R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Including Plots

You can also embed plots, for example:

Introduction:

##Title: How Baby Boomers Get High ### This dataset covers the story behind “How Baby Boomers Get High” and it covers 13 drugs across 17 age groups. ### It holds the records of percentage of those in age group who used these 13 drugs in the last 12 months. ### It holds the records of median number of times a user in an age group uses these drugs in the last 12 months. ### Link to access article: https://fivethirtyeight.com/features/how-baby-boomers-get-high/ # Load Libraries:

library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.2     v dplyr   1.0.7
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(dplyr)

Import CSV Data from Github:

drug_df <- read_csv("https://raw.githubusercontent.com/uzmabb182/CUNY-SPS-Assignments/main/data_607/week1/drug-use-by-age.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   .default = col_double(),
##   age = col_character(),
##   `cocaine-frequency` = col_character(),
##   `crack-frequency` = col_character(),
##   `heroin-frequency` = col_character(),
##   `inhalant-frequency` = col_character(),
##   `oxycontin-frequency` = col_character(),
##   `meth-frequency` = col_character()
## )
## i Use `spec()` for the full column specifications.
drug_df
## # A tibble: 17 x 28
##    age       n `alcohol-use` `alcohol-frequen~ `marijuana-use` `marijuana-frequ~
##    <chr> <dbl>         <dbl>             <dbl>           <dbl>             <dbl>
##  1 12     2798           3.9                 3             1.1                 4
##  2 13     2757           8.5                 6             3.4                15
##  3 14     2792          18.1                 5             8.7                24
##  4 15     2956          29.2                 6            14.5                25
##  5 16     3058          40.1                10            22.5                30
##  6 17     3038          49.3                13            28                  36
##  7 18     2469          58.7                24            33.7                52
##  8 19     2223          64.6                36            33.4                60
##  9 20     2271          69.7                48            34                  60
## 10 21     2354          83.2                52            33                  52
## 11 22-23  4707          84.2                52            28.4                52
## 12 24-25  4591          83.1                52            24.9                60
## 13 26-29  2628          80.7                52            20.8                52
## 14 30-34  2864          77.5                52            16.4                72
## 15 35-49  7391          75                  52            10.4                48
## 16 50-64  3923          67.2                52             7.3                52
## 17 65+    2448          49.3                52             1.2                36
## # ... with 22 more variables: cocaine-use <dbl>, cocaine-frequency <chr>,
## #   crack-use <dbl>, crack-frequency <chr>, heroin-use <dbl>,
## #   heroin-frequency <chr>, hallucinogen-use <dbl>,
## #   hallucinogen-frequency <dbl>, inhalant-use <dbl>, inhalant-frequency <chr>,
## #   pain-releiver-use <dbl>, pain-releiver-frequency <dbl>,
## #   oxycontin-use <dbl>, oxycontin-frequency <chr>, tranquilizer-use <dbl>,
## #   tranquilizer-frequency <dbl>, stimulant-use <dbl>,
## #   stimulant-frequency <dbl>, meth-use <dbl>, meth-frequency <chr>,
## #   sedative-use <dbl>, sedative-frequency <dbl>

gsub() funtion searches for the charater to replace in the column names

names(drug_df) <- gsub("-", "_", names(drug_df))
drug_df
## # A tibble: 17 x 28
##    age       n alcohol_use alcohol_frequency marijuana_use marijuana_frequency
##    <chr> <dbl>       <dbl>             <dbl>         <dbl>               <dbl>
##  1 12     2798         3.9                 3           1.1                   4
##  2 13     2757         8.5                 6           3.4                  15
##  3 14     2792        18.1                 5           8.7                  24
##  4 15     2956        29.2                 6          14.5                  25
##  5 16     3058        40.1                10          22.5                  30
##  6 17     3038        49.3                13          28                    36
##  7 18     2469        58.7                24          33.7                  52
##  8 19     2223        64.6                36          33.4                  60
##  9 20     2271        69.7                48          34                    60
## 10 21     2354        83.2                52          33                    52
## 11 22-23  4707        84.2                52          28.4                  52
## 12 24-25  4591        83.1                52          24.9                  60
## 13 26-29  2628        80.7                52          20.8                  52
## 14 30-34  2864        77.5                52          16.4                  72
## 15 35-49  7391        75                  52          10.4                  48
## 16 50-64  3923        67.2                52           7.3                  52
## 17 65+    2448        49.3                52           1.2                  36
## # ... with 22 more variables: cocaine_use <dbl>, cocaine_frequency <chr>,
## #   crack_use <dbl>, crack_frequency <chr>, heroin_use <dbl>,
## #   heroin_frequency <chr>, hallucinogen_use <dbl>,
## #   hallucinogen_frequency <dbl>, inhalant_use <dbl>, inhalant_frequency <chr>,
## #   pain_releiver_use <dbl>, pain_releiver_frequency <dbl>,
## #   oxycontin_use <dbl>, oxycontin_frequency <chr>, tranquilizer_use <dbl>,
## #   tranquilizer_frequency <dbl>, stimulant_use <dbl>,
## #   stimulant_frequency <dbl>, meth_use <dbl>, meth_frequency <chr>,
## #   sedative_use <dbl>, sedative_frequency <dbl>

