# install.packages("tidyverse")
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.7
## v tidyr   1.1.4     v stringr 1.4.0
## v readr   2.1.1     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

Warning: package ‘tidyverse’ was built under R version 4.1.2

– Attaching packages ————————————— tidyverse 1.3.1 –

v ggplot2 3.3.5 v purrr 0.3.4

v tibble 3.1.6 v dplyr 1.0.7

v tidyr 1.1.4 v stringr 1.4.0

v readr 2.1.1 v forcats 0.5.1

Warning: package ‘ggplot2’ was built under R version 4.1.2

Warning: package ‘tibble’ was built under R version 4.1.2

Warning: package ‘tidyr’ was built under R version 4.1.2

Warning: package ‘readr’ was built under R version 4.1.2

Warning: package ‘purrr’ was built under R version 4.1.2

Warning: package ‘dplyr’ was built under R version 4.1.2

Warning: package ‘stringr’ was built under R version 4.1.2

Warning: package ‘forcats’ was built under R version 4.1.2

– Conflicts —————————————— tidyverse_conflicts() –

x dplyr::filter() masks stats::filter()

x dplyr::lag() masks stats::lag()

airquality <- airquality
str(airquality)
## 'data.frame':    153 obs. of  6 variables:
##  $ Ozone  : int  41 36 12 18 NA 28 23 19 8 NA ...
##  $ Solar.R: int  190 118 149 313 NA NA 299 99 19 194 ...
##  $ Wind   : num  7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
##  $ Temp   : int  67 72 74 62 56 66 65 59 61 69 ...
##  $ Month  : int  5 5 5 5 5 5 5 5 5 5 ...
##  $ Day    : int  1 2 3 4 5 6 7 8 9 10 ...

‘data.frame’: 153 obs. of 6 variables:

$ Ozone : int 41 36 12 18 NA 28 23 19 8 NA …

$ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 …

$ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 …

$ Temp : int 67 72 74 62 56 66 65 59 61 69 …

$ Month : int 5 5 5 5 5 5 5 5 5 5 …

$ Day : int 1 2 3 4 5 6 7 8 9 10 …

mean(airquality$Temp)
## [1] 77.88235
mean(airquality[,4])
## [1] 77.88235
median(airquality$Temp)
## [1] 79
sd(airquality$Wind)
## [1] 3.523001
var(airquality$Wind)
## [1] 12.41154
airquality$Month[airquality$Month == 5]<- "May"
airquality$Month[airquality$Month == 6]<- "June"
airquality$Month[airquality$Month == 7]<- "July"
airquality$Month[airquality$Month == 8]<- "August"
airquality$Month[airquality$Month == 9]<- "September"
str(airquality)
## 'data.frame':    153 obs. of  6 variables:
##  $ Ozone  : int  41 36 12 18 NA 28 23 19 8 NA ...
##  $ Solar.R: int  190 118 149 313 NA NA 299 99 19 194 ...
##  $ Wind   : num  7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
##  $ Temp   : int  67 72 74 62 56 66 65 59 61 69 ...
##  $ Month  : chr  "May" "May" "May" "May" ...
##  $ Day    : int  1 2 3 4 5 6 7 8 9 10 ...

‘data.frame’: 153 obs. of 6 variables:

$ Ozone : int 41 36 12 18 NA 28 23 19 8 NA …

$ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 …

$ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 …

$ Temp : int 67 72 74 62 56 66 65 59 61 69 …

$ Month : chr “May” “May” “May” “May” …

$ Day : int 1 2 3 4 5 6 7 8 9 10 …

summary(airquality)
##      Ozone           Solar.R           Wind             Temp      
##  Min.   :  1.00   Min.   :  7.0   Min.   : 1.700   Min.   :56.00  
##  1st Qu.: 18.00   1st Qu.:115.8   1st Qu.: 7.400   1st Qu.:72.00  
##  Median : 31.50   Median :205.0   Median : 9.700   Median :79.00  
##  Mean   : 42.13   Mean   :185.9   Mean   : 9.958   Mean   :77.88  
##  3rd Qu.: 63.25   3rd Qu.:258.8   3rd Qu.:11.500   3rd Qu.:85.00  
##  Max.   :168.00   Max.   :334.0   Max.   :20.700   Max.   :97.00  
##  NA's   :37       NA's   :7                                       
##     Month                Day      
##  Length:153         Min.   : 1.0  
##  Class :character   1st Qu.: 8.0  
##  Mode  :character   Median :16.0  
##                     Mean   :15.8  
##                     3rd Qu.:23.0  
##                     Max.   :31.0  
## 

Ozone Solar.R Wind Temp

Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00

1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00

Median : 31.50 Median :205.0 Median : 9.700 Median :79.00

Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88

3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00

Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00

NA’s :37 NA’s :7

Month Day

Length:153 Min. : 1.0

Class :character 1st Qu.: 8.0

Mode :character Median :16.0

Mean :15.8

3rd Qu.:23.0

Max. :31.0

airquality$Month<-factor(airquality$Month, levels=c("May", "June","July", "August", "September"))
p1 <- qplot(data = airquality,Temp,fill = Month,geom = "histogram", bins = 20)
p1

p2 <- airquality %>%
  ggplot(aes(x=Temp, fill=Month)) +
  geom_histogram(position="identity", alpha=0.5, binwidth = 5, color = "white")+
  scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
p2

p3 <- airquality %>%
  ggplot(aes(Month, Temp, fill = Month)) + 
  ggtitle("Temperatures") +
  xlab("Monthly Temperatures") +
  ylab("Frequency") +
  geom_boxplot() +
  scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
p3 

p4 <- airquality %>%
  ggplot(aes(Month, Temp, fill = Month)) + 
  ggtitle("Monthly Temperature Variations") +
  xlab("Monthly Temperatures") +
  ylab("Frequency") +
  geom_boxplot()+
  scale_fill_grey(name = "Month", labels = c("May", "June","July", "August", "September"))
p4

p5 <- airquality %>%
  ggplot(aes(Month, Temp, color = Month)) +
  ggtitle("Monthly Temperature Variations") +
  xlab("Monthly Temperatures") +
  ylab("Frequency") +
  scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September")) +
  geom_point(aes(size = Ozone)) 
p5
## Warning: Removed 37 rows containing missing values (geom_point).