     0.261     0.275  0.1594    0.1594  0.379     0.14
##                         var.r   med.r
## CC.Naturalness_1_DACCS     NA  0.0091
## CC.Naturalness_2R_DACCS    NA -0.0549
## CC.Naturalness_3R_DACCS    NA  0.1594
## 
##  Item statistics 
##                          n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_DACCS  36  0.71  0.61  0.25  0.064   45 29
## CC.Naturalness_2R_DACCS 36  0.58  0.65  0.36  0.134   27 20
## CC.Naturalness_3R_DACCS 36  0.50  0.53 -0.08 -0.037   30 23
hist(CC$Naturalness_Score_DACCS, main = 'DACCS Naturalness Scale Score')

#Individual DACCS Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_DACCS)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 36 45.08 28.96   48.5   43.93 37.81   0 100   100 0.26    -1.02 4.83
range(CC$Naturalness_1_DACCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_1_DACCS, main = 'DACCS Naturalness Item #1: "This is natural."')

#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_DACCS_31)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 73.17 20.43     73   74.47 17.79  29 100    71 -0.28    -0.76 3.41
range(CC$Naturalness_DACCS_31, na.rm=TRUE)
## [1]  29 100
hist(CC$Naturalness_DACCS_31, main = 'DACCS Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_DACCS_35)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 70.08 23.31     69   72.07 18.53   0 100   100 -0.68     0.47 3.89
range(CC$Naturalness_DACCS_35, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_DACCS_35, main = 'DACCS Naturalness Item #3: "This relies on science-based technology."')

#EW Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_EW<- CC$Naturalness_EW_30
CC$Naturalness_2R_EW <- abs(CC$Naturalness_EW_31 -100)
CC$Naturalness_3R_EW <- abs(CC$Naturalness_EW_35 -100)

#EW Naturalness Scale
CC$Naturalness_Score_EW <- rowMeans(CC [, c("Naturalness_1_EW", "Naturalness_2R_EW", "Naturalness_3R_EW")], na.rm=TRUE)

#EW Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_EW, CC$Naturalness_2R_EW, CC$Naturalness_3R_EW))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_EW, CC$Naturalness_2R_EW, 
##     CC$Naturalness_3R_EW))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.53      0.56    0.61       0.3 1.3 0.084   41 20     0.15
## 
##  lower alpha upper     95% confidence boundaries
## 0.37 0.53 0.7 
## 
##  Reliability if an item is dropped:
##                      raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r
## CC.Naturalness_1_EW      0.842     0.842   0.727     0.727 5.321    0.031    NA
## CC.Naturalness_2R_EW     0.018     0.018   0.009     0.009 0.018    0.190    NA
## CC.Naturalness_3R_EW     0.258     0.260   0.150     0.150 0.352    0.144    NA
##                      med.r
## CC.Naturalness_1_EW  0.727
## CC.Naturalness_2R_EW 0.009
## CC.Naturalness_3R_EW 0.150
## 
##  Item statistics 
##                       n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_EW  34  0.57  0.53  0.12  0.085   52 30
## CC.Naturalness_2R_EW 34  0.84  0.86  0.84  0.593   39 27
## CC.Naturalness_3R_EW 34  0.77  0.79  0.75  0.454   33 27
hist(CC$Naturalness_Score_EW, main = 'EW Naturalness Scale Score')

#Individual EW Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_EW)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 52.09 30.36   52.5   52.39 36.32   1 100    99 -0.12    -1.15 5.21
range(CC$Naturalness_1_EW, na.rm=TRUE)
## [1]   1 100
hist(CC$Naturalness_1_EW, main = 'EW Naturalness Item #1: "This is natural."')

#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_EW_31)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 61.15 26.67     66   63.11 19.27   0 100   100 -0.71    -0.22 4.57
range(CC$Naturalness_EW_31, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_EW_31, main = 'EW Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_EW_35)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 67.06 27.08     74   70.21 23.72   0 100   100 -1.01     0.23 4.64
range(CC$Naturalness_EW_35, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_EW_35, main = 'EW Naturalness Item #3: "This relies on science-based technology."')

#OF Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_OF <- CC$Naturalness_OF_30
CC$Naturalness_2R_OF <- abs(CC$Naturalness_OF_31 -100)
CC$Naturalness_3R_OF <- abs(CC$Naturalness_OF_35 -100)

#OF Naturalness Scale
CC$Naturalness_Score_OF <- rowMeans(CC [, c("Naturalness_1_OF", "Naturalness_2R_OF", "Naturalness_3R_OF")], na.rm=TRUE)

