2. Data Inspection.
library(data.table)
df<-fread("http://bit.ly/CarreFourDataset")
head(df)
## Invoice ID Branch Customer type Gender Product line Unit price
## 1: 750-67-8428 A Member Female Health and beauty 74.69
## 2: 226-31-3081 C Normal Female Electronic accessories 15.28
## 3: 631-41-3108 A Normal Male Home and lifestyle 46.33
## 4: 123-19-1176 A Member Male Health and beauty 58.22
## 5: 373-73-7910 A Normal Male Sports and travel 86.31
## 6: 699-14-3026 C Normal Male Electronic accessories 85.39
## Quantity Tax Date Time Payment cogs gross margin percentage
## 1: 7 26.1415 1/5/2019 13:08 Ewallet 522.83 4.761905
## 2: 5 3.8200 3/8/2019 10:29 Cash 76.40 4.761905
## 3: 7 16.2155 3/3/2019 13:23 Credit card 324.31 4.761905
## 4: 8 23.2880 1/27/2019 20:33 Ewallet 465.76 4.761905
## 5: 7 30.2085 2/8/2019 10:37 Ewallet 604.17 4.761905
## 6: 7 29.8865 3/25/2019 18:30 Ewallet 597.73 4.761905
## gross income Rating Total
## 1: 26.1415 9.1 548.9715
## 2: 3.8200 9.6 80.2200
## 3: 16.2155 7.4 340.5255
## 4: 23.2880 8.4 489.0480
## 5: 30.2085 5.3 634.3785
## 6: 29.8865 4.1 627.6165
Checking for missing values
# Checking for missing values
any(is.na.data.frame(df))
## [1] FALSE
# There are no missing values
Checking for duplicated values
# Checking for duplicated data
any(duplicated.data.frame(df))
## [1] FALSE
# There are no duplicates in our dataset
Encoding categorical variables to nominal to perform PCA
library("dplyr")
## Warning: package 'dplyr' was built under R version 4.0.5
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
##
## between, first, last
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
numerical<-select_if(df,is.numeric)
numerical
## Unit price Quantity Tax cogs gross margin percentage gross income
## 1: 74.69 7 26.1415 522.83 4.761905 26.1415
## 2: 15.28 5 3.8200 76.40 4.761905 3.8200
## 3: 46.33 7 16.2155 324.31 4.761905 16.2155
## 4: 58.22 8 23.2880 465.76 4.761905 23.2880
## 5: 86.31 7 30.2085 604.17 4.761905 30.2085
## ---
## 996: 40.35 1 2.0175 40.35 4.761905 2.0175
## 997: 97.38 10 48.6900 973.80 4.761905 48.6900
## 998: 31.84 1 1.5920 31.84 4.761905 1.5920
## 999: 65.82 1 3.2910 65.82 4.761905 3.2910
## 1000: 88.34 7 30.9190 618.38 4.761905 30.9190
## Rating Total
## 1: 9.1 548.9715
## 2: 9.6 80.2200
## 3: 7.4 340.5255
## 4: 8.4 489.0480
## 5: 5.3 634.3785
## ---
## 996: 6.2 42.3675
## 997: 4.4 1022.4900
## 998: 7.7 33.4320
## 999: 4.1 69.1110
## 1000: 6.6 649.2990
# Selecting non numeric columns
head(df)
## Invoice ID Branch Customer type Gender Product line Unit price
## 1: 750-67-8428 A Member Female Health and beauty 74.69
## 2: 226-31-3081 C Normal Female Electronic accessories 15.28
## 3: 631-41-3108 A Normal Male Home and lifestyle 46.33
## 4: 123-19-1176 A Member Male Health and beauty 58.22
## 5: 373-73-7910 A Normal Male Sports and travel 86.31
## 6: 699-14-3026 C Normal Male Electronic accessories 85.39
## Quantity Tax Date Time Payment cogs gross margin percentage
## 1: 7 26.1415 1/5/2019 13:08 Ewallet 522.83 4.761905
## 2: 5 3.8200 3/8/2019 10:29 Cash 76.40 4.761905
## 3: 7 16.2155 3/3/2019 13:23 Credit card 324.31 4.761905
## 4: 8 23.2880 1/27/2019 20:33 Ewallet 465.76 4.761905
## 5: 7 30.2085 2/8/2019 10:37 Ewallet 604.17 4.761905
## 6: 7 29.8865 3/25/2019 18:30 Ewallet 597.73 4.761905
## gross income Rating Total
## 1: 26.1415 9.1 548.9715
## 2: 3.8200 9.6 80.2200
## 3: 16.2155 7.4 340.5255
## 4: 23.2880 8.4 489.0480
## 5: 30.2085 5.3 634.3785
## 6: 29.8865 4.1 627.6165
# Caret package for dummy variables
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.0.5
# Encoding using Dummy variables and excluding unique ID and date time data
dums<-dummyVars("~.",data=df[,c(-1,-9,-10)])
dums
## Dummy Variable Object
##
## Formula: ~.
## <environment: 0x00000000343ef040>
## 13 variables, 0 factors
## Variables and levels will be separated by '.'
## A less than full rank encoding is used
# Encoding.
new_df<-data.frame(predict(dums,newdata =df[,c(-1,-9,-10)]))
new_df
## BranchA BranchB BranchC X.Customer.type.Member X.Customer.type.Normal
## 1 1 0 0 1 0
## 2 0 0 1 0 1
## 3 1 0 0 0 1
## 4 1 0 0 1 0
## 5 1 0 0 0 1
## 6 0 0 1 0 1
## 7 1 0 0 1 0
## 8 0 0 1 0 1
## 9 1 0 0 1 0
## 10 0 1 0 1 0
## 11 0 1 0 1 0
## 12 0 1 0 1 0
## 13 1 0 0 0 1
## 14 1 0 0 0 1
## 15 1 0 0 0 1
## 16 0 1 0 1 0
## 17 1 0 0 1 0
## 18 1 0 0 0 1
## 19 1 0 0 0 1
## 20 0 1 0 0 1
## 21 0 0 1 1 0
## 22 0 1 0 0 1
## 23 0 1 0 0 1
## 24 1 0 0 0 1
## 25 1 0 0 1 0
## 26 1 0 0 1 0
## 27 0 1 0 0 1
## 28 1 0 0 0 1
## 29 0 1 0 0 1
## 30 1 0 0 0 1
## 31 0 1 0 0 1
## 32 0 1 0 1 0
## 33 0 1 0 0 1
## 34 1 0 0 0 1
## 35 0 0 1 1 0
## 36 0 0 1 1 0
## 37 1 0 0 1 0
## 38 1 0 0 0 1
## 39 0 0 1 0 1
## 40 0 1 0 1 0
## 41 0 1 0 1 0
## 42 0 0 1 1 0
## 43 0 1 0 1 0
## 44 0 0 1 1 0
## 45 0 0 1 1 0
## 46 0 1 0 1 0
## 47 0 1 0 1 0
## 48 0 1 0 1 0
## 49 0 1 0 1 0
## 50 0 0 1 1 0
## 51 0 0 1 1 0
## 52 1 0 0 1 0
## 53 0 1 0 1 0
## 54 0 0 1 1 0
## 55 0 1 0 0 1
## 56 0 0 1 0 1
## 57 1 0 0 1 0
## 58 1 0 0 0 1
## 59 1 0 0 1 0
## 60 0 0 1 0 1
## 61 0 0 1 1 0
## 62 0 0 1 0 1
## 63 0 1 0 1 0
## 64 1 0 0 1 0
## 65 0 1 0 1 0
## 66 1 0 0 1 0
## 67 0 0 1 0 1
## 68 0 1 0 1 0
## 69 1 0 0 0 1
## 70 1 0 0 1 0
## 71 0 0 1 0 1
## 72 0 0 1 0 1
## 73 0 1 0 1 0
## 74 0 0 1 0 1
## 75 1 0 0 0 1
## 76 0 0 1 0 1
## 77 0 0 1 1 0
## 78 1 0 0 1 0
## 79 0 0 1 1 0
## 80 0 0 1 0 1
## 81 0 0 1 0 1
## 82 0 1 0 0 1
## 83 0 0 1 0 1
## 84 0 0 1 1 0
## 85 0 0 1 1 0
## 86 0 0 1 0 1
## 87 0 0 1 0 1
## 88 1 0 0 1 0
## 89 1 0 0 0 1
## 90 0 1 0 0 1
## 91 0 0 1 1 0
## 92 0 0 1 0 1
## 93 1 0 0 1 0
## 94 0 1 0 1 0
## 95 0 0 1 0 1
## 96 1 0 0 0 1
## 97 0 1 0 0 1
## 98 0 0 1 0 1
## 99 1 0 0 0 1
## 100 0 1 0 0 1
## 101 0 0 1 1 0
## 102 0 0 1 0 1
## 103 0 0 1 0 1
## 104 1 0 0 0 1
## 105 0 1 0 0 1
## 106 1 0 0 1 0
## 107 0 0 1 0 1
## 108 1 0 0 0 1
## 109 0 0 1 0 1
## 110 0 0 1 1 0
## 111 0 1 0 1 0
## 112 0 0 1 1 0
## 113 0 1 0 0 1
## 114 1 0 0 1 0
## 115 0 0 1 1 0
## 116 0 0 1 0 1
## 117 0 1 0 1 0
## 118 0 1 0 1 0
## 119 1 0 0 0 1
## 120 0 1 0 0 1
## 121 1 0 0 0 1
## 122 0 0 1 1 0
## 123 0 1 0 1 0
## 124 0 0 1 1 0
## 125 0 1 0 1 0
## 126 1 0 0 0 1
## 127 1 0 0 0 1
## 128 0 0 1 0 1
## 129 0 0 1 1 0
## 130 0 1 0 0 1
## 131 0 1 0 0 1
## 132 1 0 0 1 0
## 133 0 1 0 0 1
## 134 0 1 0 1 0
## 135 0 0 1 0 1
## 136 0 0 1 0 1
## 137 1 0 0 0 1
## 138 1 0 0 1 0
## 139 0 1 0 0 1
## 140 1 0 0 0 1
## 141 0 0 1 1 0
## 142 0 0 1 1 0
## 143 0 0 1 1 0
## 144 0 0 1 1 0
## 145 1 0 0 0 1
## 146 0 0 1 0 1
## 147 1 0 0 1 0
## 148 0 0 1 0 1
## 149 0 1 0 1 0
## 150 1 0 0 0 1
## 151 0 1 0 1 0
## 152 0 0 1 1 0
## 153 1 0 0 0 1
## 154 0 0 1 0 1
## 155 0 0 1 0 1
## 156 1 0 0 1 0
## 157 0 1 0 1 0
## 158 0 1 0 0 1
## 159 0 1 0 1 0
## 160 0 1 0 0 1
## 161 0 0 1 0 1
## 162 1 0 0 0 1
## 163 1 0 0 0 1
## 164 0 0 1 0 1
## 165 0 1 0 0 1
## 166 0 1 0 1 0
## 167 0 0 1 0 1
## 168 1 0 0 0 1
## 169 1 0 0 0 1
## 170 1 0 0 1 0
## 171 1 0 0 0 1
## 172 0 1 0 1 0
## 173 0 0 1 0 1
## 174 0 1 0 1 0
## 175 0 1 0 0 1
## 176 1 0 0 1 0
## 177 1 0 0 1 0
## 178 0 0 1 0 1
## 179 1 0 0 0 1
## 180 0 0 1 1 0
## 181 0 0 1 0 1
## 182 0 0 1 1 0
## 183 1 0 0 1 0
## 184 0 0 1 0 1
## 185 1 0 0 0 1
## 186 0 1 0 1 0
## 187 0 1 0 1 0
## 188 0 1 0 1 0
## 189 1 0 0 0 1
## 190 0 0 1 0 1
## 191 0 1 0 0 1
## 192 0 1 0 0 1
## 193 0 0 1 0 1
## 194 0 1 0 0 1
## 195 1 0 0 0 1
## 196 0 0 1 1 0
## 197 0 0 1 1 0
## 198 1 0 0 0 1
## 199 0 0 1 0 1
## 200 0 0 1 1 0
## 201 0 0 1 1 0
## 202 0 1 0 1 0
## 203 0 0 1 0 1
## 204 0 1 0 1 0
## 205 0 1 0 1 0
## 206 1 0 0 0 1
## 207 0 0 1 1 0
## 208 0 0 1 1 0
## 209 0 1 0 0 1
## 210 0 1 0 0 1
## 211 1 0 0 0 1
## 212 0 0 1 0 1
## 213 0 1 0 0 1
## 214 0 1 0 0 1
## 215 0 1 0 1 0
## 216 1 0 0 0 1
## 217 0 1 0 0 1
## 218 1 0 0 1 0
## 219 0 1 0 0 1
## 220 0 1 0 0 1
## 221 0 1 0 0 1
## 222 0 1 0 0 1
## 223 0 0 1 0 1
## 224 0 0 1 1 0
## 225 1 0 0 0 1
## 226 0 0 1 1 0
## 227 0 1 0 1 0
## 228 0 0 1 1 0
## 229 0 1 0 1 0
## 230 1 0 0 0 1
## 231 0 1 0 0 1
## 232 0 1 0 1 0
## 233 0 1 0 0 1
## 234 0 1 0 1 0
## 235 1 0 0 1 0
## 236 1 0 0 0 1
## 237 0 0 1 0 1
## 238 0 0 1 1 0
## 239 0 1 0 1 0
## 240 1 0 0 0 1
## 241 1 0 0 0 1
## 242 1 0 0 0 1
## 243 0 0 1 1 0
## 244 1 0 0 1 0
## 245 0 1 0 0 1
## 246 1 0 0 1 0
## 247 0 1 0 1 0
## 248 1 0 0 1 0
## 249 1 0 0 1 0
## 250 0 1 0 0 1
## 251 0 1 0 1 0
## 252 0 0 1 1 0
## 253 0 0 1 0 1
## 254 1 0 0 0 1
## 255 1 0 0 1 0
## 256 0 1 0 1 0
## 257 1 0 0 1 0
## 258 1 0 0 1 0
## 259 1 0 0 1 0
## 260 0 0 1 1 0
## 261 1 0 0 0 1
## 262 0 0 1 0 1
## 263 0 1 0 1 0
## 264 1 0 0 1 0
## 265 0 1 0 0 1
## 266 1 0 0 1 0
## 267 0 0 1 0 1
## 268 0 1 0 1 0
## 269 1 0 0 1 0
## 270 1 0 0 1 0
## 271 0 1 0 0 1
## 272 0 0 1 1 0
## 273 1 0 0 1 0
## 274 1 0 0 0 1
## 275 0 1 0 0 1
## 276 0 1 0 0 1
## 277 0 0 1 1 0
## 278 0 0 1 0 1
## 279 0 0 1 1 0
## 280 1 0 0 1 0
## 281 1 0 0 0 1
## 282 0 0 1 0 1
## 283 1 0 0 0 1
## 284 1 0 0 1 0
## 285 1 0 0 1 0
## 286 0 1 0 0 1
## 287 0 0 1 1 0
## 288 0 0 1 0 1
## 289 0 1 0 0 1
## 290 1 0 0 1 0
## 291 0 1 0 1 0
## 292 0 0 1 0 1
## 293 1 0 0 1 0
## 294 1 0 0 1 0
## 295 0 1 0 0 1
## 296 0 0 1 1 0
## 297 0 0 1 0 1
## 298 1 0 0 1 0
## 299 1 0 0 1 0
## 300 0 0 1 1 0
## 301 0 0 1 0 1
## 302 0 1 0 1 0
## 303 0 0 1 0 1
## 304 1 0 0 0 1
## 305 0 1 0 0 1
## 306 1 0 0 1 0
## 307 1 0 0 0 1
## 308 1 0 0 1 0
## 309 1 0 0 1 0
## 310 1 0 0 0 1
## 311 0 1 0 1 0
## 312 0 0 1 1 0
## 313 1 0 0 1 0
## 314 1 0 0 1 0
## 315 0 0 1 1 0
## 316 0 0 1 1 0
## 317 0 0 1 1 0
## 318 0 0 1 1 0
## 319 0 0 1 1 0
## 320 0 0 1 1 0
## 321 0 0 1 0 1
## 322 0 0 1 0 1
## 323 1 0 0 0 1
## 324 1 0 0 0 1
## 325 1 0 0 0 1
## 326 0 1 0 0 1
## 327 1 0 0 1 0
## 328 0 0 1 1 0
## 329 0 1 0 1 0
## 330 1 0 0 1 0
## 331 0 1 0 0 1
## 332 1 0 0 0 1
## 333 1 0 0 0 1
## 334 1 0 0 1 0
## 335 0 0 1 1 0
## 336 1 0 0 1 0
## 337 1 0 0 0 1
## 338 0 1 0 0 1
## 339 0 0 1 0 1
## 340 0 1 0 1 0
## 341 0 1 0 1 0
## 342 0 1 0 1 0
## 343 0 1 0 1 0
## 344 0 0 1 0 1
## 345 1 0 0 0 1
## 346 1 0 0 0 1
## 347 1 0 0 1 0
## 348 0 0 1 1 0
## 349 1 0 0 0 1
## 350 0 1 0 0 1
## 351 0 0 1 1 0
## 352 1 0 0 0 1
## 353 0 1 0 1 0
## 354 0 1 0 1 0
## 355 0 0 1 0 1
## 356 0 1 0 1 0
## 357 0 0 1 0 1
## 358 0 0 1 0 1
## 359 0 1 0 0 1
## 360 0 1 0 0 1
## 361 1 0 0 1 0
## 362 0 0 1 0 1
## 363 0 0 1 0 1
## 364 1 0 0 0 1
## 365 0 0 1 0 1
## 366 0 0 1 0 1
## 367 0 0 1 0 1
## 368 1 0 0 1 0
## 369 0 0 1 0 1
## 370 1 0 0 1 0
## 371 0 1 0 1 0
## 372 0 1 0 0 1
## 373 0 0 1 0 1
## 374 0 0 1 0 1
## 375 1 0 0 0 1
## 376 1 0 0 1 0
## 377 0 1 0 1 0
## 378 0 0 1 0 1
## 379 0 0 1 1 0
## 380 0 1 0 0 1
## 381 1 0 0 1 0
## 382 0 0 1 0 1
## 383 0 1 0 0 1
## 384 0 0 1 1 0
## 385 1 0 0 0 1
## 386 0 1 0 1 0
## 387 0 0 1 0 1
## 388 1 0 0 0 1
## 389 0 0 1 1 0
## 390 0 1 0 0 1
## 391 0 0 1 1 0
## 392 0 1 0 0 1
## 393 1 0 0 1 0
## 394 1 0 0 1 0
## 395 1 0 0 0 1
## 396 1 0 0 0 1
## 397 1 0 0 0 1
## 398 0 1 0 0 1
## 399 0 1 0 1 0
## 400 0 1 0 1 0
## 401 0 0 1 0 1
## 402 0 0 1 0 1
## 403 0 0 1 1 0
## 404 0 1 0 0 1
## 405 0 0 1 1 0
## 406 1 0 0 1 0
## 407 1 0 0 0 1
## 408 0 1 0 1 0
## 409 1 0 0 0 1
## 410 0 0 1 0 1
## 411 0 1 0 0 1
## 412 0 1 0 0 1
## 413 1 0 0 1 0
## 414 1 0 0 0 1
## 415 1 0 0 0 1
## 416 0 1 0 0 1
## 417 0 0 1 0 1
## 418 0 0 1 1 0
## 419 0 1 0 0 1
## 420 1 0 0 1 0
## 421 0 0 1 1 0
## 422 0 0 1 0 1
## 423 0 0 1 1 0
## 424 0 1 0 1 0
## 425 0 0 1 0 1
## 426 0 1 0 1 0
## 427 1 0 0 1 0
## 428 0 1 0 1 0
## 429 0 1 0 0 1
## 430 1 0 0 1 0
## 431 0 1 0 0 1
## 432 0 0 1 0 1
## 433 1 0 0 0 1
## 434 0 1 0 0 1
## 435 0 1 0 0 1
## 436 0 0 1 0 1
## 437 0 0 1 1 0
## 438 1 0 0 0 1
## 439 0 0 1 1 0
## 440 0 0 1 0 1
## 441 0 0 1 1 0
## 442 0 1 0 1 0
## 443 1 0 0 1 0
## 444 0 0 1 0 1
## 445 1 0 0 0 1
## 446 0 1 0 1 0
## 447 0 0 1 1 0
## 448 0 0 1 0 1
## 449 0 1 0 1 0
## 450 0 1 0 1 0
## 451 0 1 0 0 1
## 452 0 1 0 0 1
## 453 1 0 0 0 1
## 454 1 0 0 0 1
## 455 1 0 0 1 0
## 456 0 1 0 1 0
## 457 0 1 0 1 0
## 458 0 1 0 0 1
## 459 0 0 1 1 0
## 460 0 0 1 0 1
## 461 0 0 1 0 1
## 462 0 1 0 1 0
## 463 0 0 1 0 1
## 464 0 0 1 1 0
## 465 1 0 0 1 0
## 466 0 0 1 1 0
## 467 0 0 1 1 0
## 468 0 1 0 0 1
## 469 0 0 1 0 1
## 470 0 0 1 1 0
## 471 0 0 1 1 0
## 472 1 0 0 1 0
## 473 1 0 0 1 0
## 474 0 1 0 1 0
## 475 1 0 0 1 0
## 476 1 0 0 0 1
## 477 1 0 0 0 1
## 478 0 0 1 0 1
## 479 0 1 0 0 1
## 480 1 0 0 0 1
## 481 0 0 1 0 1
## 482 0 0 1 0 1
## 483 1 0 0 0 1
## 484 0 1 0 1 0
## 485 0 0 1 1 0
## 486 0 1 0 1 0
## 487 0 1 0 0 1
## 488 1 0 0 0 1
## 489 0 0 1 0 1
## 490 0 1 0 1 0
## 491 0 1 0 0 1
## 492 1 0 0 1 0
## 493 0 1 0 1 0
## 494 0 0 1 1 0
## 495 0 1 0 0 1
## 496 0 1 0 0 1
## 497 0 0 1 0 1
## 498 0 0 1 0 1
## 499 0 1 0 1 0
## 500 1 0 0 1 0
## 501 0 1 0 1 0
## 502 0 0 1 1 0
## 503 0 0 1 0 1
## 504 0 1 0 0 1
## 505 0 1 0 0 1
## 506 1 0 0 1 0
## 507 0 1 0 1 0
## 508 0 1 0 0 1
## 509 0 1 0 1 0
## 510 0 0 1 1 0
## 511 0 1 0 1 0
## 512 1 0 0 0 1
## 513 1 0 0 0 1
## 514 1 0 0 0 1
## 515 0 0 1 1 0
## 516 0 0 1 1 0
## 517 0 1 0 1 0
## 518 0 0 1 1 0
## 519 1 0 0 0 1
## 520 0 0 1 1 0
## 521 0 1 0 0 1
## 522 0 0 1 1 0
## 523 1 0 0 1 0
## 524 0 0 1 0 1
## 525 1 0 0 0 1
## 526 1 0 0 1 0
## 527 0 1 0 0 1
## 528 0 1 0 1 0
## 529 0 1 0 1 0
## 530 1 0 0 0 1
## 531 1 0 0 0 1
## 532 1 0 0 1 0
## 533 0 1 0 0 1
## 534 0 0 1 0 1
## 535 1 0 0 0 1
## 536 0 0 1 0 1
## 537 0 1 0 1 0
## 538 1 0 0 0 1
## 539 1 0 0 0 1
## 540 0 0 1 1 0
## 541 1 0 0 0 1
## 542 0 0 1 1 0
## 543 0 1 0 1 0
## 544 0 0 1 1 0
## 545 0 1 0 0 1
## 546 0 1 0 1 0
## 547 1 0 0 0 1
## 548 1 0 0 0 1
## 549 0 1 0 0 1
## 550 1 0 0 0 1
## 551 0 1 0 0 1
## 552 0 1 0 0 1
## 553 0 1 0 0 1
## 554 0 0 1 0 1
## 555 1 0 0 1 0
## 556 0 1 0 0 1
## 557 0 1 0 1 0
## 558 0 0 1 1 0
## 559 1 0 0 1 0
## 560 1 0 0 1 0
## 561 0 1 0 0 1
## 562 0 0 1 0 1
## 563 0 1 0 0 1
## 564 1 0 0 1 0
## 565 0 1 0 0 1
## 566 1 0 0 0 1
## 567 0 0 1 0 1
## 568 1 0 0 0 1
## 569 0 1 0 0 1
## 570 0 0 1 0 1
## 571 0 1 0 1 0
## 572 0 1 0 1 0
## 573 1 0 0 1 0
## 574 0 1 0 0 1
## 575 1 0 0 0 1
## 576 0 1 0 1 0
## 577 0 1 0 0 1
## 578 0 0 1 0 1
## 579 1 0 0 0 1
## 580 0 1 0 0 1
## 581 0 0 1 0 1
## 582 1 0 0 1 0
## 583 0 0 1 1 0
## 584 0 1 0 1 0
## 585 0 1 0 0 1
## 586 1 0 0 0 1
## 587 1 0 0 0 1
## 588 1 0 0 0 1
## 589 0 0 1 0 1
## 590 1 0 0 0 1
## 591 0 0 1 1 0
## 592 0 0 1 1 0
## 593 1 0 0 1 0
## 594 1 0 0 1 0
## 595 0 1 0 1 0
## 596 0 1 0 0 1
## 597 1 0 0 0 1
## 598 0 0 1 0 1
## 599 0 0 1 0 1
## 600 1 0 0 1 0
## 601 0 0 1 0 1
## 602 0 0 1 0 1
## 603 0 0 1 0 1
## 604 0 1 0 0 1
## 605 0 0 1 1 0
## 606 0 1 0 0 1
## 607 1 0 0 1 0
## 608 0 0 1 1 0
## 609 1 0 0 0 1
## 610 0 1 0 1 0
## 611 1 0 0 0 1
## 612 0 0 1 1 0
## 613 0 1 0 1 0
## 614 0 0 1 1 0
## 615 1 0 0 1 0
## 616 1 0 0 1 0
## 617 0 1 0 1 0
## 618 0 0 1 1 0
## 619 1 0 0 1 0
## 620 0 0 1 1 0
## 621 1 0 0 0 1
## 622 1 0 0 1 0
## 623 0 1 0 1 0
## 624 0 1 0 0 1
## 625 0 1 0 1 0
## 626 0 1 0 1 0
## 627 1 0 0 0 1
## 628 0 1 0 1 0
## 629 1 0 0 1 0
## 630 1 0 0 0 1
## 631 1 0 0 0 1
## 632 1 0 0 0 1
## 633 1 0 0 1 0
## 634 0 