setwd("C:/Users/elsem/Desktop/M2 DSBA/R Mustahq/Project")
"https://www.kaggle.com/uciml/breast-cancer-wisconsin-data"
## [1] "https://www.kaggle.com/uciml/breast-cancer-wisconsin-data"
"Attribute Information:

1) ID number
2) Diagnosis (M = malignant, B = benign)
3-32)

Ten real-valued features are computed for each cell nucleus:

a) radius (mean of distances from center to points on the perimeter)
b) texture (standard deviation of gray-scale values)
c) perimeter
d) area
e) smoothness (local variation in radius lengths)
f) compactness (perimeter^2 / area - 1.0)
g) concavity (severity of concave portions of the contour)
h) concave points (number of concave portions of the contour)
i) symmetry
j) fractal dimension (coastline approximation - 1)"
## [1] "Attribute Information:\n\n1) ID number\n2) Diagnosis (M = malignant, B = benign)\n3-32)\n\nTen real-valued features are computed for each cell nucleus:\n\na) radius (mean of distances from center to points on the perimeter)\nb) texture (standard deviation of gray-scale values)\nc) perimeter\nd) area\ne) smoothness (local variation in radius lengths)\nf) compactness (perimeter^2 / area - 1.0)\ng) concavity (severity of concave portions of the contour)\nh) concave points (number of concave portions of the contour)\ni) symmetry\nj) fractal dimension (coastline approximation - 1)"
breast_cancer = read.csv('breast_cancer.csv', sep=",")
str(breast_cancer)
## 'data.frame':    569 obs. of  33 variables:
##  $ id                     : int  842302 842517 84300903 84348301 84358402 843786 844359 84458202 844981 84501001 ...
##  $ diagnosis              : chr  "M" "M" "M" "M" ...
##  $ radius_mean            : num  18 20.6 19.7 11.4 20.3 ...
##  $ texture_mean           : num  10.4 17.8 21.2 20.4 14.3 ...
##  $ perimeter_mean         : num  122.8 132.9 130 77.6 135.1 ...
##  $ area_mean              : num  1001 1326 1203 386 1297 ...
##  $ smoothness_mean        : num  0.1184 0.0847 0.1096 0.1425 0.1003 ...
##  $ compactness_mean       : num  0.2776 0.0786 0.1599 0.2839 0.1328 ...
##  $ concavity_mean         : num  0.3001 0.0869 0.1974 0.2414 0.198 ...
##  $ concave.points_mean    : num  0.1471 0.0702 0.1279 0.1052 0.1043 ...
##  $ symmetry_mean          : num  0.242 0.181 0.207 0.26 0.181 ...
##  $ fractal_dimension_mean : num  0.0787 0.0567 0.06 0.0974 0.0588 ...
##  $ radius_se              : num  1.095 0.543 0.746 0.496 0.757 ...
##  $ texture_se             : num  0.905 0.734 0.787 1.156 0.781 ...
##  $ perimeter_se           : num  8.59 3.4 4.58 3.44 5.44 ...
##  $ area_se                : num  153.4 74.1 94 27.2 94.4 ...
##  $ smoothness_se          : num  0.0064 0.00522 0.00615 0.00911 0.01149 ...
##  $ compactness_se         : num  0.049 0.0131 0.0401 0.0746 0.0246 ...
##  $ concavity_se           : num  0.0537 0.0186 0.0383 0.0566 0.0569 ...
##  $ concave.points_se      : num  0.0159 0.0134 0.0206 0.0187 0.0188 ...
##  $ symmetry_se            : num  0.03 0.0139 0.0225 0.0596 0.0176 ...
##  $ fractal_dimension_se   : num  0.00619 0.00353 0.00457 0.00921 0.00511 ...
##  $ radius_worst           : num  25.4 25 23.6 14.9 22.5 ...
##  $ texture_worst          : num  17.3 23.4 25.5 26.5 16.7 ...
##  $ perimeter_worst        : num  184.6 158.8 152.5 98.9 152.2 ...
##  $ area_worst             : num  2019 1956 1709 568 1575 ...
##  $ smoothness_worst       : num  0.162 0.124 0.144 0.21 0.137 ...
##  $ compactness_worst      : num  0.666 0.187 0.424 0.866 0.205 ...
##  $ concavity_worst        : num  0.712 0.242 0.45 0.687 0.4 ...
##  $ concave.points_worst   : num  0.265 0.186 0.243 0.258 0.163 ...
##  $ symmetry_worst         : num  0.46 0.275 0.361 0.664 0.236 ...
##  $ fractal_dimension_worst: num  0.1189 0.089 0.0876 0.173 0.0768 ...
##  $ X                      : logi  NA NA NA NA NA NA ...
summary(breast_cancer)
