#1. Binary Outcome Variable The binary outcome variable is the presence of just one or more than one unique substance reported. To recode this varibale I used the ifelse function to recode 1 to 0 since a response of 1 means there was NOT more than 1 unique drug reported. Then I recoded all other values to 1 since these values indicated more than 1 unique drug reported.

#2. Research Question Are there differences in the presence of more than substance in various demographic groups?

#3. Predictor Variables The predictor variables that I will look at are age and sex. In this data set age is categorized into 11 groups.

library(car)
## Loading required package: carData
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(survey)
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
## 
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
## 
##     dotchart
library(questionr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(forcats)
load("~/Documents/Stats2-Dem7283 /Stats2/ICPSR_34565-2/DS0001/34565-0001-Data.rda")
dawn2011 <- da34565.0001

#number of substances
dawn2011$morethanonesub <- ifelse(dawn2011$NUMSUBS==1,0,1)

#age
dawn2011$age <- Recode(dawn2011$AGECAT, recodes= "-8:NA")

dawn2011 <- dawn2011 %>%
  filter(is.na(age)==F,
         SEX!= -8)

#unweighted
table(dawn2011$morethanonesub, dawn2011$SEX)
##    
##     (1) MALE:(1) (2) FEMALE:(2)
##   0        71104          75951
##   1        47969          34053
table(dawn2011$morethanonesub, dawn2011$age)
##    
##     (01) AGE 5 OR YOUNGER:(1) (02) 6 TO 11:(2) (03) 12 TO 17:(3)
##   0                      7882             1815              8739
##   1                       857              287              3186
##    
##     (04) 18 TO 20:(4) (05) 21 TO 24:(5) (06) 25 TO 29:(6) (07) 30 TO 34:(7)
##   0             12245             10426             12605             11243
##   1              4773              7837              9428              8701
##    
##     (08) 35 TO 44:(8) (09) 45 TO 54:(9) (10) 55 TO 64:(10)
##   0             20580             22776              15968
##   1             16327             17018               7860
##    
##     (11) AGE 65 OR OLDER:(11)
##   0                     22776
##   1                      5748
100*prop.table(table(dawn2011$morethanonesub, dawn2011$SEX), margin = 2)
##    
##     (1) MALE:(1) (2) FEMALE:(2)
##   0     59.71463       69.04385
##   1     40.28537       30.95615
100*prop.table(table(dawn2011$morethanonesub, dawn2011$age))
##    
##     (01) AGE 5 OR YOUNGER:(1) (02) 6 TO 11:(2) (03) 12 TO 17:(3)
##   0                 3.4407645        0.7923100         3.8148745
##   1                 0.3741100        0.1252854         1.3907987
##    
##     (04) 18 TO 20:(4) (05) 21 TO 24:(5) (06) 25 TO 29:(6) (07) 30 TO 34:(7)
##   0         5.3453642         4.5513081         5.5025166         4.9079567
##   1         2.0835789         3.4211204         4.1156467         3.7982862
##    
##     (08) 35 TO 44:(8) (09) 45 TO 54:(9) (10) 55 TO 64:(10)
##   0         8.9838788         9.9425084          6.9705819
##   1         7.1272978         7.4289431          3.4311607
##    
##     (11) AGE 65 OR OLDER:(11)
##   0                 9.9425084
##   1                 2.5092000
chisq.test(table(dawn2011$SEX, dawn2011$morethanonesub))
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(dawn2011$SEX, dawn2011$morethanonesub)
## X-squared = 2164.7, df = 1, p-value < 2.2e-16
chisq.test(table(dawn2011$age, dawn2011$morethanonesub))
## 
##  Pearson's Chi-squared test
## 
## data:  table(dawn2011$age, dawn2011$morethanonesub)
## X-squared = 10397, df = 10, p-value < 2.2e-16
library(srvyr)
## 
## Attaching package: 'srvyr'
## The following object is masked from 'package:stats':
## 
##     filter
options(scipen = 999)
options(survey.lonely.psu = "adjust")
des <- svydesign(ids = ~PSU,
                 strata = ~STRATA, 
                 weights = ~CASEWGT, 
                 nest = TRUE,
                 data=dawn2011)