#OF Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_OF, CC$Naturalness_2R_OF, CC$Naturalness_3R_OF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_OF, CC$Naturalness_2R_OF, 
##     CC$Naturalness_3R_OF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.52      0.54    0.59      0.28 1.2 0.085   43 20    0.098
## 
##  lower alpha upper     95% confidence boundaries
## 0.36 0.52 0.69 
## 
##  Reliability if an item is dropped:
##                      raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r
## CC.Naturalness_1_OF      0.844     0.844   0.730     0.730 5.399    0.031    NA
## CC.Naturalness_2R_OF     0.044     0.044   0.023     0.023 0.046    0.186    NA
## CC.Naturalness_3R_OF     0.178     0.179   0.098     0.098 0.218    0.160    NA
##                      med.r
## CC.Naturalness_1_OF  0.730
## CC.Naturalness_2R_OF 0.023
## CC.Naturalness_3R_OF 0.098
## 
##  Item statistics 
##                       n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_OF  31  0.54  0.52 0.081  0.065   46 30
## CC.Naturalness_2R_OF 32  0.83  0.84 0.819  0.560   42 27
## CC.Naturalness_3R_OF 32  0.79  0.81 0.771  0.483   43 28
hist(CC$Naturalness_Score_OF, main = 'OF Naturalness Scale Score')

#Individual OF Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_OF)
##    vars  n  mean    sd median trimmed  mad min max range skew kurtosis   se
## X1    1 31 45.81 29.99     41    44.8 34.1   0 100   100 0.19    -1.14 5.39
range(CC$Naturalness_1_OF, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_1_OF, main = 'OF Naturalness Item #1: "This is natural."')

#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_OF_31)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis  se
## X1    1 32 57.69 27.14   63.5   59.46 19.27   0 100   100 -0.63     -0.5 4.8
range(CC$Naturalness_OF_31, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_OF_31, main = 'OF Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_OF_35)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 32 57.38 27.54     65   58.92 21.5   0 100   100 -0.56    -0.83 4.87
range(CC$Naturalness_OF_35, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_OF_35, main = 'OF Naturalness Item #3: "This relies on science-based technology."')

#BIOFUEL Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_BF<- CC$Naturalness_BF_30
CC$Naturalness_2R_BF <- abs(CC$Naturalness_BF_31 -100)
CC$Naturalness_3R_BF <- abs(CC$Naturalness_BF_35 -100)

#DACCS Naturalness Scale
CC$Naturalness_Score_BF <- rowMeans(CC [, c("Naturalness_1_BF", "Naturalness_2R_BF", "Naturalness_3R_BF")], na.rm=TRUE)

#BF Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_BF, CC$Naturalness_2R_BF, CC$Naturalness_3R_BF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_BF, CC$Naturalness_2R_BF, 
##     CC$Naturalness_3R_BF))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N   ase mean sd median_r
##       0.39      0.41    0.32      0.19 0.69 0.098   38 18     0.19
## 
##  lower alpha upper     95% confidence boundaries
## 0.2 0.39 0.59 
## 
##  Reliability if an item is dropped:
##                      raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r
## CC.Naturalness_1_BF       0.25      0.27    0.16      0.16 0.37     0.13    NA
## CC.Naturalness_2R_BF      0.32      0.35    0.21      0.21 0.54     0.12    NA
## CC.Naturalness_3R_BF      0.32      0.32    0.19      0.19 0.48     0.13    NA
##                      med.r
## CC.Naturalness_1_BF   0.16
## CC.Naturalness_2R_BF  0.21
## CC.Naturalness_3R_BF  0.19
## 
##  Item statistics 
##                       n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_BF  23  0.74  0.69  0.42   0.26   58 31
## CC.Naturalness_2R_BF 23  0.72  0.66  0.35   0.23   34 31
## CC.Naturalness_3R_BF 23  0.56  0.67  0.37   0.24   20 19
hist(CC$Naturalness_Score_BF, main = 'BF Naturalness Scale Score')

#Individual BF Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_BF)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 23 58.04 30.85     66   59.79 26.69   0 100   100 -0.58    -0.87 6.43
range(CC$Naturalness_1_BF, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_1_BF, main = 'BF Naturalness Item #1: "This is natural."')

#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_BF_31)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 23 65.74 30.64     72   68.58 31.13   2 100    98 -0.64    -0.89 6.39
range(CC$Naturalness_BF_31, na.rm=TRUE)
## [1]   2 100
hist(CC$Naturalness_BF_31, main = 'BF Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_BF_35)
##    vars  n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 23 79.7 19.44     79   82.11 23.72  33 100    67 -0.81    -0.23 4.05
range(CC$Naturalness_BF_35, na.rm=TRUE)
## [1]  33 100
hist(CC$Naturalness_BF_35, main = 'BF Naturalness Item #3: "This relies on science-based technology."')