1 0 0 1
## 635 0 1 0 1 0
## 636 0 1 0 1 0
## 637 1 0 0 0 1
## 638 0 0 1 0 1
## 639 0 1 0 1 0
## 640 0 1 0 0 1
## 641 0 1 0 1 0
## 642 0 0 1 1 0
## 643 0 1 0 1 0
## 644 0 0 1 1 0
## 645 0 0 1 1 0
## 646 1 0 0 1 0
## 647 0 0 1 0 1
## 648 0 1 0 1 0
## 649 0 0 1 1 0
## 650 0 0 1 0 1
## 651 0 1 0 0 1
## 652 0 1 0 0 1
## 653 1 0 0 1 0
## 654 0 1 0 1 0
## 655 0 1 0 1 0
## 656 1 0 0 0 1
## 657 0 0 1 0 1
## 658 1 0 0 1 0
## 659 1 0 0 1 0
## 660 1 0 0 1 0
## 661 0 1 0 0 1
## 662 0 0 1 1 0
## 663 0 1 0 1 0
## 664 0 0 1 1 0
## 665 0 0 1 0 1
## 666 1 0 0 0 1
## 667 0 1 0 1 0
## 668 0 1 0 0 1
## 669 0 0 1 1 0
## 670 0 1 0 0 1
## 671 1 0 0 1 0
## 672 0 1 0 1 0
## 673 0 1 0 0 1
## 674 0 0 1 0 1
## 675 1 0 0 0 1
## 676 0 1 0 1 0
## 677 0 1 0 1 0
## 678 1 0 0 1 0
## 679 0 0 1 0 1
## 680 1 0 0 1 0
## 681 0 1 0 1 0
## 682 0 1 0 0 1
## 683 0 0 1 0 1
## 684 1 0 0 1 0
## 685 0 1 0 1 0
## 686 0 1 0 1 0
## 687 0 1 0 1 0
## 688 1 0 0 1 0
## 689 0 0 1 1 0
## 690 1 0 0 0 1
## 691 0 0 1 1 0
## 692 0 0 1 1 0
## 693 1 0 0 1 0
## 694 0 0 1 1 0
## 695 0 0 1 0 1
## 696 1 0 0 1 0
## 697 1 0 0 1 0
## 698 0 1 0 0 1
## 699 1 0 0 1 0
## 700 0 0 1 0 1
## 701 0 0 1 0 1
## 702 0 1 0 0 1
## 703 0 1 0 1 0
## 704 0 1 0 1 0
## 705 0 1 0 1 0
## 706 0 1 0 0 1
## 707 0 1 0 0 1
## 708 0 0 1 1 0
## 709 0 0 1 0 1
## 710 1 0 0 0 1
## 711 1 0 0 1 0
## 712 0 0 1 1 0
## 713 0 0 1 0 1
## 714 0 0 1 0 1
## 715 0 0 1 1 0
## 716 1 0 0 0 1
## 717 1 0 0 1 0
## 718 1 0 0 1 0
## 719 1 0 0 0 1
## 720 0 1 0 1 0
## 721 0 1 0 0 1
## 722 0 0 1 1 0
## 723 0 1 0 0 1
## 724 0 0 1 1 0
## 725 0 1 0 1 0
## 726 0 0 1 1 0
## 727 0 0 1 1 0
## 728 0 1 0 0 1
## 729 0 0 1 0 1
## 730 0 1 0 1 0
## 731 1 0 0 1 0
## 732 1 0 0 0 1
## 733 1 0 0 1 0
## 734 0 1 0 0 1
## 735 0 1 0 1 0
## 736 0 0 1 1 0
## 737 0 0 1 1 0
## 738 0 0 1 0 1
## 739 0 1 0 1 0
## 740 1 0 0 0 1
## 741 0 0 1 0 1
## 742 0 0 1 0 1
## 743 1 0 0 1 0
## 744 1 0 0 1 0
## 745 0 0 1 1 0
## 746 0 0 1 1 0
## 747 0 1 0 1 0
## 748 0 0 1 1 0
## 749 0 1 0 1 0
## 750 0 0 1 1 0
## 751 0 1 0 1 0
## 752 1 0 0 0 1
## 753 1 0 0 1 0
## 754 0 1 0 0 1
## 755 0 0 1 1 0
## 756 1 0 0 0 1
## 757 0 1 0 1 0
## 758 1 0 0 0 1
## 759 1 0 0 1 0
## 760 1 0 0 0 1
## 761 0 1 0 1 0
## 762 0 1 0 0 1
## 763 1 0 0 1 0
## 764 1 0 0 1 0
## 765 1 0 0 1 0
## 766 0 1 0 0 1
## 767 0 0 1 0 1
## 768 0 1 0 0 1
## 769 0 1 0 0 1
## 770 1 0 0 0 1
## 771 0 1 0 1 0
## 772 0 0 1 1 0
## 773 0 0 1 1 0
## 774 0 0 1 0 1
## 775 0 0 1 1 0
## 776 0 1 0 0 1
## 777 0 0 1 1 0
## 778 0 1 0 0 1
## 779 0 0 1 1 0
## 780 0 1 0 1 0
## 781 0 0 1 0 1
## 782 1 0 0 0 1
## 783 1 0 0 1 0
## 784 0 0 1 0 1
## 785 0 0 1 1 0
## 786 1 0 0 0 1
## 787 0 0 1 0 1
## 788 0 0 1 0 1
## 789 0 0 1 1 0
## 790 1 0 0 0 1
## 791 1 0 0 0 1
## 792 0 0 1 1 0
## 793 0 1 0 0 1
## 794 1 0 0 1 0
## 795 1 0 0 0 1
## 796 0 1 0 0 1
## 797 0 0 1 1 0
## 798 1 0 0 1 0
## 799 0 1 0 0 1
## 800 0 0 1 1 0
## 801 0 1 0 0 1
## 802 0 0 1 1 0
## 803 0 0 1 1 0
## 804 1 0 0 1 0
## 805 0 1 0 1 0
## 806 1 0 0 0 1
## 807 1 0 0 0 1
## 808 1 0 0 0 1
## 809 0 1 0 0 1
## 810 0 0 1 0 1
## 811 0 1 0 0 1
## 812 1 0 0 0 1
## 813 0 0 1 1 0
## 814 1 0 0 0 1
## 815 1 0 0 1 0
## 816 0 1 0 0 1
## 817 0 0 1 0 1
## 818 1 0 0 0 1
## 819 0 1 0 1 0
## 820 0 1 0 1 0
## 821 0 1 0 0 1
## 822 1 0 0 1 0
## 823 0 0 1 1 0
## 824 1 0 0 0 1
## 825 0 1 0 1 0
## 826 1 0 0 1 0
## 827 0 1 0 1 0
## 828 1 0 0 1 0
## 829 0 0 1 0 1
## 830 1 0 0 1 0
## 831 1 0 0 0 1
## 832 0 1 0 0 1
## 833 0 1 0 1 0
## 834 1 0 0 1 0
## 835 0 1 0 1 0
## 836 1 0 0 0 1
## 837 1 0 0 1 0
## 838 0 1 0 0 1
## 839 0 0 1 0 1
## 840 0 0 1 1 0
## 841 1 0 0 0 1
## 842 0 1 0 0 1
## 843 1 0 0 1 0
## 844 0 0 1 1 0
## 845 1 0 0 0 1
## 846 1 0 0 1 0
## 847 1 0 0 1 0
## 848 0 0 1 0 1
## 849 0 0 1 1 0
## 850 1 0 0 0 1
## 851 1 0 0 0 1
## 852 1 0 0 0 1
## 853 0 0 1 0 1
## 854 0 1 0 0 1
## 855 1 0 0 1 0
## 856 0 1 0 0 1
## 857 0 1 0 0 1
## 858 1 0 0 1 0
## 859 0 1 0 0 1
## 860 1 0 0 1 0
## 861 0 0 1 1 0
## 862 1 0 0 1 0
## 863 0 1 0 0 1
## 864 0 1 0 0 1
## 865 1 0 0 1 0
## 866 0 0 1 1 0
## 867 0 1 0 1 0
## 868 0 0 1 1 0
## 869 0 0 1 1 0
## 870 1 0 0 0 1
## 871 1 0 0 1 0
## 872 0 0 1 0 1
## 873 0 1 0 1 0
## 874 1 0 0 1 0
## 875 1 0 0 1 0
## 876 0 0 1 0 1
## 877 0 0 1 1 0
## 878 0 1 0 1 0
## 879 1 0 0 0 1
## 880 0 1 0 1 0
## 881 0 1 0 1 0
## 882 0 0 1 1 0
## 883 0 1 0 1 0
## 884 1 0 0 1 0
## 885 1 0 0 1 0
## 886 1 0 0 0 1
## 887 1 0 0 1 0
## 888 1 0 0 1 0
## 889 0 0 1 0 1
## 890 1 0 0 1 0
## 891 0 0 1 0 1
## 892 0 1 0 0 1
## 893 0 0 1 1 0
## 894 0 1 0 0 1
## 895 0 1 0 1 0
## 896 0 1 0 0 1
## 897 0 0 1 0 1
## 898 0 0 1 1 0
## 899 0 0 1 1 0
## 900 1 0 0 1 0
## 901 0 0 1 1 0
## 902 0 1 0 0 1
## 903 1 0 0 1 0
## 904 1 0 0 0 1
## 905 0 0 1 0 1
## 906 0 0 1 1 0
## 907 0 0 1 0 1
## 908 0 1 0 0 1
## 909 1 0 0 1 0
## 910 0 1 0 0 1
## 911 0 1 0 1 0
## 912 0 0 1 0 1
## 913 1 0 0 0 1
## 914 1 0 0 1 0
## 915 1 0 0 1 0
## 916 0 0 1 0 1
## 917 0 0 1 1 0
## 918 1 0 0 0 1
## 919 0 1 0 0 1
## 920 0 1 0 1 0
## 921 0 0 1 1 0
## 922 0 1 0 0 1
## 923 0 0 1 1 0
## 924 0 0 1 0 1
## 925 0 0 1 1 0
## 926 0 1 0 0 1
## 927 0 1 0 1 0
## 928 1 0 0 1 0
## 929 0 1 0 0 1
## 930 0 1 0 0 1
## 931 0 1 0 0 1
## 932 0 0 1 1 0
## 933 1 0 0 0 1
## 934 0 0 1 0 1
## 935 0 1 0 0 1
## 936 0 0 1 1 0
## 937 0 0 1 0 1
## 938 1 0 0 0 1
## 939 1 0 0 1 0
## 940 0 0 1 0 1
## 941 1 0 0 0 1
## 942 0 0 1 1 0
## 943 1 0 0 0 1
## 944 1 0 0 0 1
## 945 1 0 0 1 0
## 946 1 0 0 0 1
## 947 0 0 1 1 0
## 948 0 1 0 1 0
## 949 0 0 1 1 0
## 950 0 1 0 0 1
## 951 0 1 0 1 0
## 952 0 1 0 1 0
## 953 0 1 0 1 0
## 954 0 0 1 1 0
## 955 0 1 0 1 0
## 956 1 0 0 0 1
## 957 0 0 1 1 0
## 958 0 1 0 0 1
## 959 0 0 1 0 1
## 960 1 0 0 1 0
## 961 0 0 1 1 0
## 962 1 0 0 1 0
## 963 1 0 0 0 1
## 964 0 0 1 1 0
## 965 0 1 0 0 1
## 966 0 1 0 0 1
## 967 1 0 0 0 1
## 968 1 0 0 1 0
## 969 1 0 0 0 1
## 970 0 1 0 1 0
## 971 0 1 0 1 0
## 972 0 1 0 1 0
## 973 0 1 0 0 1
## 974 1 0 0 0 1
## 975 0 0 1 0 1
## 976 0 1 0 1 0
## 977 1 0 0 0 1
## 978 0 1 0 1 0
## 979 0 1 0 0 1
## 980 0 1 0 0 1
## 981 0 0 1 1 0
## 982 1 0 0 0 1
## 983 1 0 0 1 0
## 984 0 0 1 0 1
## 985 0 0 1 0 1
## 986 0 1 0 0 1
## 987 0 1 0 0 1
## 988 0 1 0 1 0
## 989 0 0 1 1 0
## 990 0 1 0 1 0
## 991 1 0 0 0 1
## 992 0 1 0 0 1
## 993 1 0 0 0 1
## 994 0 1 0 0 1
## 995 0 0 1 1 0
## 996 0 0 1 0 1
## 997 0 1 0 0 1
## 998 1 0 0 1 0
## 999 1 0 0 0 1
## 1000 1 0 0 1 0
## GenderFemale GenderMale X.Product.line.Electronic.accessories
## 1 1 0 0
## 2 1 0 1
## 3 0 1 0
## 4 0 1 0
## 5 0 1 0
## 6 0 1 1
## 7 1 0 1
## 8 1 0 0
## 9 1 0 0
## 10 1 0 0
## 11 1 0 0
## 12 0 1 1
## 13 1 0 1
## 14 0 1 0
## 15 1 0 0
## 16 1 0 0
## 17 1 0 0
## 18 0 1 0
## 19 0 1 0
## 20 1 0 0
## 21 0 1 1
## 22 0 1 0
## 23 0 1 0
## 24 0 1 1
## 25 0 1 0
## 26 1 0 0
## 27 0 1 0
## 28 1 0 0
## 29 1 0 0
## 30 0 1 0
## 31 0 1 0
## 32 0 1 0
## 33 0 1 0
## 34 0 1 0
## 35 1 0 0
## 36 1 0 0
## 37 0 1 0
## 38 1 0 1
## 39 1 0 0
## 40 0 1 0
## 41 1 0 0
## 42 0 1 0
## 43 1 0 0
## 44 1 0 0
## 45 0 1 0
## 46 1 0 1
## 47 0 1 0
## 48 1 0 0
## 49 0 1 1
## 50 1 0 0
## 51 0 1 0
## 52 1 0 0
## 53 1 0 0
## 54 0 1 0
## 55 0 1 0
## 56 1 0 1
## 57 0 1 0
## 58 0 1 0
## 59 1 0 0
## 60 0 1 1
## 61 1 0 0
## 62 0 1 0
## 63 1 0 0
## 64 0 1 0
## 65 0 1 0
## 66 0 1 0
## 67 1 0 0
## 68 1 0 0
## 69 0 1 0
## 70 1 0 0
## 71 0 1 0
## 72 0 1 0
## 73 1 0 0
## 74 1 0 1
## 75 0 1 0
## 76 1 0 1
## 77 0 1 0
## 78 1 0 0
## 79 1 0 0
## 80 1 0 0
## 81 1 0 0
## 82 1 0 0
## 83 0 1 0
## 84 1 0 0
## 85 0 1 0
## 86 1 0 0
## 87 0 1 0
## 88 0 1 0
## 89 0 1 0
## 90 1 0 0
## 91 1 0 0
## 92 1 0 0
## 93 1 0 0
## 94 0 1 0
## 95 0 1 0
## 96 0 1 1
## 97 0 1 0
## 98 1 0 1
## 99 0 1 0
## 100 0 1 0
## 101 0 1 0
## 102 0 1 0
## 103 1 0 1
## 104 0 1 0
## 105 0 1 0
## 106 0 1 1
## 107 0 1 0
## 108 0 1 0
## 109 1 0 0
## 110 0 1 1
## 111 1 0 0
## 112 1 0 0
## 113 1 0 0
## 114 0 1 0
## 115 1 0 0
## 116 1 0 0
## 117 0 1 0
## 118 0 1 0
## 119 1 0 0
## 120 0 1 0
## 121 1 0 1
## 122 0 1 0
## 123 0 1 0
## 124 0 1 0
## 125 1 0 0
## 126 1 0 0
## 127 1 0 0
## 128 1 0 0
## 129 1 0 0
## 130 1 0 0
## 131 1 0 0
## 132 1 0 0
## 133 1 0 0
## 134 0 1 1
## 135 1 0 0
## 136 0 1 0
## 137 1 0 1
## 138 1 0 0
## 139 0 1 0
## 140 0 1 0
## 141 1 0 0
## 142 0 1 0
## 143 1 0 0
## 144 1 0 0
## 145 1 0 0
## 146 1 0 0
## 147 1 0 0
## 148 0 1 0
## 149 0 1 0
## 150 0 1 0
## 151 1 0 0
## 152 0 1 0
## 153 0 1 0
## 154 1 0 0
## 155 1 0 0
## 156 0 1 0
## 157 0 1 1
## 158 0 1 0
## 159 0 1 0
## 160 0 1 0
## 161 1 0 0
## 162 0 1 0
## 163 0 1 0
## 164 0 1 0
## 165 0 1 0
## 166 0 1 0
## 167 0 1 0
## 168 0 1 0
## 169 0 1 0
## 170 0 1 0
## 171 0 1 0
## 172 0 1 0
## 173 0 1 1
## 174 0 1 1
## 175 0 1 0
## 176 0 1 0
## 177 0 1 0
## 178 1 0 0
## 179 0 1 0
## 180 0 1 0
## 181 0 1 0
## 182 0 1 0
## 183 0 1 0
## 184 0 1 0
## 185 1 0 0
## 186 0 1 0
## 187 1 0 0
## 188 0 1 0
## 189 0 1 0
## 190 1 0 0
## 191 1 0 0
## 192 1 0 0
## 193 1 0 0
## 194 0 1 0
## 195 0 1 1
## 196 1 0 0
## 197 0 1 0
## 198 1 0 0
## 199 0 1 0
## 200 1 0 0
## 201 1 0 0
## 202 1 0 1
## 203 0 1 1
## 204 0 1 0
## 205 0 1 0
## 206 1 0 0
## 207 1 0 1
## 208 1 0 0
## 209 1 0 0
## 210 1 0 1
## 211 0 1 1
## 212 1 0 0
## 213 0 1 0
## 214 0 1 0
## 215 1 0 0
## 216 0 1 0
## 217 1 0 0
## 218 1 0 1
## 219 0 1 0
## 220 1 0 0
## 221 0 1 1
## 222 0 1 0
## 223 0 1 1
## 224 1 0 0
## 225 0 1 0
## 226 1 0 0
## 227 0 1 0
## 228 0 1 1
## 229 1 0 1
## 230 1 0 0
## 231 1 0 0
## 232 1 0 1
## 233 1 0 0
## 234 0 1 0
## 235 0 1 0
## 236 1 0 0
## 237 0 1 0
## 238 1 0 0
## 239 1 0 1
## 240 0 1 0
## 241 0 1 0
## 242 0 1 0
## 243 0 1 0
## 244 0 1 0
## 245 0 1 0
## 246 0 1 0
## 247 1 0 1
## 248 0 1 0
## 249 0 1 1
## 250 0 1 0
## 251 0 1 0
## 252 0 1 0
## 253 1 0 0
## 254 0 1 0
## 255 0 1 0
## 256 0 1 0
## 257 0 1 1
## 258 0 1 0
## 259 0 1 1
## 260 0 1 1
## 261 1 0 1
## 262 1 0 0
## 263 1 0 0
## 264 1 0 0
## 265 0 1 0
## 266 1 0 0
## 267 0 1 0
## 268 1 0 0
## 269 0 1 0
## 270 1 0 0
## 271 1 0 0
## 272 1 0 0
## 273 1 0 0
## 274 1 0 0
## 275 1 0 0
## 276 0 1 0
## 277 1 0 0
## 278 1 0 0
## 279 0 1 0
## 280 0 1 0
## 281 1 0 0
## 282 0 1 0
## 283 1 0 0
## 284 0 1 0
## 285 1 0 0
## 286 0 1 0
## 287 0 1 0
## 288 1 0 0
## 289 1 0 0
## 290 1 0 0
## 291 0 1 1
## 292 0 1 1
## 293 1 0 1
## 294 1 0 0
## 295 0 1 0
## 296 1 0 1
## 297 0 1 1
## 298 0 1 0
## 299 0 1 0
## 300 1 0 0
## 301 0 1 0
## 302 0 1 0
## 303 0 1 0
## 304 1 0 1
## 305 1 0 1
## 306 0 1 1
## 307 1 0 0
## 308 1 0 0
## 309 1 0 1
## 310 1 0 0
## 311 0 1 0
## 312 0 1 0
## 313 1 0 0
## 314 1 0 0
## 315 1 0 1
## 316 0 1 0
## 317 1 0 0
## 318 0 1 1
## 319 1 0 0
## 320 0 1 0
## 321 1 0 0
## 322 1 0 0
## 323 0 1 0
## 324 1 0 0
## 325 0 1 0
## 326 0 1 0
## 327 0 1 0
## 328 0 1 0
## 329 0 1 0
## 330 0 1 1
## 331 0 1 0
## 332 0 1 0
## 333 0 1 0
## 334 0 1 0
## 335 0 1 0
## 336 1 0 1
## 337 0 1 0
## 338 1 0 0
## 339 1 0 1
## 340 1 0 0
## 341 0 1 1
## 342 1 0 0
## 343 1 0 0
## 344 1 0 0
## 345 0 1 0
## 346 1 0 0
## 347 0 1 1
## 348 1 0 0
## 349 0 1 1
## 350 1 0 0
## 351 1 0 0
## 352 0 1 1
## 353 1 0 0
## 354 0 1 0
## 355 1 0 1
## 356 1 0 0
## 357 1 0 0
## 358 1 0 0
## 359 0 1 1
## 360 0 1 0
## 361 0 1 0
## 362 1 0 0
## 363 0 1 0
## 364 0 1 0
## 365 1 0 0
## 366 1 0 0
## 367 1 0 1
## 368 0 1 0
## 369 1 0 0
## 370 0 1 1
## 371 1 0 1
## 372 1 0 0
## 373 1 0 0
## 374 0 1 0
## 375 1 0 0
## 376 1 0 0
## 377 1 0 0
## 378 0 1 0
## 379 0 1 0
## 380 1 0 1
## 381 0 1 0
## 382 1 0 1
## 383 1 0 0
## 384 1 0 0
## 385 1 0 0
## 386 0 1 0
## 387 0 1 0
## 388 1 0 0
## 389 1 0 0
## 390 0 1 0
## 391 1 0 0
## 392 1 0 0
## 393 0 1 1
## 394 1 0 0
## 395 1 0 0
## 396 1 0 0
## 397 1 0 0
## 398 0 1 0
## 399 1 0 0
## 400 0 1 1
## 401 1 0 0
## 402 0 1 0
## 403 0 1 0
## 404 1 0 0
## 405 1 0 0
## 406 0 1 0
## 407 0 1 0
## 408 1 0 0
## 409 1 0 0
## 410 1 0 0
## 411 1 0 0
## 412 0 1 0
## 413 0 1 0
## 414 0 1 0
## 415 0 1 0
## 416 0 1 0
## 417 1 0 0
## 418 1 0 0
## 419 1 0 0
## 420 1 0 1
## 421 1 0 0
## 422 1 0 1
## 423 1 0 0
## 424 0 1 0
## 425 0 1 0
## 426 0 1 0
## 427 0 1 0
## 428 1 0 0
## 429 0 1 0
## 430 1 0 0
## 431 0 1 0
## 432 0 1 0
## 433 1 0 1
## 434 0 1 0
## 435 1 0 0
## 436 0 1 0
## 437 0 1 0
## 438 0 1 0
## 439 0 1 0
## 440 1 0 1
## 441 0 1 0
## 442 1 0 0
## 443 1 0 0
## 444 0 1 0
## 445 1 0 0
## 446 1 0 0
## 447 0 1 0
## 448 0 1 0
## 449 1 0 0
## 450 1 0 0
## 451 1 0 1
## 452 0 1 1
## 453 1 0 0
## 454 0 1 0
## 455 0 1 1
## 456 1 0 0
## 457 1 0 0
## 458 0 1 1
## 459 1 0 1
## 460 0 1 0
## 461 0 1 0
## 462 1 0 0
## 463 1 0 0
## 464 1 0 0
## 465 0 1 0
## 466 1 0 0
## 467 1 0 0
## 468 0 1 0
## 469 0 1 0
## 470 1 0 1
## 471 1 0 0
## 472 1 0 0
## 473 0 1 0
## 474 0 1 0
## 475 1 0 1
## 476 0 1 0
## 477 1 0 0
## 478 0 1 1
## 479 0 1 0
## 480 0 1 1
## 481 0 1 0
## 482 1 0 1
## 483 0 1 0
## 484 0 1 0
## 485 1 0 0
## 486 1 0 0
## 487 1 0 0
## 488 0 1 0
## 489 0 1 0
## 490 1 0 0
## 491 1 0 0
## 492 1 0 0
## 493 1 0 0
## 494 1 0 0
## 495 0 1 0
## 496 0 1 0
## 497 1 0 1
## 498 1 0 0
## 499 1 0 0
## 500 1 0 0
## 501 0 1 0
## 502 1 0 0
## 503 0 1 0
## 504 1 0 0
## 505 0 1 0
## 506 0 1 1
## 507 1 0 0
## 508 1 0 0
## 509 0 1 0
## 510 1 0 0
## 511 1 0 0
## 512 1 0 0
## 513 1 0 0
## 514 0 1 1
## 515 0 1 0
## 516 1 0 0
## 517 0 1 0
## 518 0 1 0
## 519 0 1 0
## 520 0 1 0
## 521 1 0 1
## 522 1 0 0
## 523 1 0 0
## 524 0 1 0
## 525 0 1 0
## 526 1 0 0
## 527 0 1 0
## 528 0 1 0
## 529 1 0 0
## 530 0 1 0
## 531 0 1 0
## 532 0 1 0
## 533 0 1 1
## 534 1 0 0
## 535 1 0 0
## 536 0 1 0
## 537 1 0 0
## 538 0 1 0
## 539 1 0 0
## 540 1 0 0
## 541 0 1 0
## 542 0 1 0
## 543 1 0 0
## 544 0 1 1
## 545 1 0 0
## 546 0 1 0
## 547 1 0 0
## 548 0 1 0
## 549 1 0 0
## 550 1 0 1
## 551 0 1 0
## 552 1 0 0
## 553 1 0 0
## 554 0 1 1
## 555 0 1 1
## 556 0 1 0
## 557 1 0 0
## 558 1 0 0
## 559 0 1 0
## 560 1 0 0
## 561 0 1 1
## 562 0 1 0
## 563 1 0 1
## 564 0 1 1
## 565 0 1 0
## 566 1 0 0
## 567 1 0 0
## 568 1 0 0
## 569 1 0 0
## 570 1 0 0
## 571 1 0 0
## 572 0 1 0
## 573 0 1 0
## 574 0 1 0
## 575 0 1 0
## 576 0 1 0
## 577 0 1 0
## 578 0 1 0
## 579 1 0 0
## 580 0 1 0
## 581 0 1 0
## 582 1 0 0
## 583 1 0 0
## 584 1 0 0
## 585 0 1 0
## 586 0 1 0
## 587 1 0 0
## 588 1 0 0
## 589 0 1 0
## 590 0 1 0
## 591 0 1 0
## 592 1 0 0
## 593 1 0 0
## 594 1 0 0
## 595 0 1 0
## 596 0 1 0
## 597 0 1 0
## 598 1 0 0
## 599 1 0 0
## 600 1 0 0
## 601 0 1 1
## 602 1 0 0
## 603 0 1 0
## 604 1 0 0
## 605 1 0 0
## 606 0 1 0
## 607 1 0 0
## 608 1 0 0
## 609 0 1 0
## 610 0 1 0
## 611 1 0 1
## 612 1 0 0
## 613 0 1 0
## 614 0 1 0
## 615 0 1 0
## 616 1 0 0
## 617 0 1 0
## 618 0 1 1
## 619 0 1 0
## 620 1 0 0
## 621 1 0 0
## 622 1 0 0
## 623 1 0 0
## 624 1 0 0
## 625 0 1 0
## 626 1 0 0
## 627 0 1 0
## 628 0 1 0
## 629 0 1 0
## 630 1 0 0
## 631 0 1 0
## 632 0 1 1
## 633 0 1 0
## 634 0 1 0
## 635 0 1 0
## 636 0 1 0
## 637 0 1 0
## 638 1 0 1
## 639 1 0 0
## 640 0 1 0
## 641 1 0 0
## 642 1 0 1
## 643 0 1 1
## 644 1 0 0
## 645 0 1 1
## 646 0 1 0
## 647 0 1 0
## 648 0 1 0
## 649 1 0 0
## 650 0 1 1
## 651 0 1 1
## 652 1 0 0
## 653 0 1 0
## 654 0 1 0
## 655 0 1 0
## 656 1 