EDA: Fetching column names

colnames(drug_df) 
##  [1] "age"                     "n"                      
##  [3] "alcohol_use"             "alcohol_frequency"      
##  [5] "marijuana_use"           "marijuana_frequency"    
##  [7] "cocaine_use"             "cocaine_frequency"      
##  [9] "crack_use"               "crack_frequency"        
## [11] "heroin_use"              "heroin_frequency"       
## [13] "hallucinogen_use"        "hallucinogen_frequency" 
## [15] "inhalant_use"            "inhalant_frequency"     
## [17] "pain_releiver_use"       "pain_releiver_frequency"
## [19] "oxycontin_use"           "oxycontin_frequency"    
## [21] "tranquilizer_use"        "tranquilizer_frequency" 
## [23] "stimulant_use"           "stimulant_frequency"    
## [25] "meth_use"                "meth_frequency"         
## [27] "sedative_use"            "sedative_frequency"

Rename a single column name

names(drug_df)[2] <- "sample_size"
str(drug_df)
## spec_tbl_df [17 x 28] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ age                    : chr [1:17] "12" "13" "14" "15" ...
##  $ sample_size            : num [1:17] 2798 2757 2792 2956 3058 ...
##  $ alcohol_use            : num [1:17] 3.9 8.5 18.1 29.2 40.1 49.3 58.7 64.6 69.7 83.2 ...
##  $ alcohol_frequency      : num [1:17] 3 6 5 6 10 13 24 36 48 52 ...
##  $ marijuana_use          : num [1:17] 1.1 3.4 8.7 14.5 22.5 28 33.7 33.4 34 33 ...
##  $ marijuana_frequency    : num [1:17] 4 15 24 25 30 36 52 60 60 52 ...
##  $ cocaine_use            : num [1:17] 0.1 0.1 0.1 0.5 1 2 3.2 4.1 4.9 4.8 ...
##  $ cocaine_frequency      : chr [1:17] "5.0" "1.0" "5.5" "4.0" ...
##  $ crack_use              : num [1:17] 0 0 0 0.1 0 0.1 0.4 0.5 0.6 0.5 ...
##  $ crack_frequency        : chr [1:17] "-" "3.0" "-" "9.5" ...
##  $ heroin_use             : num [1:17] 0.1 0 0.1 0.2 0.1 0.1 0.4 0.5 0.9 0.6 ...
##  $ heroin_frequency       : chr [1:17] "35.5" "-" "2.0" "1.0" ...
##  $ hallucinogen_use       : num [1:17] 0.2 0.6 1.6 2.1 3.4 4.8 7 8.6 7.4 6.3 ...
##  $ hallucinogen_frequency : num [1:17] 52 6 3 4 3 3 4 3 2 4 ...
##  $ inhalant_use           : num [1:17] 1.6 2.5 2.6 2.5 3 2 1.8 1.4 1.5 1.4 ...
##  $ inhalant_frequency     : chr [1:17] "19.0" "12.0" "5.0" "5.5" ...
##  $ pain_releiver_use      : num [1:17] 2 2.4 3.9 5.5 6.2 8.5 9.2 9.4 10 9 ...
##  $ pain_releiver_frequency: num [1:17] 36 14 12 10 7 9 12 12 10 15 ...
##  $ oxycontin_use          : num [1:17] 0.1 0.1 0.4 0.8 1.1 1.4 1.7 1.5 1.7 1.3 ...
##  $ oxycontin_frequency    : chr [1:17] "24.5" "41.0" "4.5" "3.0" ...
##  $ tranquilizer_use       : num [1:17] 0.2 0.3 0.9 2 2.4 3.5 4.9 4.2 5.4 3.9 ...
##  $ tranquilizer_frequency : num [1:17] 52 25.5 5 4.5 11 7 12 4.5 10 7 ...
##  $ stimulant_use          : num [1:17] 0.2 0.3 0.8 1.5 1.8 2.8 3 3.3 4 4.1 ...
##  $ stimulant_frequency    : num [1:17] 2 4 12 6 9.5 9 8 6 12 10 ...
##  $ meth_use               : num [1:17] 0 0.1 0.1 0.3 0.3 0.6 0.5 0.4 0.9 0.6 ...
##  $ meth_frequency         : chr [1:17] "-" "5.0" "24.0" "10.5" ...
##  $ sedative_use           : num [1:17] 0.2 0.1 0.2 0.4 0.2 0.5 0.4 0.3 0.5 0.3 ...
##  $ sedative_frequency     : num [1:17] 13 19 16.5 30 3 6.5 10 6 4 9 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   age = col_character(),
##   ..   n = col_double(),
##   ..   `alcohol-use` = col_double(),
##   ..   `alcohol-frequency` = col_double(),
##   ..   `marijuana-use` = col_double(),
##   ..   `marijuana-frequency` = col_double(),
##   ..   `cocaine-use` = col_double(),
##   ..   `cocaine-frequency` = col_character(),
##   ..   `crack-use` = col_double(),
##   ..   `crack-frequency` = col_character(),
##   ..   `heroin-use` = col_double(),
##   ..   `heroin-frequency` = col_character(),
##   ..   `hallucinogen-use` = col_double(),
##   ..   `hallucinogen-frequency` = col_double(),
##   ..   `inhalant-use` = col_double(),
##   ..   `inhalant-frequency` = col_character(),
##   ..   `pain-releiver-use` = col_double(),
##   ..   `pain-releiver-frequency` = col_double(),
##   ..   `oxycontin-use` = col_double(),
##   ..   `oxycontin-frequency` = col_character(),
##   ..   `tranquilizer-use` = col_double(),
##   ..   `tranquilizer-frequency` = col_double(),
##   ..   `stimulant-use` = col_double(),
##   ..   `stimulant-frequency` = col_double(),
##   ..   `meth-use` = col_double(),
##   ..   `meth-frequency` = col_character(),
##   ..   `sedative-use` = col_double(),
##   ..   `sedative-frequency` = col_double()
##   .. )

#Identifying and subseting the columns to replace the value

drug_df[ ,7:27 ][drug_df[ ,7:27] == '-'] <- '0'
drug_df
## # A tibble: 17 x 28
##    age   sample_size alcohol_use alcohol_frequen~ marijuana_use marijuana_frequ~
##    <chr>       <dbl>       <dbl>            <dbl>         <dbl>            <dbl>
##  1 12           2798         3.9                3           1.1                4
##  2 13           2757         8.5                6           3.4               15
##  3 14           2792        18.1                5           8.7               24
##  4 15           2956        29.2                6          14.5               25
##  5 16           3058        40.1               10          22.5               30
##  6 17           3038        49.3               13          28                 36
##  7 18           2469        58.7               24          33.7               52
##  8 19           2223        64.6               36          33.4               60
##  9 20           2271        69.7               48          34                 60
## 10 21           2354        83.2               52          33                 52
## 11 22-23        4707        84.2               52          28.4               52
## 12 24-25        4591        83.1               52          24.9               60
## 13 26-29        2628        80.7               52          20.8               52
## 14 30-34        2864        77.5               52          16.4               72
## 15 35-49        7391        75                 52          10.4               48
## 16 50-64        3923        67.2               52           7.3               52
## 17 65+          2448        49.3               52           1.2               36
## # ... with 22 more variables: cocaine_use <dbl>, cocaine_frequency <chr>,
## #   crack_use <dbl>, crack_frequency <chr>, heroin_use <dbl>,
## #   heroin_frequency <chr>, hallucinogen_use <dbl>,
## #   hallucinogen_frequency <dbl>, inhalant_use <dbl>, inhalant_frequency <chr>,
## #   pain_releiver_use <dbl>, pain_releiver_frequency <dbl>,
## #   oxycontin_use <dbl>, oxycontin_frequency <chr>, tranquilizer_use <dbl>,
## #   tranquilizer_frequency <dbl>, stimulant_use <dbl>,
## #   stimulant_frequency <dbl>, meth_use <dbl>, meth_frequency <chr>,
## #   sedative_use <dbl>, sedative_frequency <dbl>