#NE Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_NE<- CC$Naturalness_NE_30
CC$Naturalness_2R_NE <- abs(CC$Naturalness_NE_31 -100)
CC$Naturalness_3R_NE <- abs(CC$Naturalness_NE_35 -100)

#NE Naturalness Scale
CC$Naturalness_Score_NE <- rowMeans(CC [, c("Naturalness_1_NE", "Naturalness_2R_NE", "Naturalness_3R_NE")], na.rm=TRUE)

#NE Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_NE, CC$Naturalness_2R_NE, CC$Naturalness_3R_NE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_NE, CC$Naturalness_2R_NE, 
##     CC$Naturalness_3R_NE))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N ase mean sd median_r
##       0.41      0.43     0.4       0.2 0.77 0.1   38 17     0.13
## 
##  lower alpha upper     95% confidence boundaries
## 0.21 0.41 0.61 
## 
##  Reliability if an item is dropped:
##                      raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r
## CC.Naturalness_1_NE      0.624     0.624   0.454     0.454 1.661    0.073    NA
## CC.Naturalness_2R_NE     0.048     0.048   0.025     0.025 0.051    0.182    NA
## CC.Naturalness_3R_NE     0.233     0.237   0.134     0.134 0.310    0.147    NA
##                      med.r
## CC.Naturalness_1_NE  0.454
## CC.Naturalness_2R_NE 0.025
## CC.Naturalness_3R_NE 0.134
## 
##  Item statistics 
##                       n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_NE  29  0.63  0.56  0.14  0.093   47 29
## CC.Naturalness_2R_NE 29  0.74  0.77  0.63  0.387   37 24
## CC.Naturalness_3R_NE 29  0.68  0.72  0.53  0.290   30 24
hist(CC$Naturalness_Score_NE, main = 'NE Naturalness Scale Score')

#Individual DACCS Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_NE)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 29 47.38 28.96     43   46.68 35.58   4 100    96 0.22    -1.23 5.38
range(CC$Naturalness_1_NE, na.rm=TRUE)
## [1]   4 100
hist(CC$Naturalness_1_NE, main = 'NE Naturalness Item #1: "This is natural."')

#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_DACCS_31)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 73.17 20.43     73   74.47 17.79  29 100    71 -0.28    -0.76 3.41
range(CC$Naturalness_NE_31, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_NE_31, main = 'NE Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_NE_35)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 29 70.38 23.82     74    72.8 20.76   1 100    99 -1.13     1.02 4.42
range(CC$Naturalness_NE_35, na.rm=TRUE)
## [1]   1 100
hist(CC$Naturalness_NE_35, main = 'NE Naturalness Item #3: "This relies on science-based technology."')

#SE Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_SE<- CC$Naturalness_SE_30
CC$Naturalness_2R_SE <- abs(CC$Naturalness_SE_31 -100)
CC$Naturalness_3R_SE <- abs(CC$Naturalness_SE_35 -100)

#SE Naturalness Scale
CC$Naturalness_Score_SE <- rowMeans(CC [, c("Naturalness_1_SE", "Naturalness_2R_SE", "Naturalness_3R_SE")], na.rm=TRUE)

#SE Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_SE, CC$Naturalness_2R_SE, CC$Naturalness_3R_SE))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_SE, CC$Naturalness_2R_SE, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_1_SE ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_SE, CC$Naturalness_2R_SE, 
##     CC$Naturalness_3R_SE))
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##       -0.1     -0.16   0.015    -0.048 -0.14 0.18   48 17    0.034
## 
##  lower alpha upper     95% confidence boundaries
## -0.46 -0.1 0.25 
## 
##  Reliability if an item is dropped:
##                      raw_alpha std.alpha G6(smc) average_r    S/N alpha se
## CC.Naturalness_1_SE      0.294     0.294   0.172     0.172  0.416     0.14
## CC.Naturalness_2R_SE    -1.061    -1.079  -0.350    -0.350 -0.519     0.40
## CC.Naturalness_3R_SE     0.066     0.067   0.034     0.034  0.071     0.18
##                      var.r  med.r
## CC.Naturalness_1_SE     NA  0.172
## CC.Naturalness_2R_SE    NA -0.350
## CC.Naturalness_3R_SE    NA  0.034
## 
##  Item statistics 
##                       n raw.r std.r r.cor r.drop mean sd
## CC.Naturalness_1_SE  25  0.34  0.42  -0.9  -0.20   70 27
## CC.Naturalness_2R_SE 25  0.76  0.73   1.2   0.19   45 33
## CC.Naturalness_3R_SE 25  0.54  0.50  -0.1  -0.09   30 31
hist(CC$Naturalness_Score_SE, main = 'SE Naturalness Scale Score')

#Individual DACCS Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_SE)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 25 69.64 27.09     73   72.43 25.2   0 100   100 -0.88    -0.03 5.42
range(CC$Naturalness_1_SE, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_1_SE, main = 'SE Naturalness Item #1: "This is natural."')

#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_SE_31)
##    vars  n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 25 55.4 32.68     57   56.33 44.48   1 100    99 -0.07    -1.41 6.54
range(CC$Naturalness_SE_31, na.rm=TRUE)
## [1]   1 100
hist(CC$Naturalness_SE_31, main = 'SE Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_SE_35)
##    vars  n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 25 69.6 31.31     72   73.33 32.62   0 100   100 -0.89    -0.26 6.26
range(CC$Naturalness_SE_35, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_SE_35, main = 'SE Naturalness Item #3: "This relies on science-based technology."')