0 1
## 657 1 0 1
## 658 1 0 0
## 659 1 0 0
## 660 0 1 0
## 661 1 0 0
## 662 0 1 0
## 663 1 0 0
## 664 1 0 0
## 665 1 0 0
## 666 1 0 0
## 667 0 1 0
## 668 1 0 0
## 669 1 0 0
## 670 1 0 0
## 671 0 1 0
## 672 0 1 0
## 673 1 0 0
## 674 0 1 0
## 675 1 0 1
## 676 0 1 0
## 677 1 0 0
## 678 1 0 0
## 679 0 1 0
## 680 0 1 0
## 681 1 0 1
## 682 1 0 0
## 683 1 0 0
## 684 0 1 0
## 685 1 0 0
## 686 1 0 0
## 687 1 0 0
## 688 0 1 0
## 689 0 1 0
## 690 1 0 0
## 691 1 0 0
## 692 0 1 0
## 693 0 1 0
## 694 1 0 0
## 695 1 0 0
## 696 1 0 0
## 697 1 0 0
## 698 0 1 0
## 699 0 1 1
## 700 0 1 0
## 701 1 0 0
## 702 0 1 0
## 703 1 0 0
## 704 0 1 0
## 705 1 0 0
## 706 0 1 0
## 707 1 0 1
## 708 0 1 0
## 709 0 1 0
## 710 0 1 0
## 711 0 1 0
## 712 1 0 0
## 713 1 0 1
## 714 1 0 0
## 715 0 1 0
## 716 1 0 0
## 717 1 0 0
## 718 0 1 1
## 719 0 1 0
## 720 1 0 0
## 721 1 0 0
## 722 1 0 0
## 723 0 1 0
## 724 1 0 0
## 725 0 1 0
## 726 1 0 0
## 727 0 1 0
## 728 0 1 0
## 729 0 1 0
## 730 1 0 0
## 731 1 0 0
## 732 0 1 0
## 733 0 1 0
## 734 0 1 1
## 735 0 1 0
## 736 0 1 0
## 737 1 0 0
## 738 0 1 1
## 739 0 1 1
## 740 0 1 0
## 741 0 1 0
## 742 0 1 0
## 743 1 0 0
## 744 0 1 0
## 745 1 0 0
## 746 1 0 0
## 747 0 1 0
## 748 1 0 0
## 749 1 0 0
## 750 0 1 0
## 751 1 0 0
## 752 1 0 0
## 753 1 0 1
## 754 0 1 0
## 755 1 0 0
## 756 1 0 0
## 757 1 0 1
## 758 1 0 0
## 759 0 1 0
## 760 1 0 0
## 761 1 0 0
## 762 0 1 1
## 763 1 0 0
## 764 1 0 0
## 765 0 1 0
## 766 1 0 0
## 767 1 0 0
## 768 0 1 0
## 769 1 0 1
## 770 1 0 0
## 771 1 0 0
## 772 1 0 0
## 773 1 0 0
## 774 1 0 0
## 775 0 1 0
## 776 1 0 0
## 777 0 1 0
## 778 0 1 0
## 779 0 1 0
## 780 0 1 1
## 781 0 1 0
## 782 1 0 0
## 783 1 0 0
## 784 1 0 0
## 785 1 0 0
## 786 0 1 1
## 787 0 1 1
## 788 1 0 0
## 789 0 1 0
## 790 0 1 0
## 791 0 1 0
## 792 0 1 0
## 793 1 0 0
## 794 0 1 1
## 795 1 0 1
## 796 0 1 0
## 797 1 0 0
## 798 1 0 0
## 799 0 1 0
## 800 0 1 0
## 801 0 1 0
## 802 1 0 1
## 803 0 1 0
## 804 1 0 0
## 805 1 0 1
## 806 1 0 0
## 807 1 0 0
## 808 1 0 1
## 809 1 0 0
## 810 1 0 0
## 811 0 1 0
## 812 1 0 1
## 813 1 0 0
## 814 0 1 1
## 815 1 0 1
## 816 1 0 0
## 817 1 0 0
## 818 0 1 0
## 819 0 1 0
## 820 0 1 0
## 821 0 1 1
## 822 1 0 0
## 823 0 1 0
## 824 1 0 0
## 825 1 0 0
## 826 1 0 0
## 827 1 0 0
## 828 0 1 0
## 829 0 1 1
## 830 1 0 1
## 831 0 1 1
## 832 0 1 0
## 833 1 0 0
## 834 0 1 0
## 835 1 0 0
## 836 0 1 0
## 837 0 1 0
## 838 0 1 0
## 839 0 1 1
## 840 1 0 0
## 841 0 1 0
## 842 0 1 1
## 843 1 0 0
## 844 1 0 0
## 845 0 1 0
## 846 0 1 1
## 847 0 1 1
## 848 1 0 0
## 849 1 0 0
## 850 1 0 0
## 851 0 1 0
## 852 1 0 0
## 853 0 1 0
## 854 1 0 1
## 855 1 0 0
## 856 1 0 0
## 857 0 1 0
## 858 1 0 0
## 859 0 1 0
## 860 1 0 0
## 861 1 0 0
## 862 0 1 0
## 863 1 0 0
## 864 1 0 0
## 865 1 0 1
## 866 0 1 0
## 867 0 1 0
## 868 1 0 0
## 869 0 1 0
## 870 0 1 0
## 871 0 1 0
## 872 0 1 0
## 873 1 0 1
## 874 0 1 0
## 875 0 1 0
## 876 0 1 0
## 877 0 1 0
## 878 0 1 1
## 879 1 0 1
## 880 1 0 1
## 881 1 0 0
## 882 1 0 0
## 883 0 1 0
## 884 1 0 0
## 885 1 0 0
## 886 0 1 0
## 887 0 1 0
## 888 1 0 1
## 889 1 0 0
## 890 0 1 0
## 891 1 0 0
## 892 1 0 1
## 893 1 0 0
## 894 0 1 1
## 895 0 1 1
## 896 0 1 0
## 897 0 1 0
## 898 1 0 0
## 899 0 1 0
## 900 0 1 0
## 901 1 0 1
## 902 0 1 0
## 903 1 0 0
## 904 0 1 0
## 905 1 0 0
## 906 1 0 0
## 907 0 1 0
## 908 1 0 0
## 909 1 0 0
## 910 1 0 0
## 911 1 0 0
## 912 1 0 1
## 913 1 0 0
## 914 0 1 0
## 915 1 0 0
## 916 1 0 1
## 917 0 1 0
## 918 1 0 0
## 919 0 1 0
## 920 1 0 1
## 921 1 0 0
## 922 1 0 0
## 923 1 0 0
## 924 1 0 0
## 925 1 0 0
## 926 1 0 1
## 927 0 1 0
## 928 1 0 0
## 929 1 0 1
## 930 0 1 0
## 931 0 1 0
## 932 1 0 0
## 933 1 0 0
## 934 0 1 0
## 935 1 0 0
## 936 0 1 0
## 937 1 0 0
## 938 1 0 0
## 939 1 0 0
## 940 1 0 0
## 941 0 1 0
## 942 0 1 0
## 943 1 0 0
## 944 0 1 0
## 945 0 1 0
## 946 1 0 1
## 947 0 1 1
## 948 0 1 0
## 949 0 1 0
## 950 1 0 0
## 951 0 1 0
## 952 1 0 0
## 953 1 0 0
## 954 1 0 0
## 955 0 1 0
## 956 1 0 0
## 957 0 1 0
## 958 0 1 1
## 959 1 0 0
## 960 1 0 0
## 961 0 1 0
## 962 0 1 1
## 963 1 0 0
## 964 0 1 1
## 965 0 1 0
## 966 1 0 1
## 967 1 0 0
## 968 0 1 0
## 969 1 0 0
## 970 1 0 1
## 971 1 0 0
## 972 0 1 0
## 973 0 1 1
## 974 0 1 0
## 975 0 1 0
## 976 0 1 0
## 977 1 0 0
## 978 0 1 0
## 979 1 0 1
## 980 1 0 0
## 981 0 1 0
## 982 0 1 0
## 983 1 0 0
## 984 0 1 0
## 985 0 1 1
## 986 1 0 0
## 987 1 0 0
## 988 0 1 0
## 989 0 1 1
## 990 0 1 0
## 991 1 0 0
## 992 1 0 0
## 993 0 1 1
## 994 0 1 0
## 995 1 0 1
## 996 0 1 0
## 997 1 0 0
## 998 0 1 0
## 999 0 1 0
## 1000 1 0 0
## X.Product.line.Fashion.accessories X.Product.line.Food.and.beverages
## 1 0 0
## 2 0 0
## 3 0 0
## 4 0 0
## 5 0 0
## 6 0 0
## 7 0 0
## 8 0 0
## 9 0 0
## 10 0 1
## 11 1 0
## 12 0 0
## 13 0 0
## 14 0 1
## 15 0 0
## 16 0 0
## 17 0 0
## 18 0 0
## 19 0 1
## 20 0 0
## 21 0 0
## 22 0 0
## 23 0 0
## 24 0 0
## 25 0 0
## 26 0 0
## 27 1 0
## 28 1 0
## 29 0 1
## 30 0 0
## 31 1 0
## 32 0 0
## 33 0 0
## 34 0 0
## 35 0 1
## 36 0 0
## 37 0 0
## 38 0 0
## 39 0 0
## 40 0 0
## 41 0 0
## 42 0 0
## 43 0 0
## 44 0 1
## 45 0 0
## 46 0 0
## 47 0 0
## 48 0 1
## 49 0 0
## 50 1 0
## 51 0 1
## 52 0 1
## 53 1 0
## 54 1 0
## 55 0 0
## 56 0 0
## 57 0 0
## 58 0 0
## 59 0 0
## 60 0 0
## 61 0 0
## 62 0 0
## 63 0 0
## 64 0 0
## 65 0 0
## 66 0 0
## 67 0 0
## 68 1 0
## 69 0 0
## 70 0 0
## 71 0 1
## 72 1 0
## 73 0 1
## 74 0 0
## 75 0 0
## 76 0 0
## 77 1 0
## 78 1 0
## 79 0 1
## 80 0 0
## 81 0 0
## 82 0 1
## 83 0 1
## 84 0 1
## 85 0 0
## 86 0 0
## 87 1 0
## 88 0 1
## 89 0 0
## 90 0 0
## 91 0 0
## 92 0 0
## 93 0 0
## 94 0 0
## 95 0 0
## 96 0 0
## 97 0 0
## 98 0 0
## 99 0 1
## 100 0 0
## 101 1 0
## 102 1 0
## 103 0 0
## 104 0 1
## 105 0 0
## 106 0 0
## 107 1 0
## 108 0 0
## 109 0 1
## 110 0 0
## 111 0 0
## 112 0 0
## 113 1 0
## 114 0 0
## 115 0 0
## 116 1 0
## 117 1 0
## 118 1 0
## 119 0 1
## 120 0 0
## 121 0 0
## 122 0 0
## 123 0 0
## 124 0 0
## 125 1 0
## 126 0 0
## 127 0 0
## 128 1 0
## 129 0 1
## 130 0 0
## 131 1 0
## 132 0 0
## 133 0 0
## 134 0 0
## 135 0 0
## 136 1 0
## 137 0 0
## 138 0 0
## 139 0 0
## 140 0 0
## 141 0 0
## 142 0 0
## 143 0 0
## 144 0 1
## 145 0 0
## 146 0 0
## 147 1 0
## 148 0 0
## 149 0 0
## 150 0 0
## 151 1 0
## 152 0 0
## 153 1 0
## 154 0 1
## 155 0 0
## 156 0 1
## 157 0 0
## 158 0 0
## 159 0 0
## 160 0 0
## 161 0 1
## 162 0 0
## 163 0 1
## 164 0 0
## 165 0 1
## 166 0 0
## 167 0 0
## 168 1 0
## 169 0 1
## 170 0 0
## 171 0 0
## 172 0 1
## 173 0 0
## 174 0 0
## 175 0 1
## 176 0 0
## 177 0 1
## 178 1 0
## 179 0 1
## 180 0 0
## 181 1 0
## 182 0 1
## 183 0 0
## 184 0 0
## 185 0 0
## 186 0 1
## 187 0 0
## 188 0 0
## 189 0 0
## 190 0 0
## 191 0 0
## 192 1 0
## 193 0 1
## 194 0 0
## 195 0 0
## 196 1 0
## 197 0 0
## 198 0 0
## 199 0 0
## 200 0 1
## 201 0 0
## 202 0 0
## 203 0 0
## 204 0 0
## 205 0 0
## 206 0 0
## 207 0 0
## 208 0 0
## 209 1 0
## 210 0 0
## 211 0 0
## 212 0 1
## 213 0 0
## 214 0 0
## 215 0 0
## 216 0 0
## 217 0 0
## 218 0 0
## 219 1 0
## 220 0 1
## 221 0 0
## 222 0 1
## 223 0 0
## 224 1 0
## 225 0 1
## 226 0 0
## 227 0 0
## 228 0 0
## 229 0 0
## 230 0 0
## 231 1 0
## 232 0 0
## 233 0 0
## 234 1 0
## 235 0 0
## 236 0 0
## 237 0 0
## 238 1 0
## 239 0 0
## 240 1 0
## 241 0 1
## 242 0 0
## 243 1 0
## 244 0 0
## 245 0 0
## 246 0 0
## 247 0 0
## 248 1 0
## 249 0 0
## 250 0 1
## 251 0 1
## 252 1 0
## 253 0 0
## 254 0 0
## 255 0 0
## 256 1 0
## 257 0 0
## 258 0 0
## 259 0 0
## 260 0 0
## 261 0 0
## 262 1 0
## 263 1 0
## 264 0 0
## 265 0 0
## 266 0 0
## 267 0 0
## 268 0 1
## 269 0 0
## 270 0 0
## 271 0 0
## 272 0 0
## 273 0 0
## 274 0 0
## 275 0 0
## 276 1 0
## 277 0 0
## 278 1 0
## 279 1 0
## 280 0 0
## 281 0 0
## 282 0 0
## 283 0 0
## 284 0 0
## 285 0 0
## 286 0 0
## 287 0 0
## 288 0 0
## 289 0 1
## 290 0 0
## 291 0 0
## 292 0 0
## 293 0 0
## 294 0 1
## 295 0 0
## 296 0 0
## 297 0 0
## 298 0 0
## 299 0 0
## 300 0 0
## 301 1 0
## 302 0 0
## 303 0 1
## 304 0 0
## 305 0 0
## 306 0 0
## 307 0 0
## 308 0 0
## 309 0 0
## 310 1 0
## 311 0 0
## 312 1 0
## 313 0 1
## 314 0 0
## 315 0 0
## 316 0 1
## 317 0 1
## 318 0 0
## 319 0 0
## 320 0 0
## 321 0 1
## 322 0 0
## 323 0 0
## 324 1 0
## 325 0 0
## 326 0 0
## 327 0 1
## 328 0 1
## 329 0 0
## 330 0 0
## 331 0 0
## 332 0 1
## 333 1 0
## 334 0 1
## 335 0 0
## 336 0 0
## 337 1 0
## 338 0 0
## 339 0 0
## 340 0 1
## 341 0 0
## 342 0 0
## 343 0 0
## 344 0 1
## 345 0 0
## 346 1 0
## 347 0 0
## 348 0 0
## 349 0 0
## 350 0 0
## 351 1 0
## 352 0 0
## 353 1 0
## 354 0 0
## 355 0 0
## 356 0 1
## 357 1 0
## 358 0 0
## 359 0 0
## 360 0 0
## 361 0 1
## 362 0 1
## 363 0 1
## 364 0 0
## 365 0 1
## 366 1 0
## 367 0 0
## 368 0 0
## 369 0 0
## 370 0 0
## 371 0 0
## 372 1 0
## 373 0 0
## 374 1 0
## 375 0 0
## 376 1 0
## 377 0 0
## 378 0 0
## 379 1 0
## 380 0 0
## 381 0 0
## 382 0 0
## 383 0 1
## 384 0 1
## 385 0 1
## 386 0 0
## 387 0 1
## 388 0 0
## 389 1 0
## 390 0 1
## 391 1 0
## 392 1 0
## 393 0 0
## 394 0 0
## 395 0 0
## 396 0 0
## 397 0 1
## 398 0 0
## 399 0 0
## 400 0 0
## 401 0 1
## 402 0 0
## 403 0 0
## 404 1 0
## 405 1 0
## 406 0 0
## 407 0 1
## 408 1 0
## 409 0 0
## 410 1 0
## 411 0 0
## 412 0 0
## 413 0 0
## 414 0 0
## 415 0 0
## 416 0 0
## 417 0 0
## 418 0 0
## 419 0 0
## 420 0 0
## 421 0 1
## 422 0 0
## 423 1 0
## 424 1 0
## 425 1 0
## 426 1 0
## 427 0 0
## 428 0 1
## 429 0 0
## 430 0 0
## 431 1 0
## 432 0 1
## 433 0 0
## 434 1 0
## 435 1 0
## 436 0 0
## 437 0 0
## 438 0 0
## 439 0 1
## 440 0 0
## 441 0 1
## 442 0 0
## 443 0 0
## 444 1 0
## 445 0 0
## 446 0 0
## 447 0 1
## 448 1 0
## 449 0 0
## 450 0 0
## 451 0 0
## 452 0 0
## 453 0 1
## 454 0 0
## 455 0 0
## 456 1 0
## 457 0 1
## 458 0 0
## 459 0 0
## 460 0 1
## 461 0 1
## 462 0 1
## 463 0 0
## 464 0 1
## 465 0 1
## 466 0 0
## 467 0 0
## 468 0 0
## 469 0 1
## 470 0 0
## 471 0 0
## 472 0 0
## 473 1 0
## 474 0 0
## 475 0 0
## 476 0 0
## 477 0 0
## 478 0 0
## 479 0 0
## 480 0 0
## 481 0 1
## 482 0 0
## 483 0 0
## 484 0 0
## 485 0 0
## 486 0 0
## 487 1 0
## 488 1 0
## 489 0 0
## 490 0 0
## 491 1 0
## 492 1 0
## 493 0 0
## 494 0 0
## 495 1 0
## 496 0 0
## 497 0 0
## 498 0 1
## 499 0 0
## 500 0 0
## 501 0 0
## 502 1 0
## 503 0 0
## 504 0 0
## 505 0 0
## 506 0 0
## 507 0 0
## 508 0 1
## 509 0 0
## 510 0 0
## 511 0 0
## 512 0 0
## 513 1 0
## 514 0 0
## 515 0 0
## 516 1 0
## 517 0 0
## 518 0 0
## 519 0 0
## 520 0 0
## 521 0 0
## 522 0 0
## 523 0 0
## 524 0 0
## 525 0 1
## 526 0 0
## 527 1 0
## 528 1 0
## 529 0 1
## 530 0 0
## 531 0 0
## 532 1 0
## 533 0 0
## 534 0 1
## 535 0 0
## 536 0 0
## 537 1 0
## 538 0 0
## 539 1 0
## 540 0 1
## 541 0 0
## 542 0 0
## 543 0 0
## 544 0 0
## 545 0 1
## 546 0 0
## 547 1 0
## 548 0 0
## 549 0 0
## 550 0 0
## 551 1 0
## 552 1 0
## 553 0 0
## 554 0 0
## 555 0 0
## 556 0 0
## 557 1 0
## 558 0 1
## 559 0 1
## 560 0 0
## 561 0 0
## 562 0 1
## 563 0 0
## 564 0 0
## 565 1 0
## 566 0 1
## 567 0 0
## 568 1 0
## 569 1 0
## 570 0 0
## 571 0 0
## 572 0 0
## 573 0 1
## 574 0 1
## 575 0 0
## 576 1 0
## 577 0 1
## 578 0 1
## 579 0 0
## 580 0 0
## 581 0 1
## 582 0 0
## 583 1 0
## 584 1 0
## 585 0 0
## 586 0 0
## 587 0 1
## 588 0 0
## 589 1 0
## 590 0 0
## 591 0 0
## 592 0 0
## 593 0 0
## 594 0 0
## 595 0 0
## 596 0 0
## 597 0 1
## 598 0 0
## 599 1 0
## 600 0 0
## 601 0 0
## 602 1 0
## 603 0 1
## 604 0 0
## 605 1 0
## 606 0 0
## 607 1 0
## 608 0 1
## 609 1 0
## 610 0 1
## 611 0 0
## 612 0 1
## 613 1 0
## 614 0 0
## 615 0 1
## 616 0 0
## 617 0 0
## 618 0 0
## 619 0 1
## 620 1 0
## 621 0 1
## 622 0 1
## 623 0 0
## 624 1 0
## 625 1 0
## 626 0 1
## 627 0 0
## 628 0 0
## 629 0 0
## 630 1 0
## 631 0 0
## 632 0 0
## 633 0 1
## 634 0 0
## 635 0 1
## 636 0 0
## 637 0 0
## 638 0 0
## 639 0 1
## 640 1 0
## 641 0 1
## 642 0 0
## 643 0 0
## 644 0 1
## 645 0 0
## 646 0 0
## 647 0 0
## 648 1 0
## 649 0 0
## 650 0 0
## 651 0 0
## 652 0 0
## 653 0 0
## 654 0 0
## 655 1 0
## 656 0 0
## 657 0 0
## 658 1 0
## 659 0 0
## 660 1 0
## 661 0 0
## 662 0 0
## 663 1 0
## 664 0 1
## 665 0 0
## 666 1 0
## 667 0 1
## 668 0 0
## 669 0 0
## 670 0 0
## 671 1 0
## 672 0 1
## 673 0 0
## 674 0 0
## 675 0 0
## 676 1 0
## 677 0 0
## 678 0 1
## 679 0 0
## 680 0 1
## 681 0 0
## 682 0 0
## 683 1 0
## 684 1 0
## 685 0 0
## 686 0 0
## 687 0 0
## 688 0 0
## 689 0 0
## 690 0 1
## 691 0 0
## 692 0 1
## 693 0 0
## 694 1 0
## 695 0 1
## 696 0 0
## 697 0 0
## 698 0 0
## 699 0 0
## 700 0 0
## 701 1 0
## 702 0 1
## 703 1 0
## 704 0 0
## 705 0 0
## 706 0 0
## 707 0 0
## 708 0 1
## 709 1 0
## 710 0 0
## 711 0 1
## 712 0 0
## 713 0 0
## 714 0 0
## 715 1 0
## 716 0 0
## 717 1 0
## 718 0 0
## 719 1 0
## 720 1 0
## 721 1 0
## 722 0 0
## 723 0 0
## 724 0 1
## 725 0 1
## 726 0 0
## 727 0 0
## 728 0 0
## 729 1 0
## 730 0 0
## 731 1 0
## 732 0 0
## 733 1 0
## 734 0 0
## 735 0 1
## 736 0 0
## 737 0 0
## 738 0 0
## 739 0 0
## 740 0 0
## 741 0 0
## 742 0 1
## 743 0 0
## 744 0 0
## 745 0 0
## 746 0 1
## 747 1 0
## 748 0 0
## 749 0 0
## 750 0 0
## 751 1 0
## 752 0 1
## 753 0 0
## 754 0 0
## 755 1 0
## 756 1 0
## 757 0 0
## 758 0 0
## 759 0 1
## 760 0 1
## 761 0 1
## 762 0 0
## 763 1 0
## 764 0 0
## 765 0 0
## 766 0 0
## 767 1 0
## 768 0 0
## 769 0 0
## 770 0 0
## 771 0 0
## 772 0 0
## 773 0 0
## 774 0 1
## 775 0 1
## 776 0 1
## 777 0 0
## 778 0 0
## 779 0 0
## 780 0 0
## 781 0 0
## 782 0 0
## 783 1 0
## 784 0 0
## 785 0 0
## 786 0 0
## 787 0 0
## 788 0 0
## 789 0 0
## 790 0 0
## 791 1 0
## 792 0 0
## 793 0 0
## 794 0 0
## 795 0 0
## 796 1 0
## 797 0 0
## 798 0 0
## 799 0 0
## 800 0 0
## 801 0 0
## 802 0 0
## 803 1 0
## 804 1 0
## 805 0 0
## 806 0 0
## 807 0 0
## 808 0 0
## 809 0 0
## 810 1 0
## 811 0 0
## 812 0 0
## 813 0 0
## 814 0 0
## 815 0 0
## 816 0 1
## 817 1 0
## 818 0 1
## 819 0 0
## 820 0 1
## 821 0 0
## 822 0 0
## 823 0 0
## 824 0 0
## 825 0 0
## 826 0 0
## 827 0 0
## 828 1 0
## 829 0 0
## 830 0 0
## 831 0 0
## 832 0 0
## 833 0 0
## 834 0 0
## 835 0 0
## 836 1 0
## 837 1 0
## 838 0 0
## 839 0 0
## 840 0 0
## 841 1 0
## 842 0 0
## 843 0 0
## 844 0 1
## 845 1 0
## 846 0 0
## 847 0 0
## 848 0 0
## 849 0 1
## 850 1 0
## 851 1 0
## 852 1 0
## 853 0 0
## 854 0 0
## 855 0 0
## 856 1 0
## 857 0 1
## 858 0 0
## 859 0 0
## 860 0 1
## 861 0 0
## 862 0 0
## 863 0 0
## 864 0 0
## 865 0 0
## 866 0 0
## 867 0 0
## 868 0 0
## 869 0 1
## 870 0 0
## 871 0 1
## 872 1 0
## 873 0 0
## 874 0 0
## 875 0 0
## 876 0 0
## 877 1 0
## 878 0 0
## 879 0 0
## 880 0 0
## 881 0 1
## 882 1 0
## 883 0 0
## 884 0 0
## 885 0 1
## 886 0 0
## 887 0 1
## 888 0 0
## 889 1 0
## 890 0 0
## 891 0 0
## 892 0 0
## 893 1 0
## 894 0 0
## 895 0 0
## 896 0 0
## 897 1 0
## 898 0 1
## 899 0 0
## 900 0 1
## 901 0 0
## 902 0 0
## 903 0 0
## 904 0 1
## 905 0 0
## 906 0 0
## 907 0 0
## 908 0 0
## 909 0 1
## 910 0 0
## 911 0 1
## 912 0 0
## 913 0 0
## 914 1 0
## 915 0 1
## 916 0 0
## 917 0 0
## 918 1 0
## 919 0 0
## 920 0 0
## 921 0 0
## 922 0 0
## 923 0 0
## 924 0 0
## 925 0 0
## 926 0 0
## 927 0 0
## 928 0 0
## 929 0 0
## 930 0 0
## 931 0 0
## 932 1 0
## 933 0 1
## 934 0 