##        id             diagnosis          radius_mean      texture_mean  
##  Min.   :     8670   Length:569         Min.   : 6.981   Min.   : 9.71  
##  1st Qu.:   869218   Class :character   1st Qu.:11.700   1st Qu.:16.17  
##  Median :   906024   Mode  :character   Median :13.370   Median :18.84  
##  Mean   : 30371831                      Mean   :14.127   Mean   :19.29  
##  3rd Qu.:  8813129                      3rd Qu.:15.780   3rd Qu.:21.80  
##  Max.   :911320502                      Max.   :28.110   Max.   :39.28  
##  perimeter_mean     area_mean      smoothness_mean   compactness_mean 
##  Min.   : 43.79   Min.   : 143.5   Min.   :0.05263   Min.   :0.01938  
##  1st Qu.: 75.17   1st Qu.: 420.3   1st Qu.:0.08637   1st Qu.:0.06492  
##  Median : 86.24   Median : 551.1   Median :0.09587   Median :0.09263  
##  Mean   : 91.97   Mean   : 654.9   Mean   :0.09636   Mean   :0.10434  
##  3rd Qu.:104.10   3rd Qu.: 782.7   3rd Qu.:0.10530   3rd Qu.:0.13040  
##  Max.   :188.50   Max.   :2501.0   Max.   :0.16340   Max.   :0.34540  
##  concavity_mean    concave.points_mean symmetry_mean    fractal_dimension_mean
##  Min.   :0.00000   Min.   :0.00000     Min.   :0.1060   Min.   :0.04996       
##  1st Qu.:0.02956   1st Qu.:0.02031     1st Qu.:0.1619   1st Qu.:0.05770       
##  Median :0.06154   Median :0.03350     Median :0.1792   Median :0.06154       
##  Mean   :0.08880   Mean   :0.04892     Mean   :0.1812   Mean   :0.06280       
##  3rd Qu.:0.13070   3rd Qu.:0.07400     3rd Qu.:0.1957   3rd Qu.:0.06612       
##  Max.   :0.42680   Max.   :0.20120     Max.   :0.3040   Max.   :0.09744       
##    radius_se        texture_se      perimeter_se       area_se       
##  Min.   :0.1115   Min.   :0.3602   Min.   : 0.757   Min.   :  6.802  
##  1st Qu.:0.2324   1st Qu.:0.8339   1st Qu.: 1.606   1st Qu.: 17.850  
##  Median :0.3242   Median :1.1080   Median : 2.287   Median : 24.530  
##  Mean   :0.4052   Mean   :1.2169   Mean   : 2.866   Mean   : 40.337  
##  3rd Qu.:0.4789   3rd Qu.:1.4740   3rd Qu.: 3.357   3rd Qu.: 45.190  
##  Max.   :2.8730   Max.   :4.8850   Max.   :21.980   Max.   :542.200  
##  smoothness_se      compactness_se      concavity_se     concave.points_se 
##  Min.   :0.001713   Min.   :0.002252   Min.   :0.00000   Min.   :0.000000  
##  1st Qu.:0.005169   1st Qu.:0.013080   1st Qu.:0.01509   1st Qu.:0.007638  
##  Median :0.006380   Median :0.020450   Median :0.02589   Median :0.010930  
##  Mean   :0.007041   Mean   :0.025478   Mean   :0.03189   Mean   :0.011796  
##  3rd Qu.:0.008146   3rd Qu.:0.032450   3rd Qu.:0.04205   3rd Qu.:0.014710  
##  Max.   :0.031130   Max.   :0.135400   Max.   :0.39600   Max.   :0.052790  
##   symmetry_se       fractal_dimension_se  radius_worst   texture_worst  
##  Min.   :0.007882   Min.   :0.0008948    Min.   : 7.93   Min.   :12.02  
##  1st Qu.:0.015160   1st Qu.:0.0022480    1st Qu.:13.01   1st Qu.:21.08  
##  Median :0.018730   Median :0.0031870    Median :14.97   Median :25.41  
##  Mean   :0.020542   Mean   :0.0037949    Mean   :16.27   Mean   :25.68  
##  3rd Qu.:0.023480   3rd Qu.:0.0045580    3rd Qu.:18.79   3rd Qu.:29.72  
##  Max.   :0.078950   Max.   :0.0298400    Max.   :36.04   Max.   :49.54  
##  perimeter_worst    area_worst     smoothness_worst  compactness_worst
##  Min.   : 50.41   Min.   : 185.2   Min.   :0.07117   Min.   :0.02729  
##  1st Qu.: 84.11   1st Qu.: 515.3   1st Qu.:0.11660   1st Qu.:0.14720  
##  Median : 97.66   Median : 686.5   Median :0.13130   Median :0.21190  
##  Mean   :107.26   Mean   : 880.6   Mean   :0.13237   Mean   :0.25427  
##  3rd Qu.:125.40   3rd Qu.:1084.0   3rd Qu.:0.14600   3rd Qu.:0.33910  
##  Max.   :251.20   Max.   :4254.0   Max.   :0.22260   Max.   :1.05800  
##  concavity_worst  concave.points_worst symmetry_worst   fractal_dimension_worst
##  Min.   :0.0000   Min.   :0.00000      Min.   :0.1565   Min.   :0.05504        
##  1st Qu.:0.1145   1st Qu.:0.06493      1st Qu.:0.2504   1st Qu.:0.07146        
##  Median :0.2267   Median :0.09993      Median :0.2822   Median :0.08004        
##  Mean   :0.2722   Mean   :0.11461      Mean   :0.2901   Mean   :0.08395        
##  3rd Qu.:0.3829   3rd Qu.:0.16140      3rd Qu.:0.3179   3rd Qu.:0.09208        
##  Max.   :1.2520   Max.   :0.29100      Max.   :0.6638   Max.   :0.20750        
##     X          
##  Mode:logical  
##  NA's:569      
##                
##                
##                
## 
breast_cancer = breast_cancer%>%select(-id,-X)
breast_cancer %>% apply(2, is.na) %>% apply(2,sum)
##               diagnosis             radius_mean            texture_mean 
##                       0                       0                       0 
##          perimeter_mean               area_mean         smoothness_mean 
##                       0                       0                       0 
##        compactness_mean          concavity_mean     concave.points_mean 
##                       0                       0                       0 
##           symmetry_mean  fractal_dimension_mean               radius_se 
##                       0                       0                       0 
##              texture_se            perimeter_se                 area_se 
##                       0                       0                       0 
##           smoothness_se          compactness_se            concavity_se 
##                       0                       0                       0 
##       concave.points_se             symmetry_se    fractal_dimension_se 
##                       0                       0                       0 
##            radius_worst           texture_worst         perimeter_worst 
##                       0                       0                       0 
##              area_worst        smoothness_worst       compactness_worst 
##                       0                       0                       0 
##         concavity_worst    concave.points_worst          symmetry_worst 
##                       0                       0                       0 
## fractal_dimension_worst 
##                       0
table(breast_cancer$diagnosis)
## 
##   B   M 
## 357 212
#encode = function(x){if (x=="M"){return(1)} else{return(0)}}
#breast_cancer$diagnosis = unlist(lapply(breast_cancer$diagnosis,encode))