des
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (233) clusters.
## svydesign(ids = ~PSU, strata = ~STRATA, weights = ~CASEWGT, nest = TRUE, 
##     data = dawn2011)
#counts
cat<-wtd.table(dawn2011$morethanonesub, dawn2011$SEX, weights = dawn2011$CASEWGT)
cat
##   (1) MALE:(1) (2) FEMALE:(2)
## 0    1504733.6      1854505.8
## 1     907779.1       797706.2
prop.table(cat, margin = 2)
##   (1) MALE:(1) (2) FEMALE:(2)
## 0    0.6237205      0.6992298
## 1    0.3762795      0.3007702
agecnt <- wtd.table(dawn2011$morethanonesub, dawn2011$age, weights = dawn2011$CASEWGT)
agecnt
##   (01) AGE 5 OR YOUNGER:(1) (02) 6 TO 11:(2) (03) 12 TO 17:(3)
## 0                 261070.98         60111.10         202697.18
## 1                  30352.72         10668.83          80930.53
##   (04) 18 TO 20:(4) (05) 21 TO 24:(5) (06) 25 TO 29:(6) (07) 30 TO 34:(7)
## 0         230912.65         226291.87         267742.83         242249.24
## 1         103178.49         185266.15         207129.90         193060.66
##   (08) 35 TO 44:(8) (09) 45 TO 54:(9) (10) 55 TO 64:(10)
## 0         436986.53         472505.32          360639.43
## 1         286232.43         300543.83          155796.53
##   (11) AGE 65 OR OLDER:(11)
## 0                 598032.33
## 1                 152325.26
prop.table(agecnt, margin = 2)
##   (01) AGE 5 OR YOUNGER:(1) (02) 6 TO 11:(2) (03) 12 TO 17:(3)
## 0                 0.8958468        0.8492675         0.7146593
## 1                 0.1041532        0.1507325         0.2853407
##   (04) 18 TO 20:(4) (05) 21 TO 24:(5) (06) 25 TO 29:(6) (07) 30 TO 34:(7)
## 0         0.6911666         0.5498420         0.5638202         0.5564984
## 1         0.3088334         0.4501580         0.4361798         0.4435016
##   (08) 35 TO 44:(8) (09) 45 TO 54:(9) (10) 55 TO 64:(10)
## 0         0.6042244         0.6112229          0.6983236
## 1         0.3957756         0.3887771          0.3016764
##   (11) AGE 65 OR OLDER:(11)
## 0                 0.7969964
## 1                 0.2030036
svychisq(~morethanonesub+age, design = des)
## 
##  Pearson's X^2: Rao & Scott adjustment
## 
## data:  svychisq(~morethanonesub + age, design = des)
## F = 85.242, ndf = 3.2842, ddf = 597.7269, p-value < 0.00000000000000022
svychisq(~morethanonesub+SEX, design = des)
## 
##  Pearson's X^2: Rao & Scott adjustment
## 
## data:  svychisq(~morethanonesub + SEX, design = des)
## F = 135.42, ndf = 1, ddf = 182, p-value < 0.00000000000000022
citytab <- svyby(~morethanonesub,
                 ~METRO,
                 design = des,
                 FUN = svymean,
                 na.rm=TRUE)
knitr::kable(citytab,
             type="html", 
             digits=3,
             caption = "More than one Substance MSAs")
More than one Substance MSAs
METRO morethanonesub se
(01) BOSTON-CAMBRIDGE-QUINCY, MA-NH MSA:(1) (01) BOSTON-CAMBRIDGE-QUINCY, MA-NH MSA:(1) 0.352 0.014
(02) NEW YORK CITY - 5 BUROUGHS (PART OF NEW YORK- NEWARK-EDISON, NY-NJ-PA MSA):(2) (02) NEW YORK CITY - 5 BUROUGHS (PART OF NEW YORK- NEWARK-EDISON, NY-NJ-PA MSA):(2) 0.395 0.022
(03) CHICAGO-NAPERVILLE-JOLIET, IL-IN-WI MSA:(3) (03) CHICAGO-NAPERVILLE-JOLIET, IL-IN-WI MSA:(3) 0.316 0.013
(04) DETROIT-WARREN-LIVONIA, MI MSA:(4) (04) DETROIT-WARREN-LIVONIA, MI MSA:(4) 0.328 0.027
(05) MINNEAPOLIS-ST. PAUL-BLOOMINGTON, MN-WI MSA:(5) (05) MINNEAPOLIS-ST. PAUL-BLOOMINGTON, MN-WI MSA:(5) 0.382 0.015
(06) FORT LAUNDERALE DIVISION OF MIAMI-FORT LAUDERDALE, FL MSA:(6) (06) FORT LAUNDERALE DIVISION OF MIAMI-FORT LAUDERDALE, FL MSA:(6) 0.351 0.049
(07) DADE COUNTY DIVISION OF MIAMI-FORT LAUDERDALE, FL MSA:(7) (07) DADE COUNTY DIVISION OF MIAMI-FORT LAUDERDALE, FL MSA:(7) 0.359 0.085
(08) HOUSTON-BAYTOWN-SUGAR LAND, TX MSA:(8) (08) HOUSTON-BAYTOWN-SUGAR LAND, TX MSA:(8) 0.372 0.038
(09) DENVER-AURORA, CO MSA:(9) (09) DENVER-AURORA, CO MSA:(9) 0.354 0.012
(10) PHOENIX-MESA-SCOTTSDALE, AZ MSA:(10) (10) PHOENIX-MESA-SCOTTSDALE, AZ MSA:(10) 0.361 0.025
(11) OAKLAND DIVISION OF SAN FRANCISCO-OAKLAND-FREMONT, CA MSA:(11) (11) OAKLAND DIVISION OF SAN FRANCISCO-OAKLAND-FREMONT, CA MSA:(11) 0.335 0.017
(12) SAN FRANCISCO DIVISION OF SAN FRANCISCO-OAKLAND-FREMONT, CA MSA:(12) (12) SAN FRANCISCO DIVISION OF SAN FRANCISCO-OAKLAND-FREMONT, CA MSA:(12) 0.281 0.025
(13) SEATTLE-TACOMA-BELLEVUE, WA MSA:(13) (13) SEATTLE-TACOMA-BELLEVUE, WA MSA:(13) 0.336 0.016
(14) ALL OTHER LOCATIONS:(14) (14) ALL OTHER LOCATIONS:(14) 0.334 0.021

There are differences when using the survey weights.