0
## 935 0 0
## 936 0 0
## 937 0 0
## 938 0 0
## 939 0 0
## 940 0 1
## 941 0 1
## 942 1 0
## 943 0 0
## 944 0 0
## 945 0 0
## 946 0 0
## 947 0 0
## 948 1 0
## 949 0 0
## 950 0 1
## 951 0 0
## 952 0 0
## 953 0 1
## 954 0 1
## 955 0 0
## 956 1 0
## 957 0 1
## 958 0 0
## 959 0 0
## 960 0 1
## 961 1 0
## 962 0 0
## 963 1 0
## 964 0 0
## 965 0 1
## 966 0 0
## 967 0 0
## 968 0 0
## 969 0 0
## 970 0 0
## 971 0 1
## 972 0 0
## 973 0 0
## 974 0 0
## 975 1 0
## 976 1 0
## 977 0 1
## 978 0 1
## 979 0 0
## 980 0 1
## 981 0 1
## 982 0 0
## 983 0 0
## 984 0 0
## 985 0 0
## 986 1 0
## 987 0 0
## 988 0 0
## 989 0 0
## 990 0 0
## 991 0 1
## 992 0 0
## 993 0 0
## 994 1 0
## 995 0 0
## 996 0 0
## 997 0 0
## 998 0 1
## 999 0 0
## 1000 1 0
## X.Product.line.Health.and.beauty X.Product.line.Home.and.lifestyle
## 1 1 0
## 2 0 0
## 3 0 1
## 4 1 0
## 5 0 0
## 6 0 0
## 7 0 0
## 8 0 1
## 9 1 0
## 10 0 0
## 11 0 0
## 12 0 0
## 13 0 0
## 14 0 0
## 15 1 0
## 16 0 0
## 17 1 0
## 18 0 0
## 19 0 0
## 20 0 1
## 21 0 0
## 22 1 0
## 23 0 1
## 24 0 0
## 25 0 0
## 26 0 1
## 27 0 0
## 28 0 0
## 29 0 0
## 30 1 0
## 31 0 0
## 32 0 0
## 33 0 0
## 34 1 0
## 35 0 0
## 36 0 0
## 37 0 0
## 38 0 0
## 39 1 0
## 40 0 1
## 41 0 1
## 42 0 1
## 43 0 0
## 44 0 0
## 45 1 0
## 46 0 0
## 47 1 0
## 48 0 0
## 49 0 0
## 50 0 0
## 51 0 0
## 52 0 0
## 53 0 0
## 54 0 0
## 55 0 1
## 56 0 0
## 57 0 1
## 58 1 0
## 59 0 1
## 60 0 0
## 61 0 0
## 62 0 1
## 63 0 0
## 64 0 0
## 65 1 0
## 66 1 0
## 67 1 0
## 68 0 0
## 69 0 0
## 70 1 0
## 71 0 0
## 72 0 0
## 73 0 0
## 74 0 0
## 75 0 1
## 76 0 0
## 77 0 0
## 78 0 0
## 79 0 0
## 80 1 0
## 81 1 0
## 82 0 0
## 83 0 0
## 84 0 0
## 85 0 0
## 86 0 0
## 87 0 0
## 88 0 0
## 89 0 0
## 90 1 0
## 91 0 1
## 92 0 0
## 93 0 0
## 94 1 0
## 95 1 0
## 96 0 0
## 97 1 0
## 98 0 0
## 99 0 0
## 100 0 1
## 101 0 0
## 102 0 0
## 103 0 0
## 104 0 0
## 105 1 0
## 106 0 0
## 107 0 0
## 108 0 0
## 109 0 0
## 110 0 0
## 111 0 0
## 112 1 0
## 113 0 0
## 114 0 1
## 115 0 1
## 116 0 0
## 117 0 0
## 118 0 0
## 119 0 0
## 120 0 1
## 121 0 0
## 122 0 0
## 123 0 0
## 124 0 1
## 125 0 0
## 126 0 1
## 127 0 0
## 128 0 0
## 129 0 0
## 130 0 0
## 131 0 0
## 132 0 0
## 133 0 0
## 134 0 0
## 135 1 0
## 136 0 0
## 137 0 0
## 138 0 1
## 139 0 0
## 140 0 0
## 141 0 0
## 142 1 0
## 143 1 0
## 144 0 0
## 145 0 1
## 146 1 0
## 147 0 0
## 148 1 0
## 149 0 1
## 150 1 0
## 151 0 0
## 152 0 0
## 153 0 0
## 154 0 0
## 155 0 0
## 156 0 0
## 157 0 0
## 158 0 1
## 159 1 0
## 160 0 0
## 161 0 0
## 162 0 0
## 163 0 0
## 164 0 0
## 165 0 0
## 166 1 0
## 167 0 1
## 168 0 0
## 169 0 0
## 170 0 0
## 171 1 0
## 172 0 0
## 173 0 0
## 174 0 0
## 175 0 0
## 176 0 1
## 177 0 0
## 178 0 0
## 179 0 0
## 180 1 0
## 181 0 0
## 182 0 0
## 183 0 0
## 184 1 0
## 185 0 0
## 186 0 0
## 187 0 1
## 188 0 1
## 189 0 1
## 190 0 1
## 191 0 1
## 192 0 0
## 193 0 0
## 194 0 1
## 195 0 0
## 196 0 0
## 197 1 0
## 198 0 1
## 199 1 0
## 200 0 0
## 201 0 0
## 202 0 0
## 203 0 0
## 204 1 0
## 205 0 1
## 206 1 0
## 207 0 0
## 208 0 1
## 209 0 0
## 210 0 0
## 211 0 0
## 212 0 0
## 213 0 1
## 214 0 0
## 215 0 0
## 216 0 1
## 217 0 0
## 218 0 0
## 219 0 0
## 220 0 0
## 221 0 0
## 222 0 0
## 223 0 0
## 224 0 0
## 225 0 0
## 226 0 0
## 227 1 0
## 228 0 0
## 229 0 0
## 230 0 1
## 231 0 0
## 232 0 0
## 233 1 0
## 234 0 0
## 235 1 0
## 236 0 0
## 237 1 0
## 238 0 0
## 239 0 0
## 240 0 0
## 241 0 0
## 242 1 0
## 243 0 0
## 244 0 1
## 245 0 1
## 246 0 1
## 247 0 0
## 248 0 0
## 249 0 0
## 250 0 0
## 251 0 0
## 252 0 0
## 253 0 0
## 254 0 1
## 255 0 1
## 256 0 0
## 257 0 0
## 258 0 1
## 259 0 0
## 260 0 0
## 261 0 0
## 262 0 0
## 263 0 0
## 264 0 0
## 265 0 0
## 266 0 0
## 267 0 1
## 268 0 0
## 269 0 1
## 270 0 1
## 271 0 0
## 272 1 0
## 273 0 1
## 274 0 1
## 275 1 0
## 276 0 0
## 277 0 1
## 278 0 0
## 279 0 0
## 280 0 0
## 281 0 1
## 282 0 1
## 283 0 0
## 284 1 0
## 285 1 0
## 286 1 0
## 287 0 1
## 288 0 0
## 289 0 0
## 290 0 1
## 291 0 0
## 292 0 0
## 293 0 0
## 294 0 0
## 295 1 0
## 296 0 0
## 297 0 0
## 298 0 1
## 299 0 1
## 300 0 1
## 301 0 0
## 302 1 0
## 303 0 0
## 304 0 0
## 305 0 0
## 306 0 0
## 307 0 0
## 308 0 1
## 309 0 0
## 310 0 0
## 311 0 0
## 312 0 0
## 313 0 0
## 314 1 0
## 315 0 0
## 316 0 0
## 317 0 0
## 318 0 0
## 319 1 0
## 320 1 0
## 321 0 0
## 322 1 0
## 323 1 0
## 324 0 0
## 325 0 1
## 326 0 0
## 327 0 0
## 328 0 0
## 329 1 0
## 330 0 0
## 331 0 1
## 332 0 0
## 333 0 0
## 334 0 0
## 335 0 0
## 336 0 0
## 337 0 0
## 338 0 0
## 339 0 0
## 340 0 0
## 341 0 0
## 342 1 0
## 343 1 0
## 344 0 0
## 345 0 0
## 346 0 0
## 347 0 0
## 348 0 1
## 349 0 0
## 350 1 0
## 351 0 0
## 352 0 0
## 353 0 0
## 354 0 1
## 355 0 0
## 356 0 0
## 357 0 0
## 358 0 0
## 359 0 0
## 360 0 0
## 361 0 0
## 362 0 0
## 363 0 0
## 364 0 1
## 365 0 0
## 366 0 0
## 367 0 0
## 368 0 1
## 369 0 0
## 370 0 0
## 371 0 0
## 372 0 0
## 373 0 1
## 374 0 0
## 375 0 1
## 376 0 0
## 377 0 1
## 378 0 0
## 379 0 0
## 380 0 0
## 381 0 0
## 382 0 0
## 383 0 0
## 384 0 0
## 385 0 0
## 386 0 0
## 387 0 0
## 388 1 0
## 389 0 0
## 390 0 0
## 391 0 0
## 392 0 0
## 393 0 0
## 394 0 0
## 395 1 0
## 396 1 0
## 397 0 0
## 398 0 1
## 399 1 0
## 400 0 0
## 401 0 0
## 402 0 1
## 403 0 1
## 404 0 0
## 405 0 0
## 406 0 0
## 407 0 0
## 408 0 0
## 409 0 1
## 410 0 0
## 411 1 0
## 412 0 0
## 413 1 0
## 414 0 0
## 415 0 1
## 416 1 0
## 417 0 1
## 418 1 0
## 419 1 0
## 420 0 0
## 421 0 0
## 422 0 0
## 423 0 0
## 424 0 0
## 425 0 0
## 426 0 0
## 427 1 0
## 428 0 0
## 429 0 0
## 430 0 1
## 431 0 0
## 432 0 0
## 433 0 0
## 434 0 0
## 435 0 0
## 436 0 0
## 437 0 0
## 438 0 1
## 439 0 0
## 440 0 0
## 441 0 0
## 442 0 0
## 443 0 1
## 444 0 0
## 445 0 0
## 446 1 0
## 447 0 0
## 448 0 0
## 449 1 0
## 450 0 0
## 451 0 0
## 452 0 0
## 453 0 0
## 454 1 0
## 455 0 0
## 456 0 0
## 457 0 0
## 458 0 0
## 459 0 0
## 460 0 0
## 461 0 0
## 462 0 0
## 463 0 0
## 464 0 0
## 465 0 0
## 466 0 0
## 467 1 0
## 468 0 0
## 469 0 0
## 470 0 0
## 471 0 1
## 472 0 0
## 473 0 0
## 474 1 0
## 475 0 0
## 476 1 0
## 477 0 0
## 478 0 0
## 479 0 0
## 480 0 0
## 481 0 0
## 482 0 0
## 483 0 0
## 484 0 1
## 485 0 0
## 486 0 0
## 487 0 0
## 488 0 0
## 489 0 1
## 490 0 1
## 491 0 0
## 492 0 0
## 493 1 0
## 494 0 1
## 495 0 0
## 496 0 0
## 497 0 0
## 498 0 0
## 499 0 0
## 500 0 0
## 501 0 0
## 502 0 0
## 503 0 1
## 504 0 0
## 505 0 0
## 506 0 0
## 507 0 0
## 508 0 0
## 509 1 0
## 510 0 1
## 511 0 0
## 512 0 1
## 513 0 0
## 514 0 0
## 515 0 0
## 516 0 0
## 517 1 0
## 518 0 1
## 519 0 1
## 520 0 0
## 521 0 0
## 522 0 1
## 523 0 1
## 524 1 0
## 525 0 0
## 526 0 0
## 527 0 0
## 528 0 0
## 529 0 0
## 530 0 0
## 531 1 0
## 532 0 0
## 533 0 0
## 534 0 0
## 535 0 1
## 536 0 1
## 537 0 0
## 538 0 1
## 539 0 0
## 540 0 0
## 541 0 1
## 542 1 0
## 543 0 0
## 544 0 0
## 545 0 0
## 546 0 1
## 547 0 0
## 548 0 0
## 549 0 0
## 550 0 0
## 551 0 0
## 552 0 0
## 553 1 0
## 554 0 0
## 555 0 0
## 556 0 1
## 557 0 0
## 558 0 0
## 559 0 0
## 560 0 1
## 561 0 0
## 562 0 0
## 563 0 0
## 564 0 0
## 565 0 0
## 566 0 0
## 567 0 0
## 568 0 0
## 569 0 0
## 570 0 0
## 571 0 1
## 572 0 0
## 573 0 0
## 574 0 0
## 575 0 0
## 576 0 0
## 577 0 0
## 578 0 0
## 579 1 0
## 580 1 0
## 581 0 0
## 582 1 0
## 583 0 0
## 584 0 0
## 585 0 0
## 586 1 0
## 587 0 0
## 588 0 0
## 589 0 0
## 590 1 0
## 591 1 0
## 592 0 1
## 593 0 0
## 594 0 0
## 595 0 0
## 596 1 0
## 597 0 0
## 598 0 0
## 599 0 0
## 600 0 1
## 601 0 0
## 602 0 0
## 603 0 0
## 604 0 0
## 605 0 0
## 606 0 1
## 607 0 0
## 608 0 0
## 609 0 0
## 610 0 0
## 611 0 0
## 612 0 0
## 613 0 0
## 614 0 0
## 615 0 0
## 616 0 0
## 617 0 0
## 618 0 0
## 619 0 0
## 620 0 0
## 621 0 0
## 622 0 0
## 623 0 1
## 624 0 0
## 625 0 0
## 626 0 0
## 627 0 0
## 628 1 0
## 629 0 1
## 630 0 0
## 631 0 0
## 632 0 0
## 633 0 0
## 634 0 1
## 635 0 0
## 636 1 0
## 637 1 0
## 638 0 0
## 639 0 0
## 640 0 0
## 641 0 0
## 642 0 0
## 643 0 0
## 644 0 0
## 645 0 0
## 646 0 1
## 647 1 0
## 648 0 0
## 649 0 0
## 650 0 0
## 651 0 0
## 652 1 0
## 653 0 1
## 654 0 0
## 655 0 0
## 656 0 0
## 657 0 0
## 658 0 0
## 659 0 0
## 660 0 0
## 661 0 0
## 662 0 0
## 663 0 0
## 664 0 0
## 665 0 0
## 666 0 0
## 667 0 0
## 668 1 0
## 669 1 0
## 670 0 0
## 671 0 0
## 672 0 0
## 673 1 0
## 674 1 0
## 675 0 0
## 676 0 0
## 677 0 0
## 678 0 0
## 679 1 0
## 680 0 0
## 681 0 0
## 682 0 0
## 683 0 0
## 684 0 0
## 685 0 0
## 686 0 1
## 687 0 0
## 688 0 1
## 689 0 0
## 690 0 0
## 691 0 0
## 692 0 0
## 693 1 0
## 694 0 0
## 695 0 0
## 696 0 1
## 697 0 0
## 698 0 1
## 699 0 0
## 700 0 1
## 701 0 0
## 702 0 0
## 703 0 0
## 704 1 0
## 705 0 1
## 706 1 0
## 707 0 0
## 708 0 0
## 709 0 0
## 710 0 0
## 711 0 0
## 712 0 1
## 713 0 0
## 714 1 0
## 715 0 0
## 716 1 0
## 717 0 0
## 718 0 0
## 719 0 0
## 720 0 0
## 721 0 0
## 722 0 0
## 723 0 1
## 724 0 0
## 725 0 0
## 726 1 0
## 727 0 1
## 728 0 0
## 729 0 0
## 730 0 1
## 731 0 0
## 732 1 0
## 733 0 0
## 734 0 0
## 735 0 0
## 736 1 0
## 737 0 1
## 738 0 0
## 739 0 0
## 740 0 1
## 741 0 1
## 742 0 0
## 743 0 0
## 744 0 1
## 745 0 0
## 746 0 0
## 747 0 0
## 748 0 1
## 749 0 1
## 750 1 0
## 751 0 0
## 752 0 0
## 753 0 0
## 754 0 1
## 755 0 0
## 756 0 0
## 757 0 0
## 758 0 1
## 759 0 0
## 760 0 0
## 761 0 0
## 762 0 0
## 763 0 0
## 764 1 0
## 765 1 0
## 766 0 1
## 767 0 0
## 768 0 0
## 769 0 0
## 770 0 1
## 771 0 0
## 772 1 0
## 773 0 0
## 774 0 0
## 775 0 0
## 776 0 0
## 777 1 0
## 778 0 0
## 779 0 0
## 780 0 0
## 781 1 0
## 782 0 0
## 783 0 0
## 784 0 1
## 785 1 0
## 786 0 0
## 787 0 0
## 788 1 0
## 789 1 0
## 790 0 0
## 791 0 0
## 792 1 0
## 793 0 1
## 794 0 0
## 795 0 0
## 796 0 0
## 797 0 1
## 798 0 0
## 799 1 0
## 800 0 1
## 801 0 0
## 802 0 0
## 803 0 0
## 804 0 0
## 805 0 0
## 806 0 1
## 807 0 0
## 808 0 0
## 809 1 0
## 810 0 0
## 811 1 0
## 812 0 0
## 813 0 0
## 814 0 0
## 815 0 0
## 816 0 0
## 817 0 0
## 818 0 0
## 819 1 0
## 820 0 0
## 821 0 0
## 822 0 1
## 823 0 0
## 824 1 0
## 825 0 0
## 826 0 0
## 827 1 0
## 828 0 0
## 829 0 0
## 830 0 0
## 831 0 0
## 832 1 0
## 833 0 0
## 834 1 0
## 835 0 1
## 836 0 0
## 837 0 0
## 838 0 0
## 839 0 0
## 840 0 0
## 841 0 0
## 842 0 0
## 843 0 0
## 844 0 0
## 845 0 0
## 846 0 0
## 847 0 0
## 848 0 0
## 849 0 0
## 850 0 0
## 851 0 0
## 852 0 0
## 853 1 0
## 854 0 0
## 855 1 0
## 856 0 0
## 857 0 0
## 858 0 1
## 859 1 0
## 860 0 0
## 861 0 1
## 862 0 0
## 863 0 1
## 864 0 1
## 865 0 0
## 866 1 0
## 867 0 0
## 868 1 0
## 869 0 0
## 870 0 0
## 871 0 0
## 872 0 0
## 873 0 0
## 874 0 0
## 875 0 1
## 876 0 1
## 877 0 0
## 878 0 0
## 879 0 0
## 880 0 0
## 881 0 0
## 882 0 0
## 883 0 0
## 884 0 1
## 885 0 0
## 886 0 0
## 887 0 0
## 888 0 0
## 889 0 0
## 890 0 0
## 891 1 0
## 892 0 0
## 893 0 0
## 894 0 0
## 895 0 0
## 896 1 0
## 897 0 0
## 898 0 0
## 899 1 0
## 900 0 0
## 901 0 0
## 902 0 1
## 903 1 0
## 904 0 0
## 905 1 0
## 906 0 1
## 907 1 0
## 908 1 0
## 909 0 0
## 910 0 1
## 911 0 0
## 912 0 0
## 913 0 1
## 914 0 0
## 915 0 0
## 916 0 0
## 917 0 0
## 918 0 0
## 919 0 1
## 920 0 0
## 921 0 1
## 922 0 1
## 923 0 1
## 924 0 0
## 925 0 0
## 926 0 0
## 927 0 0
## 928 1 0
## 929 0 0
## 930 0 0
## 931 0 1
## 932 0 0
## 933 0 0
## 934 1 0
## 935 0 1
## 936 0 1
## 937 1 0
## 938 0 0
## 939 1 0
## 940 0 0
## 941 0 0
## 942 0 0
## 943 0 1
## 944 1 0
## 945 1 0
## 946 0 0
## 947 0 0
## 948 0 0
## 949 0 1
## 950 0 0
## 951 1 0
## 952 0 1
## 953 0 0
## 954 0 0
## 955 0 1
## 956 0 0
## 957 0 0
## 958 0 0
## 959 0 1
## 960 0 0
## 961 0 0
## 962 0 0
## 963 0 0
## 964 0 0
## 965 0 0
## 966 0 0
## 967 0 1
## 968 0 1
## 969 1 0
## 970 0 0
## 971 0 0
## 972 0 1
## 973 0 0
## 974 0 1
## 975 0 0
## 976 0 0
## 977 0 0
## 978 0 0
## 979 0 0
## 980 0 0
## 981 0 0
## 982 1 0
## 983 0 0
## 984 1 0
## 985 0 0
## 986 0 0
## 987 1 0
## 988 1 0
## 989 0 0
## 990 1 0
## 991 0 0
## 992 0 0
## 993 0 0
## 994 0 0
## 995 0 0
## 996 1 0
## 997 0 1
## 998 0 0
## 999 0 1
## 1000 0 0
## X.Product.line.Sports.and.travel X.Unit.price. Quantity Tax
## 1 0 74.69 7 26.1415
## 2 0 15.28 5 3.8200
## 3 0 46.33 7 16.2155
## 4 0 58.22 8 23.2880
## 5 1 86.31 7 30.2085
## 6 0 85.39 7 29.8865
## 7 0 68.84 6 20.6520
## 8 0 73.56 10 36.7800
## 9 0 36.26 2 3.6260
## 10 0 54.84 3 8.2260
## 11 0 14.48 4 2.8960
## 12 0 25.51 4 5.1020
## 13 0 46.95 5 11.7375
## 14 0 43.19 10 21.5950
## 15 0 71.38 10 35.6900
## 16 1 93.72 6 28.1160
## 17 0 68.93 7 24.1255
## 18 1 72.61 6 21.7830
## 19 0 54.67 3 8.2005
## 20 0 40.30 2 4.0300
## 21 0 86.04 5 21.5100
## 22 0 87.98 3 13.1970
## 23 0 33.20 2 3.3200
## 24 0 34.56 5 8.6400
## 25 1 88.63 3 13.2945
## 26 0 52.59 8 21.0360
## 27 0 33.52 1 1.6760
## 28 0 87.67 2 8.7670
## 29 0 88.36 5 22.0900
## 30 0 24.89 9 11.2005
## 31 0 94.13 5 23.5325
## 32 1 78.07 9 35.1315
## 33 1 83.78 8 33.5120
## 34 0 96.58 2 9.6580
## 35 0 99.42 4 19.8840
## 36 1 68.12 1 3.4060
## 37 1 62.62 5 15.6550
## 38 0 60.88 9 27.3960
## 39 0 54.92 8 21.9680
## 40 0 30.12 8 12.0480
## 41 0 86.72 1 4.3360
## 42 0 56.11 2 5.6110
## 43 1 69.12 6 20.7360
## 44 0 98.70 8 39.4800
## 45 0 15.37 2 1.5370
## 46 0 93.96 4 18.7920
## 47 0 56.69 9 25.5105
## 48 0 20.01 9 9.0045
## 49 0 18.93 6 5.6790
## 50 0 82.63 10 41.3150
## 51 0 91.40 7 31.9900
## 52 0 44.59 5 11.1475
## 53 0 17.87 4 3.5740
## 54 0 15.43 1 0.7715
## 55 0 16.16 2 1.6160
## 56 0 85.98 8 34.3920
## 57 0 44.34 2 4.4340
## 58 0 89.60 8 35.8400
## 59 0 72.35 10 36.1750
## 60 0 30.61 6 9.1830
## 61 1 24.74 3 3.7110
## 62 0 55.73 6 16.7190
## 63 1 55.07 9 24.7815
## 64 1 15.81 10 7.9050
## 65 0 75.74 4 15.1480
## 66 0 15.87 10 7.9350
## 67 0 33.47 2 3.3470
## 68 0 97.61 6 29.2830
## 69 1 78.77 10 39.3850
## 70 0 18.33 1 0.9165
## 71 0 89.48 10 44.7400
## 72 0 62.12 10 31.0600
## 73 0 48.52 3 7.2780
## 74 0 75.91 6 22.7730
## 75 0 74.67 9 33.6015
## 76 0 41.65 10 20.8250
## 77 0 49.04 9 22.0680
## 78 0 20.01 9 9.0045
## 79 0 78.31 10 39.1550
## 80 0 20.38 5 5.0950
## 81 0 99.19 6 29.7570
## 82 0 96.68 3 14.5020
## 83 0 19.25 8 7.7000
## 84 0 80.36 4 16.0720
## 85 1 48.91 5 12.2275
## 86 1 83.06 7 29.0710
## 87 0 76.52 5 19.1300
## 88 0 49.38 7 17.2830
## 89 1 42.47 1 2.1235
## 90 0 76.99 6 23.0970
## 91 0 47.38 4 9.4760
## 92 1 44.86 10 22.4300
## 93 1 21.98 7 7.6930
## 94 0 64.36 9 28.9620
## 95 0 89.75 1 4.4875
## 96 0 97.16 1 4.8580
## 97 0 87.87 10 43.9350
## 98 0 12.45 6 3.7350
## 99 0 52.75 3 7.9125
## 100 0 82.70 6 24.8100
## 101 0 48.71 1 2.4355
## 102 0 78.55 9 35.3475
## 103 0 23.07 9 10.3815
## 104 0 58.26 6 17.4780
## 105 0 30.35 7 10.6225
## 106 0 88.67 10 44.3350
## 107 0 27.38 6 8.2140
## 108 1 62.13 6 18.6390
## 109 0 33.98 9 15.2910
## 110 0 81.97 10 40.9850
## 111 1 16.49 2 1.6490
## 112 0 98.21 3 14.7315
## 113 0 72.84 7 25.4940
## 114 0 58.07 9 26.1315
## 115 0 80.79 9 36.3555
## 116 0 27.02 3 4.0530
## 117 0 21.94 5 5.4850
## 118 0 51.36 1 2.5680
## 119 0 10.96 10 5.4800
## 120 0 53.44 2 5.3440
## 121 0 99.56 8 39.8240
## 122 1 57.12 7 19.9920
## 123 1 99.96 9 44.9820
## 124 0 63.91 8 