#WE Naturalness Descriptives 

#Reverse Code Items 2 and 3
CC$Naturalness_1_WE<- CC$Naturalness_WE_30
CC$Naturalness_2R_WE <- abs(CC$Naturalness_WE_31 -100)
CC$Naturalness_3R_WE <- abs(CC$Naturalness_WE_35 -100)

#WE Naturalness Scale
CC$Naturalness_Score_WE <- rowMeans(CC [, c("Naturalness_1_WE", "Naturalness_2R_WE", "Naturalness_3R_WE")], na.rm=TRUE)

#WE Cronbach's alpha for naturalness scale
psych::alpha(data.frame(CC$Naturalness_1_WE, CC$Naturalness_2R_WE, CC$Naturalness_3R_WE))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Naturalness_1_WE, CC$Naturalness_2R_WE, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Naturalness_3R_WE ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Naturalness_1_WE, CC$Naturalness_2R_WE, 
##     CC$Naturalness_3R_WE))
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##       -1.4      -1.2    0.03     -0.23 -0.55 0.38   53 12    -0.22
## 
##  lower alpha upper     95% confidence boundaries
## -2.12 -1.37 -0.62 
## 
##  Reliability if an item is dropped:
##                      raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r
## CC.Naturalness_1_WE      -0.56     -0.56   -0.22     -0.22 -0.36    0.303    NA
## CC.Naturalness_2R_WE     -7.58     -7.70   -0.79     -0.79 -0.89    1.659    NA
## CC.Naturalness_3R_WE      0.50      0.50    0.33      0.33  1.00    0.097    NA
##                      med.r
## CC.Naturalness_1_WE  -0.22
## CC.Naturalness_2R_WE -0.79
## CC.Naturalness_3R_WE  0.33
## 
##  Item statistics 
##                       n  raw.r   std.r r.cor r.drop mean sd
## CC.Naturalness_1_WE  26  0.477  0.4211  0.89  -0.40   61 31
## CC.Naturalness_2R_WE 26  0.853  0.8700  1.05   0.21   57 27
## CC.Naturalness_3R_WE 26 -0.052 -0.0097 -1.72  -0.65   42 29
hist(CC$Naturalness_Score_WE, main = 'WE Naturalness Scale Score')

#Individual WE Naturalness Items
#Item 1
psych::describe(CC$Naturalness_1_WE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 26 60.92 31.01   64.5   62.82 29.65   0 100   100 -0.51    -0.94 6.08
range(CC$Naturalness_1_WE, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_1_WE, main = 'WE Naturalness Item #1: "This is natural."')

#Item 2 (not reverse coded)
psych::describe(CC$Naturalness_WE_31)
##    vars  n  mean   sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 26 42.96 26.7   51.5   42.64 30.39   0 100   100 -0.01    -0.93 5.24
range(CC$Naturalness_WE_31, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_WE_31, main = 'WE Naturalness Item #2: "This involves humans altering naturally occurring processes."')

#Item 3 (Not reverse coded)
psych::describe(CC$Naturalness_WE_35)
##    vars  n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 26 58.38 28.58   67.5   59.91 23.72   0 100   100 -0.6    -0.66 5.61
range(CC$Naturalness_WE_35, na.rm=TRUE)
## [1]   0 100
hist(CC$Naturalness_WE_35, main = 'WE Naturalness Item #3: "This relies on science-based technology."')

#Benefit

#Perceived benefit of climate methods was measured with 1 item on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

#Benefit Item 1: This is likely to lead to achieving carbon neutral climate goals.

#AF/SCS Benefit Descriptives 
CC$Benefit_AFSCS <- CC$Ben_AFSCS_18

psych::describe(CC$Benefit_AFSCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 31 63.16 25.36     65   65.28 19.27   0 100   100 -0.76     0.29 4.55
range(CC$Benefit_AFSCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Benefit_AFSCS, main = 'AFSCS Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#BIO Benefit Descriptives 

CC$Benefit_BIO <- CC$Ben_BIO_18

psych::describe(CC$Benefit_BIO)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 37 62.14 25.77     66   63.81 22.24   3 100    97 -0.62    -0.44 4.24
range(CC$Benefit_BIO, na.rm=TRUE)
## [1]   3 100
hist(CC$Benefit_BIO, main = 'BIO Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#BECCS Benefit Descriptives

CC$Benefit_BECCS <- CC$Ben_BECCS_18

psych::describe(CC$Benefit_BECCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 58.85 21.85     63   60.32 18.53   8  97    89 -0.56    -0.16 3.75
range(CC$Benefit_BECCS, na.rm=TRUE)
## [1]  8 97
hist(CC$Benefit_BECCS, main = 'BECCS Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#DACCS Benefit Descriptives 

CC$Benefit_DACCS <- CC$Ben_DACCS_18

psych::describe(CC$Benefit_DACCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 68.44 23.25     69   70.47 17.79   0 100   100 -0.66     0.52 3.88
range(CC$Benefit_DACCS, na.rm=TRUE)
## [1]   0 100
hist(CC$Benefit_DACCS, main = 'DACCS Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#EW Benefit Descriptives 