#table(breast_cancer$diagnosis)
for (col in colnames(breast_cancer)[-1])
{
  boxplot(breast_cancer[,col] ~ breast_cancer$diagnosis, xlab = 'Malignant or Benign', ylab = col, main = paste(col,' x ', 'diagnosis') )
}

intrain = createDataPartition(y = breast_cancer$diagnosis, p = 0.8, list = FALSE)

training <- breast_cancer[intrain, ]
testing <- breast_cancer[-intrain, ]
#Train a logistic regression
model <- train(diagnosis ~ . , data = training, method = 'glm')
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
vip(model)

predictions <- predict(model, testing)

#plot tree
plot(model$finalModel)

## Warning in sqrt(crit * p * (1 - hh)/hh): production de NaN
## Warning in sqrt(crit * p * (1 - hh)/hh): production de NaN

confusionMatrix(factor(predictions), factor(testing$diagnosis))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  B  M
##          B 68  2
##          M  3 40
##                                           
##                Accuracy : 0.9558          
##                  95% CI : (0.8998, 0.9855)
##     No Information Rate : 0.6283          
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.9057          
##                                           
##  Mcnemar's Test P-Value : 1               
##                                           
##             Sensitivity : 0.9577          
##             Specificity : 0.9524          
##          Pos Pred Value : 0.9714          
##          Neg Pred Value : 0.9302          
##              Prevalence : 0.6283          
##          Detection Rate : 0.6018          
##    Detection Prevalence : 0.6195          
##       Balanced Accuracy : 0.9551          
##                                           
##        'Positive' Class : B               
## 
#Train a DT
model <- train(diagnosis ~ . , data = training, method = 'rpart')
vip(model)

predictions <- predict(model, testing)

#plot tree
plot(model$finalModel, uniform=TRUE, 
     main="Classification Tree")

text(model$finalModel, use.n=TRUE, all=TRUE, cex=.6)

confusionMatrix(factor(predictions), factor(testing$diagnosis))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  B  M
##          B 64  8
##          M  7 34
##                                           
##                Accuracy : 0.8673          
##                  95% CI : (0.7905, 0.9238)
##     No Information Rate : 0.6283          
##     P-Value [Acc > NIR] : 1.435e-08       
##                                           
##                   Kappa : 0.7144          
##                                           
##  Mcnemar's Test P-Value : 1               
##                                           
##             Sensitivity : 0.9014          
##             Specificity : 0.8095          
##          Pos Pred Value : 0.8889          
##          Neg Pred Value : 0.8293          
##              Prevalence : 0.6283          
##          Detection Rate : 0.5664          
##    Detection Prevalence : 0.6372          
##       Balanced Accuracy : 0.8555          
##                                           
##        'Positive' Class : B               
## 
#Train a rf
model <- train(diagnosis ~ . , data = training, method = 'rf')
vip(model)

predictions <- predict(model, testing)

#plot tree
plot(model$finalModel)

confusionMatrix(factor(predictions), factor(testing$diagnosis))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  B  M
##          B 70  2
##          M  1 40
##                                           
##                Accuracy : 0.9735          
##                  95% CI : (0.9244, 0.9945)
##     No Information Rate : 0.6283          
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.9429          
##                                           
##  Mcnemar's Test P-Value : 1               
##                                           
##             Sensitivity : 0.9859          
##             Specificity : 0.9524          
##          Pos Pred Value : 0.9722          
##          Neg Pred Value : 0.9756          
##              Prevalence : 0.6283          
##          Detection Rate : 0.6195          
##    Detection Prevalence : 0.6372          
##       Balanced Accuracy : 0.9691          
##                                           
##        'Positive' Class : B               
## 
#$overall["Accuracy"]