25.5640
## 125 0 56.47 8 22.5880
## 126 0 93.69 7 32.7915
## 127 1 32.25 5 8.0625
## 128 0 31.73 9 14.2785
## 129 0 68.54 8 27.4160
## 130 1 90.28 9 40.6260
## 131 0 39.62 7 13.8670
## 132 1 92.13 6 27.6390
## 133 1 34.84 4 6.9680
## 134 0 87.45 6 26.2350
## 135 0 81.30 6 24.3900
## 136 0 90.22 3 13.5330
## 137 0 26.31 5 6.5775
## 138 0 34.42 6 10.3260
## 139 1 51.91 10 25.9550
## 140 1 72.50 8 29.0000
## 141 1 89.80 10 44.9000
## 142 0 90.50 10 45.2500
## 143 0 68.60 10 34.3000
## 144 0 30.41 1 1.5205
## 145 0 77.95 6 23.3850
## 146 0 46.26 6 13.8780
## 147 0 30.14 10 15.0700
## 148 0 66.14 4 13.2280
## 149 0 71.86 8 28.7440
## 150 0 32.46 8 12.9840
## 151 0 91.54 4 18.3080
## 152 1 34.56 7 12.0960
## 153 0 83.24 9 37.4580
## 154 0 16.48 6 4.9440
## 155 1 80.97 8 32.3880
## 156 0 92.29 5 23.0725
## 157 0 72.17 1 3.6085
## 158 0 50.28 5 12.5700
## 159 0 97.22 9 43.7490
## 160 1 93.39 6 28.0170
## 161 0 43.18 8 17.2720
## 162 1 63.69 1 3.1845
## 163 0 45.79 7 16.0265
## 164 1 76.40 2 7.6400
## 165 0 39.90 10 19.9500
## 166 0 42.57 8 17.0280
## 167 0 95.58 10 47.7900
## 168 0 98.98 10 49.4900
## 169 0 51.28 6 15.3840
## 170 1 69.52 7 24.3320
## 171 0 70.01 5 17.5025
## 172 0 80.05 5 20.0125
## 173 0 20.85 8 8.3400
## 174 0 52.89 6 15.8670
## 175 0 19.79 8 7.9160
## 176 0 33.84 9 15.2280
## 177 0 22.17 8 8.8680
## 178 0 22.51 7 7.8785
## 179 0 73.88 6 22.1640
## 180 0 86.80 3 13.0200
## 181 0 64.26 7 22.4910
## 182 0 38.47 8 15.3880
## 183 1 15.50 10 7.7500
## 184 0 34.31 8 13.7240
## 185 1 12.34 7 4.3190
## 186 0 18.08 3 2.7120
## 187 0 94.49 8 37.7960
## 188 0 46.47 4 9.2940
## 189 0 74.07 1 3.7035
## 190 0 69.81 4 13.9620
## 191 0 77.04 3 11.5560
## 192 0 73.52 2 7.3520
## 193 0 87.80 9 39.5100
## 194 0 25.55 4 5.1100
## 195 0 32.71 5 8.1775
## 196 0 74.29 1 3.7145
## 197 0 43.70 2 4.3700
## 198 0 25.29 1 1.2645
## 199 0 41.50 4 8.3000
## 200 0 71.39 5 17.8475
## 201 1 19.15 6 5.7450
## 202 0 57.49 4 11.4980
## 203 0 61.41 7 21.4935
## 204 0 25.90 10 12.9500
## 205 0 17.77 5 4.4425
## 206 0 23.03 9 10.3635
## 207 0 66.65 9 29.9925
## 208 0 28.53 10 14.2650
## 209 0 30.37 3 4.5555
## 210 0 99.73 9 44.8785
## 211 0 26.23 9 11.8035
## 212 0 93.26 9 41.9670
## 213 0 92.36 5 23.0900
## 214 1 46.42 3 6.9630
## 215 1 29.61 7 10.3635
## 216 0 18.28 1 0.9140
## 217 1 24.77 5 6.1925
## 218 0 94.64 3 14.1960
## 219 0 94.87 8 37.9480
## 220 0 57.34 3 8.6010
## 221 0 45.35 6 13.6050
## 222 0 62.08 7 21.7280
## 223 0 11.81 5 2.9525
## 224 0 12.54 1 0.6270
## 225 0 43.25 2 4.3250
## 226 1 87.16 2 8.7160
## 227 0 69.37 9 31.2165
## 228 0 37.06 4 7.4120
## 229 0 90.70 6 27.2100
## 230 0 63.42 8 25.3680
## 231 0 81.37 2 8.1370
## 232 0 10.59 3 1.5885
## 233 0 84.09 9 37.8405
## 234 0 73.82 4 14.7640
## 235 0 51.94 10 25.9700
## 236 1 93.14 2 9.3140
## 237 0 17.41 5 4.3525
## 238 0 44.22 5 11.0550
## 239 0 13.22 5 3.3050
## 240 0 89.69 1 4.4845
## 241 0 24.94 9 11.2230
## 242 0 59.77 2 5.9770
## 243 0 93.20 2 9.3200
## 244 0 62.65 4 12.5300
## 245 0 93.87 8 37.5480
## 246 0 47.59 8 19.0360
## 247 0 81.40 3 12.2100
## 248 0 17.94 5 4.4850
## 249 0 77.72 4 15.5440
## 250 0 73.06 7 25.5710
## 251 0 46.55 9 20.9475
## 252 0 35.19 10 17.5950
## 253 1 14.39 2 1.4390
## 254 0 23.75 4 4.7500
## 255 0 58.90 8 23.5600
## 256 0 32.62 4 6.5240
## 257 0 66.35 1 3.3175
## 258 0 25.91 6 7.7730
## 259 0 32.25 4 6.4500
## 260 0 65.94 4 13.1880
## 261 0 75.06 9 33.7770
## 262 0 16.45 4 3.2900
## 263 0 38.30 4 7.6600
## 264 1 22.24 10 11.1200
## 265 1 54.45 1 2.7225
## 266 1 98.40 7 34.4400
## 267 0 35.47 4 7.0940
## 268 0 74.60 10 37.3000
## 269 0 70.74 4 14.1480
## 270 0 35.54 10 17.7700
## 271 1 67.43 5 16.8575
## 272 0 21.12 2 2.1120
## 273 0 21.54 9 9.6930
## 274 0 12.03 2 1.2030
## 275 0 99.71 6 29.9130
## 276 0 47.97 7 16.7895
## 277 0 21.82 10 10.9100
## 278 0 95.42 4 19.0840
## 279 0 70.99 10 35.4950
## 280 1 44.02 10 22.0100
## 281 0 69.96 8 27.9840
## 282 0 37.00 1 1.8500
## 283 1 15.34 1 0.7670
## 284 0 99.83 6 29.9490
## 285 0 47.67 4 9.5340
## 286 0 66.68 5 16.6700
## 287 0 74.86 1 3.7430
## 288 1 23.75 9 10.6875
## 289 0 48.51 7 16.9785
## 290 0 94.88 7 33.2080
## 291 0 40.30 10 20.1500
## 292 0 27.85 7 9.7475
## 293 0 62.48 1 3.1240
## 294 0 36.36 2 3.6360
## 295 0 18.11 10 9.0550
## 296 0 51.92 5 12.9800
## 297 0 28.84 4 5.7680
## 298 0 78.38 6 23.5140
## 299 0 60.01 4 12.0020
## 300 0 88.61 1 4.4305
## 301 0 99.82 2 9.9820
## 302 0 39.01 1 1.9505
## 303 0 48.61 1 2.4305
## 304 0 51.19 4 10.2380
## 305 0 14.96 8 5.9840
## 306 0 72.20 7 25.2700
## 307 1 40.23 7 14.0805
## 308 0 88.79 8 35.5160
## 309 0 26.48 3 3.9720
## 310 0 81.91 2 8.1910
## 311 1 79.93 6 23.9790
## 312 0 69.33 2 6.9330
## 313 0 14.23 5 3.5575
## 314 0 15.55 9 6.9975
## 315 0 78.13 10 39.0650
## 316 0 99.37 2 9.9370
## 317 0 21.08 3 3.1620
## 318 0 74.79 5 18.6975
## 319 0 29.67 7 10.3845
## 320 0 44.07 4 8.8140
## 321 0 22.93 9 10.3185
## 322 0 39.42 1 1.9710
## 323 0 15.26 6 4.5780
## 324 0 61.77 5 15.4425
## 325 0 21.52 6 6.4560
## 326 1 97.74 4 19.5480
## 327 0 99.78 5 24.9450
## 328 0 94.26 4 18.8520
## 329 0 51.13 4 10.2260
## 330 0 36.36 4 7.2720
## 331 0 22.02 9 9.9090
## 332 0 32.90 3 4.9350
## 333 0 77.02 5 19.2550
## 334 0 23.48 2 2.3480
## 335 1 14.70 5 3.6750
## 336 0 28.45 5 7.1125
## 337 0 76.40 9 34.3800
## 338 1 57.95 6 17.3850
## 339 0 47.65 3 7.1475
## 340 0 42.82 9 19.2690
## 341 0 48.09 3 7.2135
## 342 0 55.97 7 19.5895
## 343 0 76.90 7 26.9150
## 344 0 97.03 5 24.2575
## 345 1 44.65 3 6.6975
## 346 0 77.93 9 35.0685
## 347 0 71.95 1 3.5975
## 348 0 89.25 8 35.7000
## 349 0 26.02 7 9.1070
## 350 0 13.50 10 6.7500
## 351 0 99.30 10 49.6500
## 352 0 51.69 7 18.0915
## 353 0 54.73 7 19.1555
## 354 0 27.00 9 12.1500
## 355 0 30.24 1 1.5120
## 356 0 89.14 4 17.8280
## 357 0 37.55 10 18.7750
## 358 1 95.44 10 47.7200
## 359 0 27.50 3 4.1250
## 360 1 74.97 1 3.7485
## 361 0 80.96 8 32.3840
## 362 0 94.47 8 37.7880
## 363 0 99.79 2 9.9790
## 364 0 73.22 6 21.9660
## 365 0 41.24 4 8.2480
## 366 0 81.68 4 16.3360
## 367 0 51.32 9 23.0940
## 368 0 65.94 4 13.1880
## 369 1 14.36 10 7.1800
## 370 0 21.50 9 9.6750
## 371 0 26.26 7 9.1910
## 372 0 60.96 2 6.0960
## 373 0 70.11 6 21.0330
## 374 0 42.08 6 12.6240
## 375 0 67.09 5 16.7725
## 376 0 96.70 5 24.1750
## 377 0 35.38 9 15.9210
## 378 1 95.49 7 33.4215
## 379 0 96.98 4 19.3960
## 380 0 23.65 4 4.7300
## 381 1 82.33 4 16.4660
## 382 0 26.61 2 2.6610
## 383 0 99.69 5 24.9225
## 384 0 74.89 4 14.9780
## 385 0 40.94 5 10.2350
## 386 1 75.82 1 3.7910
## 387 0 46.77 6 14.0310
## 388 0 32.32 10 16.1600
## 389 0 54.07 9 24.3315
## 390 0 18.22 7 6.3770
## 391 0 80.48 3 12.0720
## 392 0 37.95 10 18.9750
## 393 0 76.82 1 3.8410
## 394 1 52.26 10 26.1300
## 395 0 79.74 1 3.9870
## 396 0 77.50 5 19.3750
## 397 0 54.27 5 13.5675
## 398 0 13.59 9 6.1155
## 399 0 41.06 6 12.3180
## 400 0 19.24 9 8.6580
## 401 0 39.43 6 11.8290
## 402 0 46.22 4 9.2440
## 403 0 13.98 1 0.6990
## 404 0 39.75 5 9.9375
## 405 0 97.79 7 34.2265
## 406 1 67.26 4 13.4520
## 407 0 13.79 5 3.4475
## 408 0 68.71 4 13.7420
## 409 0 56.53 4 11.3060
## 410 0 23.82 5 5.9550
## 411 0 34.21 10 17.1050
## 412 1 21.87 2 2.1870
## 413 0 20.97 5 5.2425
## 414 1 25.84 3 3.8760
## 415 0 50.93 8 20.3720
## 416 0 96.11 1 4.8055
## 417 0 45.38 4 9.0760
## 418 0 81.51 1 4.0755
## 419 0 57.22 2 5.7220
## 420 0 25.22 7 8.8270
## 421 0 38.60 3 5.7900
## 422 0 84.05 3 12.6075
## 423 0 97.21 10 48.6050
## 424 0 25.42 8 10.1680
## 425 0 16.28 1 0.8140
## 426 0 40.61 9 18.2745
## 427 0 53.17 7 18.6095
## 428 0 20.87 3 3.1305
## 429 1 67.27 5 16.8175
## 430 0 90.65 10 45.3250
## 431 0 69.08 2 6.9080
## 432 0 43.27 2 4.3270
## 433 0 23.46 6 7.0380
## 434 0 95.54 7 33.4390
## 435 0 47.44 1 2.3720
## 436 1 99.24 9 44.6580
## 437 1 82.93 4 16.5860
## 438 0 33.99 6 10.1970
## 439 0 17.04 4 3.4080
## 440 0 40.86 8 16.3440
## 441 0 17.44 5 4.3600
## 442 1 88.43 8 35.3720
## 443 0 89.21 9 40.1445
## 444 0 12.78 1 0.6390
## 445 1 19.10 7 6.6850
## 446 0 19.15 1 0.9575
## 447 0 27.66 10 13.8300
## 448 0 45.74 3 6.8610
## 449 0 27.07 1 1.3535
## 450 1 39.12 1 1.9560
## 451 0 74.71 6 22.4130
## 452 0 22.01 6 6.6030
## 453 0 63.61 5 15.9025
## 454 0 25.00 1 1.2500
## 455 0 20.77 4 4.1540
## 456 0 29.56 5 7.3900
## 457 0 77.40 9 34.8300
## 458 0 79.39 10 39.6950
## 459 0 46.57 10 23.2850
## 460 0 35.89 1 1.7945
## 461 0 40.52 5 10.1300
## 462 0 73.05 10 36.5250
## 463 1 73.95 4 14.7900
## 464 0 22.62 1 1.1310
## 465 0 51.34 5 12.8350
## 466 1 54.55 10 27.2750
## 467 0 37.15 7 13.0025
## 468 1 37.02 6 11.1060
## 469 0 21.58 1 1.0790
## 470 0 98.84 1 4.9420
## 471 0 83.77 6 25.1310
## 472 1 40.05 4 8.0100
## 473 0 43.13 10 21.5650
## 474 0 72.57 8 29.0280
## 475 0 64.44 5 16.1100
## 476 0 65.18 3 9.7770
## 477 1 33.26 5 8.3150
## 478 0 84.07 4 16.8140
## 479 1 34.37 10 17.1850
## 480 0 38.60 1 1.9300
## 481 0 65.97 8 26.3880
## 482 0 32.80 10 16.4000
## 483 1 37.14 5 9.2850
## 484 0 60.38 10 30.1900
## 485 1 36.98 10 18.4900
## 486 1 49.49 4 9.8980
## 487 0 41.09 10 20.5450
## 488 0 37.15 4 7.4300
## 489 0 22.96 1 1.1480
## 490 0 77.68 9 34.9560
## 491 0 34.70 2 3.4700
## 492 0 19.66 10 9.8300
## 493 0 25.32 8 10.1280
## 494 0 12.12 10 6.0600
## 495 0 99.89 2 9.9890
## 496 1 75.92 8 30.3680
## 497 0 63.22 2 6.3220
## 498 0 90.24 6 27.0720
## 499 1 98.13 1 4.9065
## 500 1 51.52 8 20.6080
## 501 1 73.97 1 3.6985
## 502 0 31.90 1 1.5950
## 503 0 69.40 2 6.9400
## 504 1 93.31 2 9.3310
## 505 1 88.45 1 4.4225
## 506 0 24.18 8 9.6720
## 507 1 48.50 3 7.2750
## 508 0 84.05 6 25.2150
## 509 0 61.29 5 15.3225
## 510 0 15.95 6 4.7850
## 511 1 90.74 7 31.7590
## 512 0 42.91 5 10.7275
## 513 0 54.28 7 18.9980
## 514 0 99.55 7 34.8425
## 515 1 58.39 7 20.4365
## 516 0 51.47 1 2.5735
## 517 0 54.86 5 13.7150
## 518 0 39.39 5 9.8475
## 519 0 34.73 2 3.4730
## 520 1 71.92 5 17.9800
## 521 0 45.71 3 6.8565
## 522 0 83.17 6 24.9510
## 523 0 37.44 6 11.2320
## 524 0 62.87 2 6.2870
## 525 0 81.71 6 24.5130
## 526 1 91.41 5 22.8525
## 527 0 39.21 4 7.8420
## 528 0 59.86 2 5.9860
## 529 0 54.36 10 27.1800
## 530 1 98.09 9 44.1405
## 531 0 25.43 6 7.6290
## 532 0 86.68 8 34.6720
## 533 0 22.95 10 11.4750
## 534 0 16.31 9 7.3395
## 535 0 28.32 5 7.0800
## 536 0 16.67 7 5.8345
## 537 0 73.96 1 3.6980
## 538 0 97.94 1 4.8970
## 539 0 73.05 4 14.6100
## 540 0 87.48 6 26.2440
## 541 0 30.68 3 4.6020
## 542 0 75.88 1 3.7940
## 543 1 20.18 4 4.0360
## 544 0 18.77 6 5.6310
## 545 0 71.20 1 3.5600
## 546 0 38.81 4 7.7620
## 547 0 29.42 10 14.7100
## 548 1 60.95 9 27.4275
## 549 1 51.54 5 12.8850
## 550 0 66.06 6 19.8180
## 551 0 57.27 3 8.5905
## 552 0 54.31 9 24.4395
## 553 0 58.24 9 26.2080
## 554 0 22.21 6 6.6630
## 555 0 19.32 7 6.7620
## 556 0 37.48 3 5.6220
## 557 0 72.04 2 7.2040
## 558 0 98.52 10 49.2600
## 559 0 41.66 6 12.4980
## 560 0 72.42 3 10.8630
## 561 0 21.58 9 9.7110
## 562 0 89.20 10 44.6000
## 563 0 42.42 8 16.9680
## 564 0 74.51 6 22.3530
## 565 0 99.25 2 9.9250
## 566 0 81.21 10 40.6050
## 567 1 49.33 10 24.6650
## 568 0 65.74 9 29.5830
## 569 0 79.86 7 27.9510
## 570 1 73.98 7 25.8930
## 571 0 82.04 5 20.5100
## 572 1 26.67 10 13.3350
## 573 0 10.13 7 3.5455
## 574 0 72.39 2 7.2390
## 575 1 85.91 5 21.4775
## 576 0 81.31 7 28.4585
## 577 0 60.30 4 12.0600
## 578 0 31.77 4 6.3540
## 579 0 64.27 4 12.8540
## 580 0 69.51 2 6.9510
## 581 0 27.22 3 4.0830
## 582 0 77.68 4 15.5360
## 583 0 92.98 2 9.2980
## 584 0 18.08 4 3.6160
## 585 1 63.06 3 9.4590
## 586 0 51.71 4 10.3420
## 587 0 52.34 3 7.8510
## 588 1 43.06 5 10.7650
## 589 0 59.61 10 29.8050
## 590 0 14.62 5 3.6550
## 591 0 46.53 6 13.9590
## 592 0 24.24 7 8.4840
## 593 1 45.58 1 2.2790
## 594 1 75.20 3 11.2800
## 595 1 96.80 3 14.5200
## 596 0 14.82 3 2.2230
## 597 0 52.20 3 7.8300
## 598 1 46.66 9 20.9970
## 599 0 36.85 5 9.2125
## 600 0 70.32 2 7.0320
## 601 0 83.08 1 4.1540
## 602 0 64.99 1 3.2495
## 603 0 77.56 10 38.7800
## 604 1 54.51 6 16.3530
## 605 0 51.89 7 18.1615
## 606 0 31.75 4 6.3500
## 607 0 53.65 7 18.7775
## 608 0 49.79 4 9.9580
## 609 0 30.61 1 1.5305
## 610 0 57.89 2 5.7890
## 611 0 28.96 1 1.4480
## 612 0 98.97 9 44.5365
## 613 0 93.22 3 13.9830
## 614 1 80.93 1 4.0465
## 615 0 67.45 10 33.7250
## 616 1 38.72 9 17.4240
## 617 1 72.60 6 21.7800
## 618 0 87.91 5 21.9775
## 619 0 98.53 6 29.5590
## 620 0 43.46 6 13.0380
## 621 0 71.68 3 10.7520
## 622 0 91.61 1 4.5805
## 623 0 94.59 7 33.1065
## 624 0 83.25 10 41.6250
## 625 0 91.35 1 4.5675
## 626 0 78.88 2 7.8880
## 627 1 60.87 2 6.0870
## 628 0 82.58 10 41.2900
## 629 0 53.30 3 7.9950
## 630 0 12.09 1 0.6045
## 631 1 64.19 10 32.0950
## 632 0 78.31 3 11.7465
## 633 0 83.77 2 8.3770
## 634 0 99.70 3 14.9550
## 635 0 79.91 3 11.9865
## 636 0 66.47 10 33.2350
## 637 0 28.95 7 10.1325
## 638 0 46.20 1 2.3100
## 639 0 17.63 5 4.4075
## 640 0 52.42 3 7.8630
## 641 0 98.79 3 14.8185
## 642 0 88.55 8 35.4200
## 643 0 55.67 2 5.5670
## 644 0 72.52 8 29.0080
## 645 0 12.05 5 3.0125
## 646 0 19.36 9 8.7120
## 647 0 70.21 6 21.0630
## 648 0 33.63 1 1.6815
## 649 1 15.49 2 1.5490
## 650 0 24.74 10 12.3700
## 651 0 75.66 5 18.9150
## 652 0 55.81 6 16.7430
## 653 0 72.78 10 36.3900
## 654 1 37.32 9 16.7940
## 655 0 60.18 4 12.0360
## 656 0 15.69 3 2.3535
## 657 0 99.69 1 4.9845
## 658 0 88.15 3 13.2225
## 659 1 27.93 5 6.9825
## 660 0 55.45 1 2.7725
## 661 1 42.97 3 6.4455
## 662 1 17.14 7 5.9990
## 663 0 58.75 6 17.6250
## 664 0 87.10 10 43.5500
## 665 1 98.80 2 9.8800
## 666 0 48.63 4 9.7260
## 667 0 57.74 3 8.6610
## 668 0 17.97 4 3.5940
## 669 0 47.71 6 14.3130
## 670 1 40.62 2 4.0620
## 671 0 56.04 10 28.0200
## 672 0 93.40 2 9.3400
## 673 0 73.41 3 11.0115
## 674 0 33.64 8 13.4560
## 675 0 45.48 10 22.7400
## 676 0 83.77 2 8.3770
## 677 1 64.08 7 22.4280
## 678 0 73.47 4 14.6940
## 679 0 58.95 10 29.4750
## 680 0 48.50 6 14.5500
## 681 0 39.48 1 1.9740
## 682 1 34.81 1 1.7405
## 683 0 49.32 6 14.7960
## 684 0 21.48 2 2.1480
## 685 1 23.08 6 6.9240
## 686 0 49.10 2 4.9100
## 687 1 64.83 2 6.4830
## 688 0 63.56 10 31.7800
## 689 1 72.88 2 7.2880
## 690 0 67.10 3 10.0650
## 691 1 70.19 9 31.5855
## 692 0 55.04 7 19.2640
## 693 0 48.63 10 24.3150
## 694 0 73.38 7 25.6830
## 695 0 52.60 9 23.6700
## 696 0 87.37 5 21.8425
## 697 1 27.04 4 5.4080
## 698 0 62.19 4 12.4380
## 699 0 69.58 9 31.3110
## 700 0 97.50 10 48.7500
## 701 0 60.41 8 24.1640
## 702 0 32.32 3 4.8480
## 703 0 19.77 10 9.8850
## 704 0 80.47 9 36.2115
## 705 0 88.39 9 39.7755
## 706 0 71.77 7 25.1195
## 707 0 43.00 4 8.6000
## 708 0 68.98 1 3.4490
## 709 0 15.62 8 6.2480
## 710 1 25.70 3 3.8550
## 711 0 80.62 6 24.1860
## 712 0 75.53 4 15.1060
## 713 0 77.63 9 34.9335
## 714 0 13.85 9 6.2325
## 715 0 98.70 8 39.4800
## 716 0 35.68 5 8.9200
## 717 0 71.46 7 25.0110
## 718 0 11.94 3 1.7910
## 719 0 45.38 3 6.8070
## 720 0 17.48 6 5.2440
## 