CC$Benefit_EW <- CC$Ben_EW_18

psych::describe(CC$Benefit_EW)
##    vars  n  mean   sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 62.62 26.3     66    64.5 22.24   0 100   100 -0.54    -0.38 4.51
range(CC$Benefit_EW, na.rm=TRUE)
## [1]   0 100
hist(CC$Benefit_EW, main = 'EW Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#OF Benefit Descriptives 

CC$Benefit_EW <- CC$Ben_EW_18

psych::describe(CC$Benefit_EW)
##    vars  n  mean   sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 62.62 26.3     66    64.5 22.24   0 100   100 -0.54    -0.38 4.51
range(CC$Benefit_EW, na.rm=TRUE)
## [1]   0 100
hist(CC$Benefit_EW, main = 'EW Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#BF Benefit Descriptives 

CC$Benefit_BF <- CC$Ben_BF_18

psych::describe(CC$Benefit_BF)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 23 72.65 21.27     70   73.74 25.2  35 100    65 -0.16    -1.19 4.44
range(CC$Benefit_BF, na.rm=TRUE)
## [1]  35 100
hist(CC$Benefit_BF, main = 'BF Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#NE Benefit Descriptives 

CC$Benefit_NE <- CC$Ben_NE_18

psych::describe(CC$Benefit_NE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 29 66.93 19.82     70   68.24 22.24  20 100    80 -0.56    -0.15 3.68
range(CC$Benefit_NE, na.rm=TRUE)
## [1]  20 100
hist(CC$Benefit_NE, main = 'NE Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#SE Benefit Descriptives 

CC$Benefit_SE <- CC$Ben_SE_18

psych::describe(CC$Benefit_SE)
##    vars  n mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 25 66.6 23.68     70   68.24 25.2   0 100   100 -0.62     0.49 4.74
range(CC$Benefit_SE, na.rm=TRUE)
## [1]   0 100
hist(CC$Benefit_SE, main = 'SE Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#WE Benefit Descriptives 

CC$Benefit_WE <- CC$Ben_WE_18

psych::describe(CC$Benefit_WE)
##    vars  n  mean   sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 25 61.92 23.4     65   63.33 14.83   0 100   100 -0.72     0.35 4.68
range(CC$Benefit_WE, na.rm=TRUE)
## [1]   0 100
hist(CC$Benefit_WE, main = 'WE Benefit Item #1: "This is likely to lead to achieving carbon neutral climate goals."')

#Behavioral Intent

#Behavioral intent was measured with 2 items on a 0-100 scale ( 0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

#Behavioral Intent Item 1: I would personally support non-government entities deploying these on a large scale. #Behavioral Intent Item 2: I would personally support spending government tax dollars to deploy these on a large scale.

#AF/SCS Behavioral Intent Descriptives 

#Item 1
CC$BehavInt1_AFSCS <- CC$BI_AFSCS_18

psych::describe(CC$BehavInt1_AFSCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 31 60.71 29.59     57   63.08 29.65   0 100   100 -0.46    -0.65 5.31
range(CC$BehavInt1_AFSCS, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt1_AFSCS, main = 'AFSCS Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_AFSCS <- CC$BI_AFSCS_19

psych::describe(CC$BehavInt2_AFSCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 31 55.35 29.72     56   56.76 31.13   0 100   100 -0.31    -0.84 5.34
range(CC$BehavInt2_AFSCS, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt2_AFSCS, main = 'AFSCS Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#AF/SCS Behavioral Intent Scale
CC$BI_Score_AFSCS <- rowMeans(CC [, c("BehavInt1_AFSCS", "BehavInt2_AFSCS")], na.rm=TRUE)

#AF/SCS Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_AFSCS, CC$BehavInt2_AFSCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_AFSCS, CC$BehavInt2_AFSCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.9       0.9    0.83      0.83 9.5 0.019   58 28     0.83
## 
##  lower alpha upper     95% confidence boundaries
## 0.87 0.9 0.94 
## 
##  Reliability if an item is dropped:
##                    raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.BehavInt1_AFSCS      0.82      0.83    0.68      0.83 4.7       NA     0
## CC.BehavInt2_AFSCS      0.83      0.83    0.68      0.83 4.7       NA     0
##                    med.r
## CC.BehavInt1_AFSCS  0.83
## CC.BehavInt2_AFSCS  0.83
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_AFSCS 31  0.96  0.96  0.87   0.83   61 30
## CC.BehavInt2_AFSCS 31  0.96  0.96  0.87   0.83   55 30
hist(CC$BI_Score_AFSCS, main = 'AFSCS Behavioral Intent Scale Score')

#BIO Behavioral Intent Descriptives 

#Item 1
CC$BehavInt1_BIO <- CC$BI_BIO_18

psych::describe(CC$BehavInt1_BIO)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 36 66.14 24.18   68.5   67.77 25.2  11 100    89 -0.52     -0.7 4.03
range(CC$BehavInt1_BIO, na.rm=TRUE)
## [1]  11 100
hist(CC$BehavInt1_BIO, main = 'BIO Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_BIO <- CC$BI_BIO_19

psych::describe(CC$BehavInt2_BIO)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 37 60.35 26.04     64   60.97 25.2  15 100    85 -0.27    -1.05 4.28
range(CC$BehavInt2_BIO, na.rm=TRUE)
## [1]  15 100
hist(CC$BehavInt2_BIO, main = 'BIO Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#BIO Behavioral Intent Scale
CC$BI_Score_BIO <- rowMeans(CC [, c("BehavInt1_BIO", "BehavInt2_BIO")], na.rm=TRUE)