Checking the data for value changes

head(drug_df)
## # A tibble: 6 x 28
##   age   sample_size alcohol_use alcohol_frequency marijuana_use marijuana_frequ~
##   <chr>       <dbl>       <dbl>             <dbl>         <dbl>            <dbl>
## 1 12           2798         3.9                 3           1.1                4
## 2 13           2757         8.5                 6           3.4               15
## 3 14           2792        18.1                 5           8.7               24
## 4 15           2956        29.2                 6          14.5               25
## 5 16           3058        40.1                10          22.5               30
## 6 17           3038        49.3                13          28                 36
## # ... with 22 more variables: cocaine_use <dbl>, cocaine_frequency <chr>,
## #   crack_use <dbl>, crack_frequency <chr>, heroin_use <dbl>,
## #   heroin_frequency <chr>, hallucinogen_use <dbl>,
## #   hallucinogen_frequency <dbl>, inhalant_use <dbl>, inhalant_frequency <chr>,
## #   pain_releiver_use <dbl>, pain_releiver_frequency <dbl>,
## #   oxycontin_use <dbl>, oxycontin_frequency <chr>, tranquilizer_use <dbl>,
## #   tranquilizer_frequency <dbl>, stimulant_use <dbl>,
## #   stimulant_frequency <dbl>, meth_use <dbl>, meth_frequency <chr>,
## #   sedative_use <dbl>, sedative_frequency <dbl>

Subset by column and row:

# Selecting an age group with 50% or more use of alcohol

high_alcohol_use <- drug_df %>%                             # Using dplyr functions
  select(age, sample_size, alcohol_use, alcohol_frequency) %>% 
  filter(alcohol_use >= 50)
high_alcohol_use    
## # A tibble: 10 x 4
##    age   sample_size alcohol_use alcohol_frequency
##    <chr>       <dbl>       <dbl>             <dbl>
##  1 18           2469        58.7                24
##  2 19           2223        64.6                36
##  3 20           2271        69.7                48
##  4 21           2354        83.2                52
##  5 22-23        4707        84.2                52
##  6 24-25        4591        83.1                52
##  7 26-29        2628        80.7                52
##  8 30-34        2864        77.5                52
##  9 35-49        7391        75                  52
## 10 50-64        3923        67.2                52
summary(high_alcohol_use)
##      age             sample_size    alcohol_use    alcohol_frequency
##  Length:10          Min.   :2223   Min.   :58.70   Min.   :24.0     
##  Class :character   1st Qu.:2383   1st Qu.:67.83   1st Qu.:49.0     
##  Mode  :character   Median :2746   Median :76.25   Median :52.0     
##                     Mean   :3542   Mean   :74.39   Mean   :47.2     
##                     3rd Qu.:4424   3rd Qu.:82.50   3rd Qu.:52.0     
##                     Max.   :7391   Max.   :84.20   Max.   :52.0
ggplot(high_alcohol_use, aes(x = age, y = alcohol_use, fill = alcohol_use)) +
    geom_bar(stat = "identity") +
    coord_flip() +
    theme_classic()

ggplot(data = drug_df, aes(x = age, y = marijuana_use, color= marijuana_use)) + 
  geom_point() +
  labs(title = "Percentage of Marijuana Use by Age in past 12 Months")