721 0 25.56 7 8.9460
## 722 1 90.63 9 40.7835
## 723 0 44.12 3 6.6180
## 724 0 36.77 7 12.8695
## 725 0 23.34 4 4.6680
## 726 0 28.50 8 11.4000
## 727 0 55.57 3 8.3355
## 728 1 69.74 10 34.8700
## 729 0 97.26 4 19.4520
## 730 0 52.18 7 18.2630
## 731 0 22.32 4 4.4640
## 732 0 56.00 3 8.4000
## 733 0 19.70 1 0.9850
## 734 0 75.88 7 26.5580
## 735 0 53.72 1 2.6860
## 736 0 81.95 10 40.9750
## 737 0 81.20 7 28.4200
## 738 0 58.76 10 29.3800
## 739 0 91.56 8 36.6240
## 740 0 93.96 9 42.2820
## 741 0 55.61 7 19.4635
## 742 0 84.83 1 4.2415
## 743 1 71.63 2 7.1630
## 744 0 37.69 2 3.7690
## 745 1 31.67 8 12.6680
## 746 0 38.42 1 1.9210
## 747 0 65.23 10 32.6150
## 748 0 10.53 5 2.6325
## 749 0 12.29 9 5.5305
## 750 0 81.23 7 28.4305
## 751 0 22.32 4 4.4640
## 752 0 27.28 5 6.8200
## 753 0 17.42 10 8.7100
## 754 0 73.28 5 18.3200
## 755 0 84.87 3 12.7305
## 756 0 97.29 8 38.9160
## 757 0 35.74 8 14.2960
## 758 0 96.52 6 28.9560
## 759 0 18.85 10 9.4250
## 760 0 55.39 4 11.0780
## 761 0 77.20 10 38.6000
## 762 0 72.13 10 36.0650
## 763 0 63.88 8 25.5520
## 764 0 10.69 5 2.6725
## 765 0 55.50 4 11.1000
## 766 0 95.46 8 38.1840
## 767 0 76.06 3 11.4090
## 768 1 13.69 6 4.1070
## 769 0 95.64 4 19.1280
## 770 0 11.43 6 3.4290
## 771 1 95.54 4 19.1080
## 772 0 85.87 7 30.0545
## 773 1 67.99 7 23.7965
## 774 0 52.42 1 2.6210
## 775 0 65.65 2 6.5650
## 776 0 28.86 5 7.2150
## 777 0 65.31 7 22.8585
## 778 1 93.38 1 4.6690
## 779 1 25.25 5 6.3125
## 780 0 87.87 9 39.5415
## 781 0 21.80 8 8.7200
## 782 1 94.76 4 18.9520
## 783 0 30.62 1 1.5310
## 784 0 44.01 8 17.6040
## 785 0 10.16 5 2.5400
## 786 0 74.58 7 26.1030
## 787 0 71.89 8 28.7560
## 788 0 10.99 5 2.7475
## 789 0 60.47 3 9.0705
## 790 1 58.91 7 20.6185
## 791 0 46.41 1 2.3205
## 792 0 68.55 4 13.7100
## 793 0 97.37 10 48.6850
## 794 0 92.60 7 32.4100
## 795 0 46.61 2 4.6610
## 796 0 27.18 2 2.7180
## 797 0 60.87 1 3.0435
## 798 1 24.49 10 12.2450
## 799 0 92.78 1 4.6390
## 800 0 86.69 5 21.6725
## 801 1 23.01 6 6.9030
## 802 0 30.20 8 12.0800
## 803 0 67.39 7 23.5865
## 804 0 48.96 9 22.0320
## 805 0 75.59 9 34.0155
## 806 0 77.47 4 15.4940
## 807 1 93.18 2 9.3180
## 808 0 50.23 4 10.0460
## 809 0 17.75 1 0.8875
## 810 0 62.18 10 31.0900
## 811 0 10.75 8 4.3000
## 812 0 40.26 10 20.1300
## 813 1 64.97 5 16.2425
## 814 0 95.15 1 4.7575
## 815 0 48.62 8 19.4480
## 816 0 53.21 8 21.2840
## 817 0 45.44 7 15.9040
## 818 0 33.88 8 13.5520
## 819 0 96.16 4 19.2320
## 820 0 47.16 5 11.7900
## 821 0 52.89 4 10.5780
## 822 0 47.68 2 4.7680
## 823 1 10.17 1 0.5085
## 824 0 68.71 3 10.3065
## 825 1 60.08 7 21.0280
## 826 1 22.01 4 4.4020
## 827 0 72.11 9 32.4495
## 828 0 41.28 3 6.1920
## 829 0 64.95 10 32.4750
## 830 0 74.22 10 37.1100
## 831 0 10.56 8 4.2240
## 832 0 62.57 4 12.5140
## 833 1 11.85 8 4.7400
## 834 0 91.30 1 4.5650
## 835 0 40.73 7 14.2555
## 836 0 52.38 1 2.6190
## 837 0 38.54 5 9.6350
## 838 1 44.63 6 13.3890
## 839 0 55.87 10 27.9350
## 840 1 29.22 6 8.7660
## 841 0 51.94 3 7.7910
## 842 0 60.30 1 3.0150
## 843 1 39.47 2 3.9470
## 844 0 14.87 2 1.4870
## 845 0 21.32 1 1.0660
## 846 0 93.78 3 14.0670
## 847 0 73.26 1 3.6630
## 848 1 22.38 1 1.1190
## 849 0 72.88 9 32.7960
## 850 0 99.10 6 29.7300
## 851 0 74.10 1 3.7050
## 852 0 98.48 2 9.8480
## 853 0 53.19 7 18.6165
## 854 0 52.79 10 26.3950
## 855 0 95.95 5 23.9875
## 856 0 36.51 9 16.4295
## 857 0 21.12 8 8.4480
## 858 0 28.31 4 5.6620
## 859 0 57.59 6 17.2770
## 860 0 47.63 9 21.4335
## 861 0 86.27 1 4.3135
## 862 1 12.76 2 1.2760
## 863 0 11.28 9 5.0760
## 864 0 51.07 7 17.8745
## 865 0 79.59 3 11.9385
## 866 0 33.81 3 5.0715
## 867 1 90.53 8 36.2120
## 868 0 62.82 2 6.2820
## 869 0 24.31 3 3.6465
## 870 1 64.59 4 12.9180
## 871 0 24.82 7 8.6870
## 872 0 56.50 1 2.8250
## 873 0 21.43 10 10.7150
## 874 1 89.06 6 26.7180
## 875 0 23.29 4 4.6580
## 876 0 65.26 8 26.1040
## 877 0 52.35 1 2.6175
## 878 0 39.75 1 1.9875
## 879 0 90.02 8 36.0080
## 880 0 12.10 8 4.8400
## 881 0 33.21 10 16.6050
## 882 0 10.18 8 4.0720
## 883 1 31.99 10 15.9950
## 884 0 34.42 6 10.3260
## 885 0 83.34 2 8.3340
## 886 1 45.58 7 15.9530
## 887 0 87.90 1 4.3950
## 888 0 73.47 10 36.7350
## 889 0 12.19 8 4.8760
## 890 1 76.92 10 38.4600
## 891 0 83.66 5 20.9150
## 892 0 57.91 8 23.1640
## 893 0 92.49 5 23.1225
## 894 0 28.38 5 7.0950
## 895 0 50.45 6 15.1350
## 896 0 99.16 8 39.6640
## 897 0 60.74 7 21.2590
## 898 0 47.27 6 14.1810
## 899 0 85.60 7 29.9600
## 900 0 35.04 9 15.7680
## 901 0 44.84 9 20.1780
## 902 0 45.97 4 9.1940
## 903 0 27.73 5 6.9325
## 904 0 11.53 7 4.0355
## 905 0 58.32 2 5.8320
## 906 0 78.38 4 15.6760
## 907 0 84.61 10 42.3050
## 908 0 82.88 5 20.7200
## 909 0 79.54 2 7.9540
## 910 0 49.01 10 24.5050
## 911 0 29.15 3 4.3725
## 912 0 56.13 4 11.2260
## 913 0 93.12 8 37.2480
## 914 0 51.34 8 20.5360
## 915 0 99.60 3 14.9400
## 916 0 35.49 6 10.6470
## 917 1 42.85 1 2.1425
## 918 0 94.67 4 18.9340
## 919 0 68.97 3 10.3455
## 920 0 26.26 3 3.9390
## 921 0 35.79 9 16.1055
## 922 0 16.37 6 4.9110
## 923 0 12.73 2 1.2730
## 924 1 83.14 7 29.0990
## 925 1 35.22 6 10.5660
## 926 0 13.78 4 2.7560
## 927 1 88.31 1 4.4155
## 928 0 39.62 9 17.8290
## 929 0 88.25 9 39.7125
## 930 1 25.31 2 2.5310
## 931 0 99.92 6 29.9760
## 932 0 83.35 2 8.3350
## 933 0 74.44 10 37.2200
## 934 0 64.08 7 22.4280
## 935 0 63.15 6 18.9450
## 936 0 85.72 3 12.8580
## 937 0 78.89 7 27.6115
## 938 1 89.48 5 22.3700
## 939 0 92.09 3 13.8135
## 940 0 57.29 6 17.1870
## 941 0 66.52 4 13.3040
## 942 0 99.82 9 44.9190
## 943 0 45.68 10 22.8400
## 944 0 50.79 5 12.6975
## 945 0 10.08 7 3.5280
## 946 0 93.88 7 32.8580
## 947 0 84.25 2 8.4250
## 948 0 53.78 1 2.6890
## 949 0 35.81 5 8.9525
## 950 0 26.43 8 10.5720
## 951 0 39.91 3 5.9865
## 952 0 21.90 3 3.2850
## 953 0 62.85 4 12.5700
## 954 0 21.04 4 4.2080
## 955 0 65.91 6 19.7730
## 956 0 42.57 7 14.8995
## 957 0 50.49 9 22.7205
## 958 0 46.02 6 13.8060
## 959 0 15.80 10 7.9000
## 960 0 98.66 9 44.3970
## 961 0 91.98 1 4.5990
## 962 0 20.89 2 2.0890
## 963 0 15.50 1 0.7750
## 964 0 96.82 3 14.5230
## 965 0 33.33 2 3.3330
## 966 0 38.27 2 3.8270
## 967 0 33.30 9 14.9850
## 968 0 81.01 3 12.1515
## 969 0 15.80 3 2.3700
## 970 0 34.49 5 8.6225
## 971 0 84.63 10 42.3150
## 972 0 36.91 7 12.9185
## 973 0 87.08 7 30.4780
## 974 0 80.08 3 12.0120
## 975 0 86.13 2 8.6130
## 976 0 49.92 2 4.9920
## 977 0 74.66 4 14.9320
## 978 0 26.60 6 7.9800
## 979 0 25.45 1 1.2725
## 980 0 67.77 1 3.3885
## 981 0 59.59 4 11.9180
## 982 0 58.15 4 11.6300
## 983 1 97.48 9 43.8660
## 984 0 99.96 7 34.9860
## 985 0 96.37 7 33.7295
## 986 0 63.71 5 15.9275
## 987 0 14.76 2 1.4760
## 988 0 62.00 8 24.8000
## 989 0 82.34 10 41.1700
## 990 0 75.37 8 30.1480
## 991 0 56.56 5 14.1400
## 992 1 76.60 10 38.3000
## 993 0 58.03 2 5.8030
## 994 0 17.49 10 8.7450
## 995 0 60.95 1 3.0475
## 996 0 40.35 1 2.0175
## 997 0 97.38 10 48.6900
## 998 0 31.84 1 1.5920
## 999 0 65.82 1 3.2910
## 1000 0 88.34 7 30.9190
## PaymentCash PaymentCredit.card PaymentEwallet cogs
## 1 0 0 1 522.83
## 2 1 0 0 76.40
## 3 0 1 0 324.31
## 4 0 0 1 465.76
## 5 0 0 1 604.17
## 6 0 0 1 597.73
## 7 0 0 1 413.04
## 8 0 0 1 735.60
## 9 0 1 0 72.52
## 10 0 1 0 164.52
## 11 0 0 1 57.92
## 12 1 0 0 102.04
## 13 0 0 1 234.75
## 14 0 0 1 431.90
## 15 1 0 0 713.80
## 16 1 0 0 562.32
## 17 0 1 0 482.51
## 18 0 1 0 435.66
## 19 0 1 0 164.01
## 20 0 0 1 80.60
## 21 0 0 1 430.20
## 22 0 0 1 263.94
## 23 0 1 0 66.40
## 24 0 0 1 172.80
## 25 0 0 1 265.89
## 26 0 1 0 420.72
## 27 1 0 0 33.52
## 28 0 1 0 175.34
## 29 1 0 0 441.80
## 30 1 0 0 224.01
## 31 0 1 0 470.65
## 32 1 0 0 702.63
## 33 1 0 0 670.24
## 34 0 1 0 193.16
## 35 0 0 1 397.68
## 36 0 0 1 68.12
## 37 0 0 1 313.10
## 38 0 0 1 547.92
## 39 0 0 1 439.36
## 40 1 0 0 240.96
## 41 0 0 1 86.72
## 42 1 0 0 112.22
## 43 1 0 0 414.72
## 44 1 0 0 789.60
## 45 1 0 0 30.74
## 46 1 0 0 375.84
## 47 0 1 0 510.21
## 48 0 0 1 180.09
## 49 0 1 0 113.58
## 50 0 0 1 826.30
## 51 1 0 0 639.80
## 52 1 0 0 222.95
## 53 0 0 1 71.48
## 54 0 1 0 15.43
## 55 0 0 1 32.32
## 56 1 0 0 687.84
## 57 1 0 0 88.68
## 58 0 0 1 716.80
## 59 1 0 0 723.50
## 60 1 0 0 183.66
## 61 0 1 0 74.22
## 62 0 0 1 334.38
## 63 0 0 1 495.63
## 64 0 1 0 158.10
## 65 1 0 0 302.96
## 66 1 0 0 158.70
## 67 0 0 1 66.94
## 68 0 0 1 585.66
## 69 1 0 0 787.70
## 70 1 0 0 18.33
## 71 0 1 0 894.80
## 72 1 0 0 621.20
## 73 0 0 1 145.56
## 74 1 0 0 455.46
## 75 0 0 1 672.03
## 76 0 1 0 416.50
## 77 0 1 0 441.36
## 78 0 1 0 180.09
## 79 0 0 1 783.10
## 80 1 0 0 101.90
## 81 0 1 0 595.14
## 82 0 0 1 290.04
## 83 0 0 1 154.00
## 84 0 1 0 321.44
## 85 1 0 0 244.55
## 86 0 0 1 581.42
## 87 1 0 0 382.60
## 88 0 1 0 345.66
## 89 1 0 0 42.47
## 90 1 0 0 461.94
## 91 1 0 0 189.52
## 92 0 0 1 448.60
## 93 0 0 1 153.86
## 94 0 1 0 579.24
## 95 0 1 0 89.75
## 96 0 0 1 97.16
## 97 0 0 1 878.70
## 98 1 0 0 74.70
## 99 0 0 1 158.25
## 100 1 0 0 496.20
## 101 1 0 0 48.71
## 102 1 0 0 706.95
## 103 1 0 0 207.63
## 104 1 0 0 349.56
## 105 1 0 0 212.45
## 106 0 0 1 886.70
## 107 0 1 0 164.28
## 108 1 0 0 372.78
## 109 1 0 0 305.82
## 110 1 0 0 819.70
## 111 0 0 1 32.98
## 112 0 1 0 294.63
## 113 1 0 0 509.88
## 114 0 0 1 522.63
## 115 0 1 0 727.11
## 116 0 1 0 81.06
## 117 0 0 1 109.70
## 118 0 0 1 51.36
## 119 0 0 1 109.60
## 120 0 0 1 106.88
## 121 0 1 0 796.48
## 122 0 1 0 399.84
## 123 0 1 0 899.64
## 124 0 1 0 511.28
## 125 0 0 1 451.76
## 126 0 1 0 655.83
## 127 1 0 0 161.25
## 128 0 1 0 285.57
## 129 0 0 1 548.32
## 130 0 0 1 812.52
## 131 1 0 0 277.34
## 132 1 0 0 552.78
## 133 1 0 0 139.36
## 134 0 1 0 524.70
## 135 0 0 1 487.80
## 136 1 0 0 270.66
## 137 0 1 0 131.55
## 138 1 0 0 206.52
## 139 1 0 0 519.10
## 140 0 0 1 580.00
## 141 0 1 0 898.00
## 142 1 0 0 905.00
## 143 1 0 0 686.00
## 144 0 1 0 30.41
## 145 0 0 1 467.70
## 146 0 1 0 277.56
## 147 0 0 1 301.40
## 148 0 1 0 264.56
## 149 0 1 0 574.88
## 150 0 1 0 259.68
## 151 0 1 0 366.16
## 152 0 1 0 241.92
## 153 0 1 0 749.16
## 154 0 0 1 98.88
## 155 1 0 0 647.76
## 156 0 1 0 461.45
## 157 1 0 0 72.17
## 158 0 0 1 251.40
## 159 0 0 1 874.98
## 160 0 0 1 560.34
## 161 0 1 0 345.44
## 162 1 0 0 63.69
## 163 0 1 0 320.53
## 164 0 0 1 152.80
## 165 0 1 0 399.00
## 166 0 0 1 340.56
## 167 1 0 0 955.80
## 168 0 1 0 989.80
## 169 1 0 0 307.68
## 170 0 1 0 486.64
## 171 0 0 1 350.05
## 172 0 1 0 400.25
## 173 1 0 0 166.80
## 174 0 1 0 317.34
## 175 0 0 1 158.32
## 176 0 0 1 304.56
## 177 0 1 0 177.36
## 178 0 1 0 157.57
## 179 0 0 1 443.28
## 180 0 0 1 260.40
## 181 1 0 0 449.82
## 182 1 0 0 307.76
## 183 0 0 1 155.00
## 184 0 0 1 274.48
## 185 0 1 0 86.38
## 186 0 0 1 54.24
## 187 0 0 1 755.92
## 188 1 0 0 185.88
## 189 0 0 1 74.07
## 190 0 1 0 279.24
## 191 0 1 0 231.12
## 192 0 0 1 147.04
## 193 1 0 0 790.20
## 194 0 0 1 102.20
## 195 0 1 0 163.55
## 196 1 0 0 74.29
## 197 1 0 0 87.40
## 198 0 0 1 25.29
## 199 0 1 0 166.00
## 200 0 1 0 356.95
## 201 0 1 0 114.90
## 202 1 0 0 229.96
## 203 1 0 0 429.87
## 204 0 0 1 259.00
## 205 0 1 0 88.85
## 206 0 0 1 207.27
## 207 0 1 0 599.85
## 208 0 0 1 285.30
## 209 0 0 1 91.11
## 210 0 1 0 897.57
## 211 0 0 1 236.07
## 212 1 0 0 839.34
## 213 0 0 1 461.80
## 214 0 1 0 139.26
## 215 1 0 0 207.27
## 216 0 1 0 18.28
## 217 1 0 0 123.85
## 218 1 0 0 283.92
## 219 0 0 1 758.96
## 220 0 1 0 172.02
## 221 0 0 1 272.10
## 222 0 0 1 434.56
## 223 1 0 0 59.05
## 224 1 0 0 12.54
## 225 1 0 0 86.50
## 226 0 1 0 174.32
## 227 0 0 1 624.33
## 228 0 0 1 148.24
## 229 1 0 0 544.20
## 230 0 0 1 507.36
## 231 1 0 0 162.74
## 232 0 1 0 31.77
## 233 1 0 0 756.81
## 234 1 0 0 295.28
## 235 0 0 1 519.40
## 236 0 0 1 186.28
## 237 0 1 0 87.05
## 238 0 1 0 221.10
## 239 1 0 0 66.10
## 240 0 0 1 89.69
## 241 0 1 0 224.46
## 242 0 1 0 119.54
## 243 0 1 0 186.40
## 244 1 0 0 250.60
## 245 0 1 0 750.96
## 246 1 0 0 380.72
## 247 1 0 0 244.20
## 248 0 0 1 89.70
## 249 0 1 0 310.88
## 250 0 1 0 511.42
## 251 0 0 1 418.95
## 252 0 1 0 351.90
## 253 0 1 0 28.78
## 254 1 0 0 95.00
## 255 1 0 0 471.20
## 256 1 0 0 130.48
## 257 0 1 0 66.35
## 258 0 0 1 155.46
## 259 0 0 1 129.00
## 260 0 1 0 263.76
## 261 0 0 1 675.54
## 262 0 0 1 65.80
## 263 1 0 0 153.20
## 264 1 0 0 222.40
## 265 0 0 1 54.45
## 266 0 1 0 688.80
## 267 0 1 0 141.88
## 268 1 0 0 746.00
## 269 0 1 0 282.96
## 270 0 0 1 355.40
## 271 0 0 1 337.15
## 272 1 0 0 42.24
## 273 0 1 0 193.86
## 274 1 0 0 24.06
## 275 0 0 1 598.26
## 276 1 0 0 335.79
## 277 1 0 0 218.20
## 278 0 0 1 381.68
## 279 1 0 0 709.90
## 280 0 1 0 440.20
## 281 0 1 0 559.68
## 282 0 1 0 37.00
## 283 1 0 0 15.34
## 284 0 0 1 598.98
## 285 1 0 0 190.68
## 286 1 0 0 333.40
## 287 1 0 0 74.86
## 288 1 0 0 213.75
## 289 0 1 0 339.57
## 290 1 0 0 664.16
## 291 0 1 0 403.00
## 292 0 0 1 194.95
## 293 1 0 0 62.48
## 294 1 0 0 72.72
## 295 0 0 1 181.10
## 296 1 0 0 259.60
## 297 1 0 0 115.36
## 298 0 0 1 470.28
## 299 1 0 0 240.04
## 300 1 0 0 88.61
## 301 0 1 0 199.64
## 302 0 1 0 39.01
## 303 1 0 0 48.61
## 304 0 1 0 204.76
## 305 1 0 0 119.68
## 306 0 0 1 505.40
## 307 1 0 0 281.61
## 308 1 0 0 710.32
## 309 0 0 1 79.44
## 310 1 0 0 163.82
## 311 1 0 0 479.58
## 312 0 0 1 138.66
## 313 0 1 0 71.15
## 314 1 0 0 139.95
## 315 1 0 0 781.30
## 316 1 0 0 198.74
## 317 1 0 0 63.24
## 318 1 0 0 373.95
## 319 0 1 0 207.69
## 320 0 0 1 176.28
## 321 1 0 0 206.37
## 322 1 0 0 39.42
## 323 0 0 1 91.56
## 324 1 0 0 308.85
## 325 0 1 0 129.12
## 326 0 0 1 390.96
## 327 1 0 0 498.90
## 328 1 0 0 377.04
## 329 0 1 0 204.52
## 330 1 0 0 145.44
## 331 1 0 0 198.18
## 332 0 1 0 98.70
## 333 1 0 0 385.10
## 334 0 1 0 46.96
## 335 0 0 1 73.50
## 336 0 1 0 142.25
## 337 0 0 1 687.60
## 338 1 0 0 347.70
## 339 0 1 0 142.95
## 340 0 1 0 385.38
## 341 0 1 0 144.27
## 342 0 0 1 391.79
## 343 1 0 0 538.30
## 344 0 0 1 485.15
## 345 1 0 0 133.95
## 346 0 0 1 701.37
## 347 1 0 0 71.95
## 348 1 0 0 714.00
## 349 1 0 0 182.14
## 350 0 1 0 135.00
## 351 0 1 0 993.00
## 352 1 0 0 361.83
## 353 0 1 0 383.11
## 354 1 0 0 243.00
## 355 1 0 0 30.24
## 356 0 1 0 356.56
## 357 0 1 0 375.50
## 358 1 0 0 954.40
## 359 0 0 1 82.50
## 360 1 0 0 74.97
## 361 0 1 0 647.68
## 362 1 0 0 755.76
## 363 0 0 1 199.58
## 364 1 0 0 439.32
## 365 1 0 0 164.96
## 366 1 0 0 326.72
## 367 1 0 0 461.88
## 368 1 0 0 263.76
## 369 1 0 0 143.60
## 370 0 1 0 193.50
## 371 1 0 0 183.82
## 372 0 1 0 121.92
## 373 0 0 1 420.66
## 374 1 0 0 252.48
## 375 0 1 0 335.45
## 376 0 0 1 483.50
## 377 0 1 0 318.42
## 378 0 0 1 668.43
## 379 0 0 1 387.92
## 380 0 1 0 94.60
## 381 0 1 0 329.32
## 382 1 0 0 53.22
## 383 1 0 0 498.45
## 384 0 0 1 299.56
## 385 0 0 1 204.70
## 386 1 0 0 75.82
## 387 1 0 0 280.62
## 388 0 1 0 323.20
## 389 0 0 1 486.63
## 390 0 1 0 127.54
## 391 1 0 0 241.44
## 392 1 0 0 379.50
## 393 0 0 1 76.82
## 394 0 1 0 522.60
## 395 0 0 1 79.74
## 396 0 0 1 387.50
## 397 0 0 1 