#BIO Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_BIO, CC$BehavInt2_BIO))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_BIO, CC$BehavInt2_BIO))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.85      0.85    0.74      0.74 5.6 0.03   63 23     0.74
## 
##  lower alpha upper     95% confidence boundaries
## 0.79 0.85 0.9 
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_BIO      0.68      0.74    0.54      0.74 2.8       NA     0  0.74
## CC.BehavInt2_BIO      0.79      0.74    0.54      0.74 2.8       NA     0  0.74
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_BIO 36  0.92  0.93   0.8   0.74   66 24
## CC.BehavInt2_BIO 37  0.93  0.93   0.8   0.74   60 26
hist(CC$BI_Score_BIO, main = 'BIO Naturalness Scale Score')

#BECCS Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_BECCS <- CC$BI_BACCS_18

psych::describe(CC$BehavInt1_BECCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 35 59.46 25.12     61   60.62 26.69   7 100    93 -0.47    -0.71 4.25
range(CC$BehavInt1_BECCS, na.rm=TRUE)
## [1]   7 100
hist(CC$BehavInt1_BECCS, main = 'BECCS Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_BECCS <- CC$BI_BACCS_19

psych::describe(CC$BehavInt2_BECCS)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 35 54.94 31.63     65    55.9 34.1   0 100   100 -0.33    -1.32 5.35
range(CC$BehavInt2_BECCS, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt2_BECCS, main = 'BECCS Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#BIO Behavioral Intent Scale
CC$BI_Score_BECCS <- rowMeans(CC [, c("BehavInt1_BECCS", "BehavInt2_BECCS")], na.rm=TRUE)

#BIO Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_BECCS, CC$BehavInt2_BECCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_BECCS, CC$BehavInt2_BECCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.71      0.72    0.56      0.56 2.6 0.055   57 25     0.56
## 
##  lower alpha upper     95% confidence boundaries
## 0.6 0.71 0.82 
## 
##  Reliability if an item is dropped:
##                    raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.BehavInt1_BECCS      0.45      0.56    0.32      0.56 1.3       NA     0
## CC.BehavInt2_BECCS      0.71      0.56    0.32      0.56 1.3       NA     0
##                    med.r
## CC.BehavInt1_BECCS  0.56
## CC.BehavInt2_BECCS  0.56
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_BECCS 35  0.85  0.88  0.66   0.56   59 25
## CC.BehavInt2_BECCS 35  0.91  0.88  0.66   0.56   55 32
hist(CC$BI_Score_BECCS, main = 'BECCS Naturalness Scale Score')

#DACCS Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_DACCS <- CC$BI_DACCS_18

psych::describe(CC$BehavInt1_DACCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 58.33 25.28   59.5   59.07 22.24   0 100   100 -0.37    -0.43 4.21
range(CC$BehavInt1_DACCS, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt1_DACCS, main = 'DACCS Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_DACCS <- CC$BI_DACCS_19

psych::describe(CC$BehavInt2_DACCS)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 36 51.14 27.16   53.5   51.83 30.39   0 100   100 -0.37    -0.63 4.53
range(CC$BehavInt2_DACCS, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt2_DACCS, main = 'DACCS Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#DACCS Behavioral Intent Scale
CC$BI_Score_DACCS <- rowMeans(CC [, c("BehavInt1_DACCS", "BehavInt2_DACCS")], na.rm=TRUE)

#DACCS Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_DACCS, CC$BehavInt2_DACCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_DACCS, CC$BehavInt2_DACCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.64      0.65    0.48      0.48 1.8 0.069   55 23     0.48
## 
##  lower alpha upper     95% confidence boundaries
## 0.51 0.64 0.78 
## 
##  Reliability if an item is dropped:
##                    raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r
## CC.BehavInt1_DACCS      0.44      0.48    0.23      0.48 0.91       NA     0
## CC.BehavInt2_DACCS      0.51      0.48    0.23      0.48 0.91       NA     0
##                    med.r
## CC.BehavInt1_DACCS  0.48
## CC.BehavInt2_DACCS  0.48
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_DACCS 36  0.85  0.86  0.59   0.48   58 25
## CC.BehavInt2_DACCS 36  0.87  0.86  0.59   0.48   51 27
hist(CC$BI_Score_DACCS, main = 'DACCS Naturalness Scale Score')