  geom_smooth(method=lm) # add linear trend line
## geom_smooth: na.rm = FALSE, orientation = NA, se = TRUE
## stat_smooth: na.rm = FALSE, orientation = NA, se = TRUE, method = function (formula, data, subset, weights, na.action, method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE, contrasts = NULL, offset, ...) 
## {
##     ret.x <- x
##     ret.y <- y
##     cl <- match.call()
##     mf <- match.call(expand.dots = FALSE)
##     m <- match(c("formula", "data", "subset", "weights", "na.action", "offset"), names(mf), 0)
##     mf <- mf[c(1, m)]
##     mf$drop.unused.levels <- TRUE
##     mf[[1]] <- quote(stats::model.frame)
##     mf <- eval(mf, parent.frame())
##     if (method == "model.frame") 
##         return(mf)
##     else if (method != "qr") 
##         warning(gettextf("method = '%s' is not supported. Using 'qr'", method), domain = NA)
##     mt <- attr(mf, "terms")
##     y <- model.response(mf, "numeric")
##     w <- as.vector(model.weights(mf))
##     if (!is.null(w) && !is.numeric(w)) 
##         stop("'weights' must be a numeric vector")
##     offset <- model.offset(mf)
##     mlm <- is.matrix(y)
##     ny <- if (mlm) 
##         nrow(y)
##     else length(y)
##     if (!is.null(offset)) {
##         if (!mlm) 
##             offset <- as.vector(offset)
##         if (NROW(offset) != ny) 
##             stop(gettextf("number of offsets is %d, should equal %d (number of observations)", NROW(offset), ny), domain = NA)
##     }
##     if (is.empty.model(mt)) {
##         x <- NULL
##         z <- list(coefficients = if (mlm) matrix(NA, 0, ncol(y)) else numeric(), residuals = y, fitted.values = 0 * y, weights = w, rank = 0, df.residual = if (!is.null(w)) sum(w != 0) else ny)
##         if (!is.null(offset)) {
##             z$fitted.values <- offset
##             z$residuals <- y - offset
##         }
##     }
##     else {
##         x <- model.matrix(mt, mf, contrasts)
##         z <- if (is.null(w)) 
##             lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...)
##         else lm.wfit(x, y, w, offset = offset, singular.ok = singular.ok, ...)
##     }
##     class(z) <- c(if (mlm) "mlm", "lm")
##     z$na.action <- attr(mf, "na.action")
##     z$offset <- offset
##     z$contrasts <- attr(x, "contrasts")
##     z$xlevels <- .getXlevels(mt, mf)
##     z$call <- cl
##     z$terms <- mt
##     if (model) 
##         z$model <- mf
##     if (ret.x) 
##         z$x <- x
##     if (ret.y) 
##         z$y <- y
##     if (!qr) 
##         z$qr <- NULL
##     z
## }
## position_identity

Selection Using Subset function:

# using subset function
heroin_data <- subset(drug_df, age >= 20,
select=c(age, heroin_use, heroin_frequency))
heroin_data
## # A tibble: 9 x 3
##   age   heroin_use heroin_frequency
##   <chr>      <dbl> <chr>           
## 1 20           0.9 45.0            
## 2 21           0.6 30.0            
## 3 22-23        1.1 57.5            
## 4 24-25        0.7 88.0            
## 5 26-29        0.6 50.0            
## 6 30-34        0.4 66.0            
## 7 35-49        0.1 280.0           
## 8 50-64        0.1 41.0            
## 9 65+          0   120.0

Visual presentation

ggplot(data = heroin_data, aes(x = age, y = heroin_use, color= heroin_use)) + 
  geom_point() +
  geom_smooth(method=lm) # add linear trend line
## `geom_smooth()` using formula 'y ~ x'

ggplot(drug_df, aes(x = age, y = cocaine_use, fill = cocaine_use)) +
    geom_bar(stat = "identity") +
    coord_flip() +
    theme_classic()

# Conclusion Analysis:

Alcohol_use is highest anong the age group of 22-23

Alcohol_use Mean: 55.43%

Marijuana_use is highest among the age group of 18-20

Marijuana_use Mean: 18.92%

Heroin_use is highest anong the age group of 22-23

Heroin_use Mean: 0.3529%

Cocaine_use is highest anong the age group of 20-21

Cocaine_use Mean: 0.2941%

The boomers aged 50 to 64, have lower rates of drug use overall than their younger generations