271.35
## 398 1 0 0 122.31
## 399 0 1 0 246.36
## 400 1 0 0 173.16
## 401 0 1 0 236.58
## 402 0 1 0 184.88
## 403 0 0 1 13.98
## 404 0 0 1 198.75
## 405 0 0 1 684.53
## 406 0 1 0 269.04
## 407 0 1 0 68.95
## 408 1 0 0 274.84
## 409 0 0 1 226.12
## 410 0 0 1 119.10
## 411 1 0 0 342.10
## 412 0 0 1 43.74
## 413 1 0 0 104.85
## 414 0 0 1 77.52
## 415 0 0 1 407.44
## 416 0 0 1 96.11
## 417 0 1 0 181.52
## 418 0 0 1 81.51
## 419 0 0 1 114.44
## 420 1 0 0 176.54
## 421 0 0 1 115.80
## 422 1 0 0 252.15
## 423 0 1 0 972.10
## 424 0 1 0 203.36
## 425 1 0 0 16.28
## 426 1 0 0 365.49
## 427 1 0 0 372.19
## 428 0 1 0 62.61
## 429 1 0 0 336.35
## 430 0 0 1 906.50
## 431 0 1 0 138.16
## 432 0 0 1 86.54
## 433 0 0 1 140.76
## 434 0 1 0 668.78
## 435 0 1 0 47.44
## 436 0 0 1 893.16
## 437 0 0 1 331.72
## 438 0 1 0 203.94
## 439 0 0 1 68.16
## 440 0 1 0 326.88
## 441 1 0 0 87.20
## 442 0 1 0 707.44
## 443 0 1 0 802.89
## 444 0 0 1 12.78
## 445 1 0 0 133.70
## 446 0 1 0 19.15
## 447 0 1 0 276.60
## 448 0 1 0 137.22
## 449 0 1 0 27.07
## 450 0 1 0 39.12
## 451 1 0 0 448.26
## 452 1 0 0 132.06
## 453 0 0 1 318.05
## 454 0 0 1 25.00
## 455 1 0 0 83.08
## 456 1 0 0 147.80
## 457 0 1 0 696.60
## 458 1 0 0 793.90
## 459 1 0 0 465.70
## 460 0 1 0 35.89
## 461 1 0 0 202.60
## 462 0 1 0 730.50
## 463 1 0 0 295.80
## 464 1 0 0 22.62
## 465 0 1 0 256.70
## 466 0 1 0 545.50
## 467 0 1 0 260.05
## 468 1 0 0 222.12
## 469 0 0 1 21.58
## 470 1 0 0 98.84
## 471 0 0 1 502.62
## 472 1 0 0 160.20
## 473 0 1 0 431.30
## 474 1 0 0 580.56
## 475 1 0 0 322.20
## 476 0 1 0 195.54
## 477 0 1 0 166.30
## 478 0 0 1 336.28
## 479 0 0 1 343.70
## 480 0 0 1 38.60
## 481 1 0 0 527.76
## 482 1 0 0 328.00
## 483 0 0 1 185.70
## 484 1 0 0 603.80
## 485 0 1 0 369.80
## 486 0 0 1 197.96
## 487 1 0 0 410.90
## 488 0 0 1 148.60
## 489 1 0 0 22.96
## 490 0 0 1 699.12
## 491 0 0 1 69.40
## 492 0 1 0 196.60
## 493 0 0 1 202.56
## 494 0 1 0 121.20
## 495 0 0 1 199.78
## 496 1 0 0 607.36
## 497 1 0 0 126.44
## 498 1 0 0 541.44
## 499 1 0 0 98.13
## 500 1 0 0 412.16
## 501 0 1 0 73.97
## 502 0 0 1 31.90
## 503 0 0 1 138.80
## 504 1 0 0 186.62
## 505 0 1 0 88.45
## 506 0 0 1 193.44
## 507 1 0 0 145.50
## 508 0 1 0 504.30
## 509 1 0 0 306.45
## 510 0 1 0 95.70
## 511 0 1 0 635.18
## 512 0 0 1 214.55
## 513 0 0 1 379.96
## 514 1 0 0 696.85
## 515 0 1 0 408.73
## 516 0 0 1 51.47
## 517 0 0 1 274.30
## 518 0 1 0 196.95
## 519 0 0 1 69.46
## 520 0 1 0 359.60
## 521 0 1 0 137.13
## 522 1 0 0 499.02
## 523 0 1 0 224.64
## 524 1 0 0 125.74
## 525 0 1 0 490.26
## 526 0 0 1 457.05
## 527 0 1 0 156.84
## 528 0 0 1 119.72
## 529 0 1 0 543.60
## 530 1 0 0 882.81
## 531 0 0 1 152.58
## 532 0 1 0 693.44
## 533 0 0 1 229.50
## 534 0 0 1 146.79
## 535 0 0 1 141.60
## 536 0 0 1 116.69
## 537 0 1 0 73.96
## 538 0 0 1 97.94
## 539 0 1 0 292.20
## 540 0 0 1 524.88
## 541 0 0 1 92.04
## 542 0 1 0 75.88
## 543 0 1 0 80.72
## 544 0 1 0 112.62
## 545 0 1 0 71.20
## 546 0 0 1 155.24
## 547 0 0 1 294.20
## 548 0 1 0 548.55
## 549 1 0 0 257.70
## 550 1 0 0 396.36
## 551 0 0 1 171.81
## 552 1 0 0 488.79
## 553 1 0 0 524.16
## 554 0 1 0 133.26
## 555 1 0 0 135.24
## 556 0 1 0 112.44
## 557 1 0 0 144.08
## 558 0 0 1 985.20
## 559 0 0 1 249.96
## 560 0 0 1 217.26
## 561 1 0 0 194.22
## 562 0 1 0 892.00
## 563 0 0 1 339.36
## 564 0 0 1 447.06
## 565 1 0 0 198.50
## 566 0 1 0 812.10
## 567 0 1 0 493.30
## 568 1 0 0 591.66
## 569 0 1 0 559.02
## 570 0 0 1 517.86
## 571 0 1 0 410.20
## 572 1 0 0 266.70
## 573 0 0 1 70.91
## 574 0 1 0 144.78
## 575 0 1 0 429.55
## 576 0 0 1 569.17
## 577 1 0 0 241.20
## 578 0 0 1 127.08
## 579 1 0 0 257.08
## 580 0 0 1 139.02
## 581 1 0 0 81.66
## 582 1 0 0 310.72
## 583 0 1 0 185.96
## 584 0 1 0 72.32
## 585 0 0 1 189.18
## 586 0 1 0 206.84
## 587 1 0 0 157.02
## 588 0 0 1 215.30
## 589 1 0 0 596.10
## 590 1 0 0 73.10
## 591 0 1 0 279.18
## 592 0 0 1 169.68
## 593 1 0 0 45.58
## 594 0 0 1 225.60
## 595 1 0 0 290.40
## 596 0 1 0 44.46
## 597 0 1 0 156.60
## 598 0 0 1 419.94
## 599 1 0 0 184.25
## 600 0 0 1 140.64
## 601 0 0 1 83.08
## 602 0 1 0 64.99
## 603 0 0 1 775.60
## 604 0 0 1 327.06
## 605 1 0 0 363.23
## 606 1 0 0 127.00
## 607 0 0 1 375.55
## 608 0 1 0 199.16
## 609 0 0 1 30.61
## 610 0 0 1 115.78
## 611 0 1 0 28.96
## 612 1 0 0 890.73
## 613 1 0 0 279.66
## 614 0 1 0 80.93
## 615 0 0 1 674.50
## 616 0 0 1 348.48
## 617 1 0 0 435.60
## 618 0 0 1 439.55
## 619 0 1 0 591.18
## 620 0 0 1 260.76
## 621 0 1 0 215.04
## 622 1 0 0 91.61
## 623 0 1 0 662.13
## 624 0 1 0 832.50
## 625 1 0 0 91.35
## 626 1 0 0 157.76
## 627 0 0 1 121.74
## 628 1 0 0 825.80
## 629 0 0 1 159.90
## 630 0 1 0 12.09
## 631 0 1 0 641.90
## 632 0 0 1 234.93
## 633 0 1 0 167.54
## 634 0 0 1 299.10
## 635 0 1 0 239.73
## 636 0 1 0 664.70
## 637 0 1 0 202.65
## 638 1 0 0 46.20
## 639 1 0 0 88.15
## 640 0 0 1 157.26
## 641 0 0 1 296.37
## 642 0 0 1 708.40
## 643 0 0 1 111.34
## 644 0 1 0 580.16
## 645 0 0 1 60.25
## 646 0 0 1 174.24
## 647 1 0 0 421.26
## 648 1 0 0 33.63
## 649 1 0 0 30.98
## 650 1 0 0 247.40
## 651 0 0 1 378.30
## 652 1 0 0 334.86
## 653 1 0 0 727.80
## 654 0 0 1 335.88
## 655 0 1 0 240.72
## 656 0 1 0 47.07
## 657 0 1 0 99.69
## 658 0 0 1 264.45
## 659 1 0 0 139.65
## 660 0 1 0 55.45
## 661 1 0 0 128.91
## 662 0 1 0 119.98
## 663 0 1 0 352.50
## 664 0 1 0 871.00
## 665 1 0 0 197.60
## 666 0 0 1 194.52
## 667 0 0 1 173.22
## 668 0 0 1 71.88
## 669 0 0 1 286.26
## 670 0 1 0 81.24
## 671 0 0 1 560.40
## 672 1 0 0 186.80
## 673 0 0 1 220.23
## 674 0 1 0 269.12
## 675 0 1 0 454.80
## 676 1 0 0 167.54
## 677 0 1 0 448.56
## 678 1 0 0 293.88
## 679 0 0 1 589.50
## 680 0 0 1 291.00
## 681 1 0 0 39.48
## 682 0 1 0 34.81
## 683 0 0 1 295.92
## 684 0 0 1 42.96
## 685 0 0 1 138.48
## 686 0 1 0 98.20
## 687 0 1 0 129.66
## 688 1 0 0 635.60
## 689 1 0 0 145.76
## 690 1 0 0 201.30
## 691 1 0 0 631.71
## 692 0 0 1 385.28
## 693 1 0 0 486.30
## 694 1 0 0 513.66
## 695 1 0 0 473.40
## 696 1 0 0 436.85
## 697 0 0 1 108.16
## 698 0 0 1 248.76
## 699 0 1 0 626.22
## 700 0 0 1 975.00
## 701 0 0 1 483.28
## 702 0 1 0 96.96
## 703 0 1 0 197.70
## 704 1 0 0 724.23
## 705 1 0 0 795.51
## 706 1 0 0 502.39
## 707 0 0 1 172.00
## 708 1 0 0 68.98
## 709 0 0 1 124.96
## 710 0 0 1 77.10
## 711 1 0 0 483.72
## 712 0 0 1 302.12
## 713 0 0 1 698.67
## 714 0 0 1 124.65
## 715 0 0 1 789.60
## 716 0 1 0 178.40
## 717 0 0 1 500.22
## 718 0 1 0 35.82
## 719 0 1 0 136.14
## 720 0 1 0 104.88
## 721 1 0 0 178.92
## 722 1 0 0 815.67
## 723 0 1 0 132.36
## 724 1 0 0 257.39
## 725 0 0 1 93.36
## 726 1 0 0 228.00
## 727 0 1 0 166.71
## 728 0 1 0 697.40
## 729 0 0 1 389.04
## 730 1 0 0 365.26
## 731 0 1 0 89.28
## 732 0 0 1 168.00
## 733 0 0 1 19.70
## 734 0 0 1 531.16
## 735 0 0 1 53.72
## 736 0 1 0 819.50
## 737 0 1 0 568.40
## 738 0 0 1 587.60
## 739 0 0 1 732.48
## 740 1 0 0 845.64
## 741 1 0 0 389.27
## 742 0 0 1 84.83
## 743 0 0 1 143.26
## 744 0 0 1 75.38
## 745 0 1 0 253.36
## 746 1 0 0 38.42
## 747 0 1 0 652.30
## 748 0 1 0 52.65
## 749 0 1 0 110.61
## 750 1 0 0 568.61
## 751 0 0 1 89.28
## 752 0 1 0 136.40
## 753 0 0 1 174.20
## 754 0 0 1 366.40
## 755 0 0 1 254.61
## 756 0 1 0 778.32
## 757 0 0 1 285.92
## 758 1 0 0 579.12
## 759 0 0 1 188.50
## 760 0 0 1 221.56
## 761 0 1 0 772.00
## 762 0 1 0 721.30
## 763 0 0 1 511.04
## 764 0 0 1 53.45
## 765 0 1 0 222.00
## 766 0 0 1 763.68
## 767 0 1 0 228.18
## 768 1 0 0 82.14
## 769 1 0 0 382.56
## 770 1 0 0 68.58
## 771 0 0 1 382.16
## 772 0 1 0 601.09
## 773 0 0 1 475.93
## 774 0 1 0 52.42
## 775 1 0 0 131.30
## 776 0 1 0 144.30
## 777 0 1 0 457.17
## 778 1 0 0 93.38
## 779 1 0 0 126.25
## 780 0 0 1 790.83
## 781 1 0 0 174.40
## 782 0 0 1 379.04
## 783 0 1 0 30.62
## 784 1 0 0 352.08
## 785 0 0 1 50.80
## 786 0 1 0 522.06
## 787 0 0 1 575.12
## 788 0 1 0 54.95
## 789 0 1 0 181.41
## 790 0 0 1 412.37
## 791 0 1 0 46.41
## 792 0 1 0 274.20
## 793 0 1 0 973.70
## 794 0 1 0 648.20
## 795 0 1 0 93.22
## 796 0 0 1 54.36
## 797 1 0 0 60.87
## 798 1 0 0 244.90
## 799 0 1 0 92.78
## 800 0 0 1 433.45
## 801 0 0 1 138.06
## 802 0 0 1 241.60
## 803 0 0 1 471.73
## 804 1 0 0 440.64
## 805 1 0 0 680.31
## 806 1 0 0 309.88
## 807 0 1 0 186.36
## 808 1 0 0 200.92
## 809 1 0 0 17.75
## 810 0 0 1 621.80
## 811 0 0 1 86.00
## 812 0 1 0 402.60
## 813 0 1 0 324.85
## 814 1 0 0 95.15
## 815 1 0 0 388.96
## 816 0 0 1 425.68
## 817 1 0 0 318.08
## 818 0 0 1 271.04
## 819 0 1 0 384.64
## 820 0 1 0 235.80
## 821 0 0 1 211.56
## 822 0 1 0 95.36
## 823 1 0 0 10.17
## 824 1 0 0 206.13
## 825 0 1 0 420.56
## 826 0 1 0 88.04
## 827 0 1 0 648.99
## 828 0 1 0 123.84
## 829 1 0 0 649.50
## 830 0 1 0 742.20
## 831 1 0 0 84.48
## 832 1 0 0 250.28
## 833 1 0 0 94.80
## 834 0 0 1 91.30
## 835 0 0 1 285.11
## 836 1 0 0 52.38
## 837 0 0 1 192.70
## 838 0 1 0 267.78
## 839 1 0 0 558.70
## 840 0 0 1 175.32
## 841 1 0 0 155.82
## 842 1 0 0 60.30
## 843 0 1 0 78.94
## 844 0 1 0 29.74
## 845 1 0 0 21.32
## 846 0 1 0 281.34
## 847 0 0 1 73.26
## 848 0 1 0 22.38
## 849 1 0 0 655.92
## 850 1 0 0 594.60
## 851 1 0 0 74.10
## 852 0 0 1 196.96
## 853 0 0 1 372.33
## 854 0 0 1 527.90
## 855 0 0 1 479.75
## 856 1 0 0 328.59
## 857 1 0 0 168.96
## 858 1 0 0 113.24
## 859 1 0 0 345.54
## 860 1 0 0 428.67
## 861 0 0 1 86.27
## 862 0 0 1 25.52
## 863 0 1 0 101.52
## 864 1 0 0 357.49
## 865 1 0 0 238.77
## 866 0 0 1 101.43
## 867 0 1 0 724.24
## 868 0 0 1 125.64
## 869 0 1 0 72.93
## 870 0 0 1 258.36
## 871 0 1 0 173.74
## 872 0 0 1 56.50
## 873 1 0 0 214.30
## 874 1 0 0 534.36
## 875 0 1 0 93.16
## 876 0 0 1 522.08
## 877 1 0 0 52.35
## 878 1 0 0 39.75
## 879 0 1 0 720.16
## 880 0 0 1 96.80
## 881 0 0 1 332.10
## 882 0 1 0 81.44
## 883 0 1 0 319.90
## 884 0 0 1 206.52
## 885 1 0 0 166.68
## 886 1 0 0 319.06
## 887 0 0 1 87.90
## 888 0 0 1 734.70
## 889 0 0 1 97.52
## 890 0 0 1 769.20
## 891 1 0 0 418.30
## 892 1 0 0 463.28
## 893 0 1 0 462.45
## 894 1 0 0 141.90
## 895 0 1 0 302.70
## 896 0 1 0 793.28
## 897 0 0 1 425.18
## 898 1 0 0 283.62
## 899 1 0 0 599.20
## 900 0 0 1 315.36
## 901 0 1 0 403.56
## 902 0 0 1 183.88
## 903 0 1 0 138.65
## 904 1 0 0 80.71
## 905 0 0 1 116.64
## 906 1 0 0 313.52
## 907 0 1 0 846.10
## 908 0 1 0 414.40
## 909 0 0 1 159.08
## 910 0 1 0 490.10
## 911 0 1 0 87.45
## 912 0 0 1 224.52
## 913 1 0 0 744.96
## 914 0 0 1 410.72
## 915 1 0 0 298.80
## 916 1 0 0 212.94
## 917 0 1 0 42.85
## 918 1 0 0 378.68
## 919 0 0 1 206.91
## 920 0 0 1 78.78
## 921 0 1 0 322.11
## 922 1 0 0 98.22
## 923 0 1 0 25.46
## 924 0 1 0 581.98
## 925 0 0 1 211.32
## 926 0 0 1 55.12
## 927 0 1 0 88.31
## 928 0 1 0 356.58
## 929 0 1 0 794.25
## 930 0 0 1 50.62
## 931 0 0 1 599.52
## 932 0 1 0 166.70
## 933 0 0 1 744.40
## 934 0 0 1 448.56
## 935 0 0 1 378.90
## 936 0 0 1 257.16
## 937 0 0 1 552.23
## 938 1 0 0 447.40
## 939 1 0 0 276.27
## 940 0 0 1 343.74
## 941 0 0 1 266.08
## 942 1 0 0 898.38
## 943 0 0 1 456.80
## 944 0 1 0 253.95
## 945 1 0 0 70.56
## 946 0 1 0 657.16
## 947 0 1 0 168.50
## 948 0 0 1 53.78
## 949 0 0 1 179.05
## 950 0 0 1 211.44
## 951 0 0 1 119.73
## 952 0 0 1 65.70
## 953 0 0 1 251.40
## 954 1 0 0 84.16
## 955 1 0 0 395.46
## 956 1 0 0 297.99
## 957 1 0 0 454.41
## 958 1 0 0 276.12
## 959 1 0 0 158.00
## 960 1 0 0 887.94
## 961 1 0 0 91.98
## 962 1 0 0 41.78
## 963 0 1 0 15.50
## 964 1 0 0 290.46
## 965 0 1 0 66.66
## 966 0 1 0 76.54
## 967 0 0 1 299.70
## 968 0 1 0 243.03
## 969 1 0 0 47.40
## 970 0 1 0 172.45
## 971 0 1 0 846.30
## 972 0 0 1 258.37
## 973 1 0 0 609.56
## 974 1 0 0 240.24
## 975 1 0 0 172.26
## 976 0 1 0 99.84
## 977 1 0 0 298.64
## 978 0 0 1 159.60
## 979 0 1 0 25.45
## 980 0 1 0 67.77
## 981 1 0 0 238.36
## 982 1 0 0 232.60
## 983 0 0 1 877.32
## 984 1 0 0 699.72
## 985 1 0 0 674.59
## 986 0 0 1 318.55
## 987 0 0 1 29.52
## 988 0 1 0 496.00
## 989 0 0 1 823.40
## 990 0 1 0 602.96
## 991 0 1 0 282.80
## 992 0 0 1 766.00
## 993 0 0 1 116.06
## 994 0 0 1 174.90
## 995 0 0 1 60.95
## 996 0 0 1 40.35
## 997 0 0 1 973.80
## 998 1 0 0 31.84
## 999 1 0 0 65.82
## 1000 1 0 0 618.38
## X.gross.margin.percentage. X.gross.income. Rating Total
## 1 4.761905 26.1415 9.1 548.9715
## 2 4.761905 3.8200 9.6 80.2200
## 3 4.761905 16.2155 7.4 340.5255
## 4 4.761905 23.2880 8.4 489.0480
## 5 4.761905 30.2085 5.3 634.3785
## 6 4.761905 29.8865 4.1 627.6165
## 7 4.761905 20.6520 5.8 433.6920
## 8 4.761905 36.7800 8.0 772.3800
## 9 4.761905 3.6260 7.2 76.1460
## 10 4.761905 8.2260 5.9 172.7460
## 11 4.761905 2.8960 4.5 60.8160
## 12 4.761905 5.1020 6.8 107.1420
## 13 4.761905 11.7375 7.1 246.4875
## 14 4.761905 21.5950 8.2 453.4950
## 15 4.761905 35.6900 5.7 749.4900
## 16 4.761905 28.1160 4.5 590.4360
## 17 4.761905 24.1255 4.6 506.6355
## 18 4.761905 21.7830 6.9 457.4430
## 19 4.761905 8.2005 8.6 172.2105
## 20 4.761905 4.0300 4.4 84.6300
## 21 4.761905 21.5100 4.8 451.7100
## 22 4.761905 13.1970 5.1 277.1370
## 23 4.761905 3.3200 4.4 69.7200
## 24 4.761905 8.6400 9.9 181.4400
## 25 4.761905 13.2945 6.0 279.1845
## 26 4.761905 21.0360 8.5 441.7560
## 27 4.761905 1.6760 6.7 35.1960
## 28 4.761905 8.7670 7.7 184.1070
## 29 4.761905 22.0900 9.6 463.8900
## 30 4.761905 11.2005 7.4 235.2105
## 31 4.761905 23.5325 4.8 494.1825
## 32 4.761905 35.1315 4.5 737.7615
## 33 4.761905 33.5120 5.1 703.7520
## 34 4.761905 9.6580 5.1 202.8180
## 35 4.761905 19.8840 7.5 417.5640
## 36 4.761905 3.4060 6.8 71.5260
## 37 4.761905 15.6550 7.0 328.7550
## 38 4.761905 27.3960 4.7 575.3160
## 39 4.761905 21.9680 7.6 461.3280
## 40 4.761905 12.0480 7.7 253.0080
## 41 4.761905 4.3360 7.9 91.0560
## 42 4.761905 5.6110 6.3 117.8310
## 43 4.761905 20.7360 5.6 435.4560
## 44 4.761905 39.4800 7.6 829.0800
## 45 4.761905 1.5370 7.2 32.2770
## 46 4.761905 18.7920 9.5 394.6320
## 47 4.761905 25.5105 8.4 535.7205
## 48 4.761905 9.0045 4.1 189.0945
## 49 4.761905 5.6790 8.1 119.2590
## 50 4.761905 41.3150 7.9 867.6150
## 51 4.761905 31.9900 9.5 671.7900
## 52 4.761905 11.1475 8.5 234.0975
## 53 4.761905 3.5740 6.5 75.0540
## 54 4.761905 0.7715 6.1 16.2015
## 55 4.761905 1.6160 6.5 33.9360
## 56 4.761905 34.3920 8.2 722.2320
## 57 4.761905 4.4340 5.8 93.1140
## 58 4.761905 35.8400 6.6 752.6400
## 59 4.761905 36.1750 5.4 759.6750
## 60 4.761905 9.1830 9.3 192.8430
## 61 4.761905 3.7110 10.0 77.9310
## 62 4.761905 16.7190 7.0 351.0990
## 63 4.761905 24.7815 10.0 520.4115
## 64 4.761905 7.9050 8.6 166.0050
## 65 4.761905 15.1480 7.6 318.1080
## 66 4.761905 7.9350 5.8 166.6350
## 67 4.761905 3.3470 6.7 70.2870
## 68 4.761905 29.2830 9.9 614.9430
## 69 4.761905 39.3850 6.4 827.0850
## 70 4.761905 0.9165 4.3 19.2465
## 71 4.761905 44.7400 9.6 939.5400
## 72 4.761905 31.0600 5.9 652.2600
## 73 4.761905 7.2780 4.0 152.8380
## 74 4.761905 22.7730 8.7 478.2330
## 75 4.761905 33.6015 9.4 705.6315
## 76 4.761905 20.8250 5.4 437.3250
## 77 4.761905 22.0680 8.6 463.4280
## 78 4.761905 