#EW Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_EW <- CC$BI_EW_18

psych::describe(CC$BehavInt1_EW)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 67.21 27.63     73   70.46 25.95   2 100    98 -0.85    -0.02 4.74
range(CC$BehavInt1_EW, na.rm=TRUE)
## [1]   2 100
hist(CC$BehavInt1_EW, main = 'EW Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_EW <- CC$BI_EW_19

psych::describe(CC$BehavInt2_EW)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 34 59.24 30.05   68.5   60.71 27.43   2 100    98 -0.46    -0.97 5.15
range(CC$BehavInt2_EW, na.rm=TRUE)
## [1]   2 100
hist(CC$BehavInt2_EW, main = 'EW Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#EW Behavioral Intent Scale
CC$BI_Score_EW <- rowMeans(CC [, c("BehavInt1_EW", "BehavInt2_EW")], na.rm=TRUE)

#EW Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_EW, CC$BehavInt2_EW))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_EW, CC$BehavInt2_EW))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.82      0.82     0.7       0.7 4.7 0.034   63 27      0.7
## 
##  lower alpha upper     95% confidence boundaries
## 0.75 0.82 0.89 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_EW      0.64       0.7    0.49       0.7 2.3       NA     0   0.7
## CC.BehavInt2_EW      0.76       0.7    0.49       0.7 2.3       NA     0   0.7
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_EW 34  0.92  0.92  0.77    0.7   67 28
## CC.BehavInt2_EW 34  0.93  0.92  0.77    0.7   59 30
hist(CC$BI_Score_EW, main = 'EW Naturalness Scale Score')

#OF Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_OF <- CC$BI_OF_18

psych::describe(CC$BehavInt1_OF)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 31 47.16 22.58     48   47.92 28.17   0  84    84 -0.23    -1.07 4.06
range(CC$BehavInt1_OF, na.rm=TRUE)
## [1]  0 84
hist(CC$BehavInt1_OF, main = 'OF Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_OF <- CC$BI_OF_19

psych::describe(CC$BehavInt2_OF)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 31 47.42 22.97     51   48.68 25.2   0  86    86 -0.39    -0.75 4.13
range(CC$BehavInt2_OF, na.rm=TRUE)
## [1]  0 86
hist(CC$BehavInt2_OF, main = 'OF Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#OF Behavioral Intent Scale
CC$BI_Score_OF <- rowMeans(CC [, c("BehavInt1_OF", "BehavInt2_OF")], na.rm=TRUE)

#OF Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_OF, CC$BehavInt2_OF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_OF, CC$BehavInt2_OF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.91      0.91    0.84      0.84  10 0.017   47 22     0.84
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.91 0.94 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_OF      0.82      0.84     0.7      0.84 5.1       NA     0  0.84
## CC.BehavInt2_OF      0.85      0.84     0.7      0.84 5.1       NA     0  0.84
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_OF 31  0.96  0.96  0.88   0.84   47 23
## CC.BehavInt2_OF 31  0.96  0.96  0.88   0.84   47 23
hist(CC$BI_Score_OF, main = 'OF Naturalness Scale Score')

#BF Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_BF <- CC$BI_BF_18

psych::describe(CC$BehavInt1_BF)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 23 66.61 23.76     70   68.37 26.69   0 100   100 -0.84     0.51 4.95
range(CC$BehavInt1_BF, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt1_BF, main = 'BF Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_BF <- CC$BI_BF_19

psych::describe(CC$BehavInt2_BF)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 23 57.39 26.28     63   59.84 28.17   0  95    95 -0.65     -0.4 5.48
range(CC$BehavInt2_BF, na.rm=TRUE)
## [1]  0 95
hist(CC$BehavInt2_BF, main = 'BF Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#BIO Behavioral Intent Scale
CC$BI_Score_BF <- rowMeans(CC [, c("BehavInt1_BF", "BehavInt2_BF")], na.rm=TRUE)

#BIO Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_BF, CC$BehavInt2_BF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_BF, CC$BehavInt2_BF))
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##       0.44      0.44    0.28      0.28 0.79 0.11   62 20     0.28
## 
##  lower alpha upper     95% confidence boundaries
## 0.23 0.44 0.65 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_BF      0.26      0.28    0.08      0.28 0.4       NA     0  0.28
## CC.BehavInt2_BF      0.31      0.28    0.08      0.28 0.4       NA     0  0.28
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_BF 23  0.78   0.8  0.43   0.28   67 24
## CC.BehavInt2_BF 23  0.82   0.8  0.43   0.28   57 26
hist(CC$BI_Score_BF, main = 'BF Naturalness Scale Score')

#NE Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_NE <- CC$BI_NE_18

psych::describe(CC$BehavInt1_NE)
##    vars  n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 29 56.07 28.34     62   56.88 25.2   0 100   100 -0.47    -0.98 5.26
range(CC$BehavInt1_NE, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt1_NE, main = 'NE Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_NE <- CC$BI_NE_19

psych::describe(CC$BehavInt2_NE)
##    vars  n  mean   sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 29 49.69 31.1     51    49.8 35.58   0 100   100 -0.05    -1.33 5.77
range(CC$BehavInt2_NE, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt2_NE, main = 'NE Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#NE Behavioral Intent Scale
CC$BI_Score_NE <- rowMeans(CC [, c("BehavInt1_NE", "BehavInt2_NE")], na.rm=TRUE)