summary(drug_df)
##      age             sample_size    alcohol_use    alcohol_frequency
##  Length:17          Min.   :2223   Min.   : 3.90   Min.   : 3.00    
##  Class :character   1st Qu.:2469   1st Qu.:40.10   1st Qu.:10.00    
##  Mode  :character   Median :2798   Median :64.60   Median :48.00    
##                     Mean   :3251   Mean   :55.43   Mean   :33.35    
##                     3rd Qu.:3058   3rd Qu.:77.50   3rd Qu.:52.00    
##                     Max.   :7391   Max.   :84.20   Max.   :52.00    
##  marijuana_use   marijuana_frequency  cocaine_use    cocaine_frequency 
##  Min.   : 1.10   Min.   : 4.00       Min.   :0.000   Length:17         
##  1st Qu.: 8.70   1st Qu.:30.00       1st Qu.:0.500   Class :character  
##  Median :20.80   Median :52.00       Median :2.000   Mode  :character  
##  Mean   :18.92   Mean   :42.94       Mean   :2.176                     
##  3rd Qu.:28.40   3rd Qu.:52.00       3rd Qu.:4.000                     
##  Max.   :34.00   Max.   :72.00       Max.   :4.900                     
##    crack_use      crack_frequency      heroin_use     heroin_frequency  
##  Min.   :0.0000   Length:17          Min.   :0.0000   Length:17         
##  1st Qu.:0.0000   Class :character   1st Qu.:0.1000   Class :character  
##  Median :0.4000   Mode  :character   Median :0.2000   Mode  :character  
##  Mean   :0.2941                      Mean   :0.3529                     
##  3rd Qu.:0.5000                      3rd Qu.:0.6000                     
##  Max.   :0.6000                      Max.   :1.1000                     
##  hallucinogen_use hallucinogen_frequency  inhalant_use   inhalant_frequency
##  Min.   :0.100    Min.   : 2.000         Min.   :0.000   Length:17         
##  1st Qu.:0.600    1st Qu.: 3.000         1st Qu.:0.600   Class :character  
##  Median :3.200    Median : 3.000         Median :1.400   Mode  :character  
##  Mean   :3.394    Mean   : 8.412         Mean   :1.388                     
##  3rd Qu.:5.200    3rd Qu.: 4.000         3rd Qu.:2.000                     
##  Max.   :8.600    Max.   :52.000         Max.   :3.000                     
##  pain_releiver_use pain_releiver_frequency oxycontin_use    oxycontin_frequency
##  Min.   : 0.600    Min.   : 7.00           Min.   :0.0000   Length:17          
##  1st Qu.: 3.900    1st Qu.:12.00           1st Qu.:0.4000   Class :character   
##  Median : 6.200    Median :12.00           Median :1.1000   Mode  :character   
##  Mean   : 6.271    Mean   :14.71           Mean   :0.9353                      
##  3rd Qu.: 9.000    3rd Qu.:15.00           3rd Qu.:1.4000                      
##  Max.   :10.000    Max.   :36.00           Max.   :1.7000                      
##  tranquilizer_use tranquilizer_frequency stimulant_use   stimulant_frequency
##  Min.   :0.200    Min.   : 4.50          Min.   :0.000   Min.   :  2.00     
##  1st Qu.:1.400    1st Qu.: 6.00          1st Qu.:0.600   1st Qu.:  7.00     
##  Median :3.500    Median :10.00          Median :1.800   Median : 10.00     
##  Mean   :2.806    Mean   :11.74          Mean   :1.918   Mean   : 31.15     
##  3rd Qu.:4.200    3rd Qu.:11.00          3rd Qu.:3.000   3rd Qu.: 12.00     
##  Max.   :5.400    Max.   :52.00          Max.   :4.100   Max.   :364.00     
##     meth_use      meth_frequency      sedative_use    sedative_frequency
##  Min.   :0.0000   Length:17          Min.   :0.0000   Min.   :  3.00    
##  1st Qu.:0.2000   Class :character   1st Qu.:0.2000   1st Qu.:  6.50    
##  Median :0.4000   Mode  :character   Median :0.3000   Median : 10.00    
##  Mean   :0.3824                      Mean   :0.2824   Mean   : 19.38    
##  3rd Qu.:0.6000                      3rd Qu.:0.4000   3rd Qu.: 17.50    
##  Max.   :0.9000                      Max.   :0.5000   Max.   :104.00

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.