#NE Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_NE, CC$BehavInt2_NE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_NE, CC$BehavInt2_NE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##        0.9       0.9    0.82      0.82 8.9 0.02   53 28     0.82
## 
##  lower alpha upper     95% confidence boundaries
## 0.86 0.9 0.94 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_NE      0.74      0.82    0.67      0.82 4.5       NA     0  0.82
## CC.BehavInt2_NE      0.90      0.82    0.67      0.82 4.5       NA     0  0.82
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_NE 29  0.95  0.95  0.86   0.82   56 28
## CC.BehavInt2_NE 29  0.96  0.95  0.86   0.82   50 31
hist(CC$BI_Score_NE, main = 'NE Naturalness Scale Score')

#SE Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_SE <- CC$BI_SE_18

psych::describe(CC$BehavInt1_SE)
##    vars  n mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 25 68.2 25.14     72   71.62 13.34   0 100   100 -1.28     1.66 5.03
range(CC$BehavInt1_SE, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt1_SE, main = 'SE Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_SE <- CC$BI_SE_19

psych::describe(CC$BehavInt2_SE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 25 65.24 26.81     68    67.9 17.79   2 100    98 -0.88     0.23 5.36
range(CC$BehavInt2_SE, na.rm=TRUE)
## [1]   2 100
hist(CC$BehavInt2_SE, main = 'SE Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#SE Behavioral Intent Scale
CC$BI_Score_SE <- rowMeans(CC [, c("BehavInt1_SE", "BehavInt2_SE")], na.rm=TRUE)

#SE Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_SE, CC$BehavInt2_SE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_SE, CC$BehavInt2_SE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.92      0.92    0.85      0.85  11 0.016   67 25     0.85
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.92 0.95 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_SE      0.79      0.85    0.72      0.85 5.5       NA     0  0.85
## CC.BehavInt2_SE      0.90      0.85    0.72      0.85 5.5       NA     0  0.85
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_SE 25  0.96  0.96  0.88   0.85   68 25
## CC.BehavInt2_SE 25  0.96  0.96  0.88   0.85   65 27
hist(CC$BI_Score_SE, main = 'SE Naturalness Scale Score')

#WE Behavioral Intent Descriptives 
#Item 1
CC$BehavInt1_WE <- CC$BI_WI_18

psych::describe(CC$BehavInt1_WE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 26 59.85 29.68   62.5   61.64 34.84   0 100   100 -0.45    -0.83 5.82
range(CC$BehavInt1_WE, na.rm=TRUE)
## [1]   0 100
hist(CC$BehavInt1_WE, main = 'WE Behavioral Item #1: "I would personally support non-government entities deploying these on a large scale."')

#Item 2
CC$BehavInt2_WE <- CC$BI_WI_19

psych::describe(CC$BehavInt2_WE)
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 26 53.27 27.09   52.5   54.27 34.84   0  97    97 -0.26    -0.86 5.31
range(CC$BehavInt2_WE, na.rm=TRUE)
## [1]  0 97
hist(CC$BehavInt2_WE, main = 'WE Behavioral Item #2: "I would personally support spending government tax dollars to deploy these on a large scale."')

#WE Behavioral Intent Scale
CC$BI_Score_WE <- rowMeans(CC [, c("BehavInt1_WE", "BehavInt2_WE")], na.rm=TRUE)

#WE Cronbach's alpha for behavioral intent scale
psych::alpha(data.frame(CC$BehavInt1_WE, CC$BehavInt2_WE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$BehavInt1_WE, CC$BehavInt2_WE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.91      0.91    0.84      0.84  10 0.017   57 27     0.84
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.91 0.94 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.BehavInt1_WE      0.92      0.84    0.71      0.84 5.2       NA     0  0.84
## CC.BehavInt2_WE      0.77      0.84    0.71      0.84 5.2       NA     0  0.84
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.BehavInt1_WE 26  0.96  0.96  0.88   0.84   60 30
## CC.BehavInt2_WE 26  0.96  0.96  0.88   0.84   53 27
hist(CC$BI_Score_WE, main = 'WE Naturalness Scale Score')

#Individualism/Collectivism

#Individualism and collectivism were each measured with 4 items on a 1-7 scale of agreement (0 = ‘Strongly disagree’ to 100 = ‘Strongly agree’).

#Collectivism Items ##Individualism/Collectivism Item #3 (C): It is important to me to think of myself as a member of my religious, national, or ethnic group. ##Individualism/Collectivism Item #4 (C): Learning about the traditions, values, and beliefs of my family is important to me. ##Individualism/Collectivism Item #7 (C): In the end, a person feels closest to members of their own religious, national, or ethnic group. ##Individualism/Collectivism Item #8 (C): It is important to me to respect decisions made by my family.

#Individualism Items ##Individualism/Collectivism Item #1 (I): It is important to me to develop my own personal style. ##Individualism/Collectivism Item #2 (I): It is better for me to follow my own ideas than to follow those of anyone else.
##Individualism/Collectivism Item #5 (I): I enjoy being unique and different from others in many respects. ##Individualism/Collectivism Item #6 (I): My personal achievements and accomplishments are very important to who I am.