9.0045 5.7 189.0945
## 79 4.761905 39.1550 6.6 822.2550
## 80 4.761905 5.0950 6.0 106.9950
## 81 4.761905 29.7570 5.5 624.8970
## 82 4.761905 14.5020 6.4 304.5420
## 83 4.761905 7.7000 6.6 161.7000
## 84 4.761905 16.0720 8.3 337.5120
## 85 4.761905 12.2275 6.6 256.7775
## 86 4.761905 29.0710 4.0 610.4910
## 87 4.761905 19.1300 9.9 401.7300
## 88 4.761905 17.2830 7.3 362.9430
## 89 4.761905 2.1235 5.7 44.5935
## 90 4.761905 23.0970 6.1 485.0370
## 91 4.761905 9.4760 7.1 198.9960
## 92 4.761905 22.4300 8.2 471.0300
## 93 4.761905 7.6930 5.1 161.5530
## 94 4.761905 28.9620 8.6 608.2020
## 95 4.761905 4.4875 6.6 94.2375
## 96 4.761905 4.8580 7.2 102.0180
## 97 4.761905 43.9350 5.1 922.6350
## 98 4.761905 3.7350 4.1 78.4350
## 99 4.761905 7.9125 9.3 166.1625
## 100 4.761905 24.8100 7.4 521.0100
## 101 4.761905 2.4355 4.1 51.1455
## 102 4.761905 35.3475 7.2 742.2975
## 103 4.761905 10.3815 4.9 218.0115
## 104 4.761905 17.4780 9.9 367.0380
## 105 4.761905 10.6225 8.0 223.0725
## 106 4.761905 44.3350 7.3 931.0350
## 107 4.761905 8.2140 7.9 172.4940
## 108 4.761905 18.6390 7.4 391.4190
## 109 4.761905 15.2910 4.2 321.1110
## 110 4.761905 40.9850 9.2 860.6850
## 111 4.761905 1.6490 4.6 34.6290
## 112 4.761905 14.7315 7.8 309.3615
## 113 4.761905 25.4940 8.4 535.3740
## 114 4.761905 26.1315 4.3 548.7615
## 115 4.761905 36.3555 9.5 763.4655
## 116 4.761905 4.0530 7.1 85.1130
## 117 4.761905 5.4850 5.3 115.1850
## 118 4.761905 2.5680 5.2 53.9280
## 119 4.761905 5.4800 6.0 115.0800
## 120 4.761905 5.3440 4.1 112.2240
## 121 4.761905 39.8240 5.2 836.3040
## 122 4.761905 19.9920 6.5 419.8320
## 123 4.761905 44.9820 4.2 944.6220
## 124 4.761905 25.5640 4.6 536.8440
## 125 4.761905 22.5880 7.3 474.3480
## 126 4.761905 32.7915 4.5 688.6215
## 127 4.761905 8.0625 9.0 169.3125
## 128 4.761905 14.2785 5.9 299.8485
## 129 4.761905 27.4160 8.5 575.7360
## 130 4.761905 40.6260 7.2 853.1460
## 131 4.761905 13.8670 7.5 291.2070
## 132 4.761905 27.6390 8.3 580.4190
## 133 4.761905 6.9680 7.4 146.3280
## 134 4.761905 26.2350 8.8 550.9350
## 135 4.761905 24.3900 5.3 512.1900
## 136 4.761905 13.5330 6.2 284.1930
## 137 4.761905 6.5775 8.8 138.1275
## 138 4.761905 10.3260 9.8 216.8460
## 139 4.761905 25.9550 8.2 545.0550
## 140 4.761905 29.0000 9.2 609.0000
## 141 4.761905 44.9000 5.4 942.9000
## 142 4.761905 45.2500 8.1 950.2500
## 143 4.761905 34.3000 9.1 720.3000
## 144 4.761905 1.5205 8.4 31.9305
## 145 4.761905 23.3850 8.0 491.0850
## 146 4.761905 13.8780 9.5 291.4380
## 147 4.761905 15.0700 9.2 316.4700
## 148 4.761905 13.2280 5.6 277.7880
## 149 4.761905 28.7440 6.2 603.6240
## 150 4.761905 12.9840 4.9 272.6640
## 151 4.761905 18.3080 4.8 384.4680
## 152 4.761905 12.0960 7.3 254.0160
## 153 4.761905 37.4580 7.4 786.6180
## 154 4.761905 4.9440 9.9 103.8240
## 155 4.761905 32.3880 9.3 680.1480
## 156 4.761905 23.0725 9.0 484.5225
## 157 4.761905 3.6085 6.1 75.7785
## 158 4.761905 12.5700 9.7 263.9700
## 159 4.761905 43.7490 6.0 918.7290
## 160 4.761905 28.0170 10.0 588.3570
## 161 4.761905 17.2720 8.3 362.7120
## 162 4.761905 3.1845 6.0 66.8745
## 163 4.761905 16.0265 7.0 336.5565
## 164 4.761905 7.6400 6.5 160.4400
## 165 4.761905 19.9500 5.9 418.9500
## 166 4.761905 17.0280 5.6 357.5880
## 167 4.761905 47.7900 4.8 1003.5900
## 168 4.761905 49.4900 8.7 1039.2900
## 169 4.761905 15.3840 6.5 323.0640
## 170 4.761905 24.3320 8.5 510.9720
## 171 4.761905 17.5025 5.5 367.5525
## 172 4.761905 20.0125 9.4 420.2625
## 173 4.761905 8.3400 6.3 175.1400
## 174 4.761905 15.8670 9.8 333.2070
## 175 4.761905 7.9160 8.7 166.2360
## 176 4.761905 15.2280 8.8 319.7880
## 177 4.761905 8.8680 9.6 186.2280
## 178 4.761905 7.8785 4.8 165.4485
## 179 4.761905 22.1640 4.4 465.4440
## 180 4.761905 13.0200 9.9 273.4200
## 181 4.761905 22.4910 5.7 472.3110
## 182 4.761905 15.3880 7.7 323.1480
## 183 4.761905 7.7500 8.0 162.7500
## 184 4.761905 13.7240 5.7 288.2040
## 185 4.761905 4.3190 6.7 90.6990
## 186 4.761905 2.7120 8.0 56.9520
## 187 4.761905 37.7960 7.5 793.7160
## 188 4.761905 9.2940 7.0 195.1740
## 189 4.761905 3.7035 9.9 77.7735
## 190 4.761905 13.9620 5.9 293.2020
## 191 4.761905 11.5560 7.2 242.6760
## 192 4.761905 7.3520 4.6 154.3920
## 193 4.761905 39.5100 9.2 829.7100
## 194 4.761905 5.1100 5.7 107.3100
## 195 4.761905 8.1775 9.9 171.7275
## 196 4.761905 3.7145 5.0 78.0045
## 197 4.761905 4.3700 4.9 91.7700
## 198 4.761905 1.2645 6.1 26.5545
## 199 4.761905 8.3000 8.2 174.3000
## 200 4.761905 17.8475 5.5 374.7975
## 201 4.761905 5.7450 6.8 120.6450
## 202 4.761905 11.4980 6.6 241.4580
## 203 4.761905 21.4935 9.8 451.3635
## 204 4.761905 12.9500 8.7 271.9500
## 205 4.761905 4.4425 5.4 93.2925
## 206 4.761905 10.3635 7.9 217.6335
## 207 4.761905 29.9925 9.7 629.8425
## 208 4.761905 14.2650 7.8 299.5650
## 209 4.761905 4.5555 5.1 95.6655
## 210 4.761905 44.8785 6.5 942.4485
## 211 4.761905 11.8035 5.9 247.8735
## 212 4.761905 41.9670 8.8 881.3070
## 213 4.761905 23.0900 4.9 484.8900
## 214 4.761905 6.9630 4.4 146.2230
## 215 4.761905 10.3635 6.5 217.6335
## 216 4.761905 0.9140 8.3 19.1940
## 217 4.761905 6.1925 8.5 130.0425
## 218 4.761905 14.1960 5.5 298.1160
## 219 4.761905 37.9480 8.7 796.9080
## 220 4.761905 8.6010 7.9 180.6210
## 221 4.761905 13.6050 6.1 285.7050
## 222 4.761905 21.7280 5.4 456.2880
## 223 4.761905 2.9525 9.4 62.0025
## 224 4.761905 0.6270 8.2 13.1670
## 225 4.761905 4.3250 6.2 90.8250
## 226 4.761905 8.7160 9.7 183.0360
## 227 4.761905 31.2165 4.0 655.5465
## 228 4.761905 7.4120 9.7 155.6520
## 229 4.761905 27.2100 5.3 571.4100
## 230 4.761905 25.3680 7.4 532.7280
## 231 4.761905 8.1370 6.5 170.8770
## 232 4.761905 1.5885 8.7 33.3585
## 233 4.761905 37.8405 8.0 794.6505
## 234 4.761905 14.7640 6.7 310.0440
## 235 4.761905 25.9700 6.5 545.3700
## 236 4.761905 9.3140 4.1 195.5940
## 237 4.761905 4.3525 4.9 91.4025
## 238 4.761905 11.0550 8.6 232.1550
## 239 4.761905 3.3050 4.3 69.4050
## 240 4.761905 4.4845 4.9 94.1745
## 241 4.761905 11.2230 5.6 235.6830
## 242 4.761905 5.9770 5.8 125.5170
## 243 4.761905 9.3200 6.0 195.7200
## 244 4.761905 12.5300 4.2 263.1300
## 245 4.761905 37.5480 8.3 788.5080
## 246 4.761905 19.0360 5.7 399.7560
## 247 4.761905 12.2100 4.8 256.4100
## 248 4.761905 4.4850 6.8 94.1850
## 249 4.761905 15.5440 8.8 326.4240
## 250 4.761905 25.5710 4.2 536.9910
## 251 4.761905 20.9475 6.4 439.8975
## 252 4.761905 17.5950 8.4 369.4950
## 253 4.761905 1.4390 7.2 30.2190
## 254 4.761905 4.7500 5.2 99.7500
## 255 4.761905 23.5600 8.9 494.7600
## 256 4.761905 6.5240 9.0 137.0040
## 257 4.761905 3.3175 9.7 69.6675
## 258 4.761905 7.7730 8.7 163.2330
## 259 4.761905 6.4500 6.5 135.4500
## 260 4.761905 13.1880 6.9 276.9480
## 261 4.761905 33.7770 6.2 709.3170
## 262 4.761905 3.2900 5.6 69.0900
## 263 4.761905 7.6600 5.7 160.8600
## 264 4.761905 11.1200 4.2 233.5200
## 265 4.761905 2.7225 7.9 57.1725
## 266 4.761905 34.4400 8.7 723.2400
## 267 4.761905 7.0940 6.9 148.9740
## 268 4.761905 37.3000 9.5 783.3000
## 269 4.761905 14.1480 4.4 297.1080
## 270 4.761905 17.7700 7.0 373.1700
## 271 4.761905 16.8575 6.3 354.0075
## 272 4.761905 2.1120 9.7 44.3520
## 273 4.761905 9.6930 8.8 203.5530
## 274 4.761905 1.2030 5.1 25.2630
## 275 4.761905 29.9130 7.9 628.1730
## 276 4.761905 16.7895 6.2 352.5795
## 277 4.761905 10.9100 7.1 229.1100
## 278 4.761905 19.0840 6.4 400.7640
## 279 4.761905 35.4950 5.7 745.3950
## 280 4.761905 22.0100 9.6 462.2100
## 281 4.761905 27.9840 6.4 587.6640
## 282 4.761905 1.8500 7.9 38.8500
## 283 4.761905 0.7670 6.5 16.1070
## 284 4.761905 29.9490 8.5 628.9290
## 285 4.761905 9.5340 9.1 200.2140
## 286 4.761905 16.6700 7.6 350.0700
## 287 4.761905 3.7430 6.9 78.6030
## 288 4.761905 10.6875 9.5 224.4375
## 289 4.761905 16.9785 5.2 356.5485
## 290 4.761905 33.2080 4.2 697.3680
## 291 4.761905 20.1500 7.0 423.1500
## 292 4.761905 9.7475 6.0 204.6975
## 293 4.761905 3.1240 4.7 65.6040
## 294 4.761905 3.6360 7.1 76.3560
## 295 4.761905 9.0550 5.9 190.1550
## 296 4.761905 12.9800 7.5 272.5800
## 297 4.761905 5.7680 6.4 121.1280
## 298 4.761905 23.5140 5.8 493.7940
## 299 4.761905 12.0020 4.5 252.0420
## 300 4.761905 4.4305 7.7 93.0405
## 301 4.761905 9.9820 6.7 209.6220
## 302 4.761905 1.9505 4.7 40.9605
## 303 4.761905 2.4305 4.4 51.0405
## 304 4.761905 10.2380 4.7 214.9980
## 305 4.761905 5.9840 8.6 125.6640
## 306 4.761905 25.2700 4.3 530.6700
## 307 4.761905 14.0805 9.6 295.6905
## 308 4.761905 35.5160 4.1 745.8360
## 309 4.761905 3.9720 4.7 83.4120
## 310 4.761905 8.1910 7.8 172.0110
## 311 4.761905 23.9790 5.5 503.5590
## 312 4.761905 6.9330 9.7 145.5930
## 313 4.761905 3.5575 4.4 74.7075
## 314 4.761905 6.9975 5.0 146.9475
## 315 4.761905 39.0650 4.4 820.3650
## 316 4.761905 9.9370 5.2 208.6770
## 317 4.761905 3.1620 7.3 66.4020
## 318 4.761905 18.6975 4.9 392.6475
## 319 4.761905 10.3845 8.1 218.0745
## 320 4.761905 8.8140 8.4 185.0940
## 321 4.761905 10.3185 5.5 216.6885
## 322 4.761905 1.9710 8.4 41.3910
## 323 4.761905 4.5780 9.8 96.1380
## 324 4.761905 15.4425 6.7 324.2925
## 325 4.761905 6.4560 9.4 135.5760
## 326 4.761905 19.5480 6.4 410.5080
## 327 4.761905 24.9450 5.4 523.8450
## 328 4.761905 18.8520 8.6 395.8920
## 329 4.761905 10.2260 4.0 214.7460
## 330 4.761905 7.2720 7.6 152.7120
## 331 4.761905 9.9090 6.8 208.0890
## 332 4.761905 4.9350 9.1 103.6350
## 333 4.761905 19.2550 5.5 404.3550
## 334 4.761905 2.3480 7.9 49.3080
## 335 4.761905 3.6750 8.5 77.1750
## 336 4.761905 7.1125 9.1 149.3625
## 337 4.761905 34.3800 7.5 721.9800
## 338 4.761905 17.3850 5.2 365.0850
## 339 4.761905 7.1475 9.5 150.0975
## 340 4.761905 19.2690 8.9 404.6490
## 341 4.761905 7.2135 7.8 151.4835
## 342 4.761905 19.5895 8.9 411.3795
## 343 4.761905 26.9150 7.7 565.2150
## 344 4.761905 24.2575 9.3 509.4075
## 345 4.761905 6.6975 6.2 140.6475
## 346 4.761905 35.0685 7.6 736.4385
## 347 4.761905 3.5975 7.3 75.5475
## 348 4.761905 35.7000 4.7 749.7000
## 349 4.761905 9.1070 5.1 191.2470
## 350 4.761905 6.7500 4.8 141.7500
## 351 4.761905 49.6500 6.6 1042.6500
## 352 4.761905 18.0915 5.5 379.9215
## 353 4.761905 19.1555 8.5 402.2655
## 354 4.761905 12.1500 4.8 255.1500
## 355 4.761905 1.5120 8.4 31.7520
## 356 4.761905 17.8280 7.8 374.3880
## 357 4.761905 18.7750 9.3 394.2750
## 358 4.761905 47.7200 5.2 1002.1200
## 359 4.761905 4.1250 6.5 86.6250
## 360 4.761905 3.7485 5.6 78.7185
## 361 4.761905 32.3840 7.4 680.0640
## 362 4.761905 37.7880 9.1 793.5480
## 363 4.761905 9.9790 8.0 209.5590
## 364 4.761905 21.9660 7.2 461.2860
## 365 4.761905 8.2480 7.1 173.2080
## 366 4.761905 16.3360 9.1 343.0560
## 367 4.761905 23.0940 5.6 484.9740
## 368 4.761905 13.1880 6.0 276.9480
## 369 4.761905 7.1800 5.4 150.7800
## 370 4.761905 9.6750 7.8 203.1750
## 371 4.761905 9.1910 9.9 193.0110
## 372 4.761905 6.0960 4.9 128.0160
## 373 4.761905 21.0330 5.2 441.6930
## 374 4.761905 12.6240 8.9 265.1040
## 375 4.761905 16.7725 9.1 352.2225
## 376 4.761905 24.1750 7.0 507.6750
## 377 4.761905 15.9210 9.6 334.3410
## 378 4.761905 33.4215 8.7 701.8515
## 379 4.761905 19.3960 9.4 407.3160
## 380 4.761905 4.7300 4.0 99.3300
## 381 4.761905 16.4660 7.5 345.7860
## 382 4.761905 2.6610 4.2 55.8810
## 383 4.761905 24.9225 9.9 523.3725
## 384 4.761905 14.9780 4.2 314.5380
## 385 4.761905 10.2350 9.9 214.9350
## 386 4.761905 3.7910 5.8 79.6110
## 387 4.761905 14.0310 6.0 294.6510
## 388 4.761905 16.1600 10.0 339.3600
## 389 4.761905 24.3315 9.5 510.9615
## 390 4.761905 6.3770 6.6 133.9170
## 391 4.761905 12.0720 8.1 253.5120
## 392 4.761905 18.9750 9.7 398.4750
## 393 4.761905 3.8410 7.2 80.6610
## 394 4.761905 26.1300 6.2 548.7300
## 395 4.761905 3.9870 7.3 83.7270
## 396 4.761905 19.3750 4.3 406.8750
## 397 4.761905 13.5675 4.6 284.9175
## 398 4.761905 6.1155 5.8 128.4255
## 399 4.761905 12.3180 8.3 258.6780
## 400 4.761905 8.6580 8.0 181.8180
## 401 4.761905 11.8290 9.4 248.4090
## 402 4.761905 9.2440 6.2 194.1240
## 403 4.761905 0.6990 9.8 14.6790
## 404 4.761905 9.9375 9.6 208.6875
## 405 4.761905 34.2265 4.9 718.7565
## 406 4.761905 13.4520 8.0 282.4920
## 407 4.761905 3.4475 7.8 72.3975
## 408 4.761905 13.7420 4.1 288.5820
## 409 4.761905 11.3060 5.5 237.4260
## 410 4.761905 5.9550 5.4 125.0550
## 411 4.761905 17.1050 5.1 359.2050
## 412 4.761905 2.1870 6.9 45.9270
## 413 4.761905 5.2425 7.8 110.0925
## 414 4.761905 3.8760 6.6 81.3960
## 415 4.761905 20.3720 9.2 427.8120
## 416 4.761905 4.8055 7.8 100.9155
## 417 4.761905 9.0760 8.7 190.5960
## 418 4.761905 4.0755 9.2 85.5855
## 419 4.761905 5.7220 8.3 120.1620
## 420 4.761905 8.8270 8.2 185.3670
## 421 4.761905 5.7900 7.5 121.5900
## 422 4.761905 12.6075 9.8 264.7575
## 423 4.761905 48.6050 8.7 1020.7050
## 424 4.761905 10.1680 6.7 213.5280
## 425 4.761905 0.8140 5.0 17.0940
## 426 4.761905 18.2745 7.0 383.7645
## 427 4.761905 18.6095 8.9 390.7995
## 428 4.761905 3.1305 8.0 65.7405
## 429 4.761905 16.8175 6.9 353.1675
## 430 4.761905 45.3250 7.3 951.8250
## 431 4.761905 6.9080 6.9 145.0680
## 432 4.761905 4.3270 5.7 90.8670
## 433 4.761905 7.0380 6.4 147.7980
## 434 4.761905 33.4390 9.6 702.2190
## 435 4.761905 2.3720 6.8 49.8120
## 436 4.761905 44.6580 9.0 937.8180
## 437 4.761905 16.5860 9.6 348.3060
## 438 4.761905 10.1970 7.7 214.1370
## 439 4.761905 3.4080 7.0 71.5680
## 440 4.761905 16.3440 6.5 343.2240
## 441 4.761905 4.3600 8.1 91.5600
## 442 4.761905 35.3720 4.3 742.8120
## 443 4.761905 40.1445 6.5 843.0345
## 444 4.761905 0.6390 9.5 13.4190
## 445 4.761905 6.6850 9.7 140.3850
## 446 4.761905 0.9575 9.5 20.1075
## 447 4.761905 13.8300 8.9 290.4300
## 448 4.761905 6.8610 6.5 144.0810
## 449 4.761905 1.3535 5.3 28.4235
## 450 4.761905 1.9560 9.6 41.0760
## 451 4.761905 22.4130 6.7 470.6730
## 452 4.761905 6.6030 7.6 138.6630
## 453 4.761905 15.9025 4.8 333.9525
## 454 4.761905 1.2500 5.5 26.2500
## 455 4.761905 4.1540 4.7 87.2340
## 456 4.761905 7.3900 6.9 155.1900
## 457 4.761905 34.8300 4.5 731.4300
## 458 4.761905 39.6950 6.2 833.5950
## 459 4.761905 23.2850 7.6 488.9850
## 460 4.761905 1.7945 7.9 37.6845
## 461 4.761905 10.1300 4.5 212.7300
## 462 4.761905 36.5250 8.7 767.0250
## 463 4.761905 14.7900 6.1 310.5900
## 464 4.761905 1.1310 6.4 23.7510
## 465 4.761905 12.8350 9.1 269.5350
## 466 4.761905 27.2750 7.1 572.7750
## 467 4.761905 13.0025 7.7 273.0525
## 468 4.761905 11.1060 4.5 233.2260
## 469 4.761905 1.0790 7.2 22.6590
## 470 4.761905 4.9420 8.4 103.7820
## 471 4.761905 25.1310 5.4 527.7510
## 472 4.761905 8.0100 9.7 168.2100
## 473 4.761905 21.5650 5.5 452.8650
## 474 4.761905 29.0280 4.6 609.5880
## 475 4.761905 16.1100 6.6 338.3100
## 476 4.761905 9.7770 6.3 205.3170
## 477 4.761905 8.3150 4.2 174.6150
## 478 4.761905 16.8140 4.4 353.0940
## 479 4.761905 17.1850 6.7 360.8850
## 480 4.761905 1.9300 6.7 40.5300
## 481 4.761905 26.3880 8.4 554.1480
## 482 4.761905 16.4000 6.2 344.4000
## 483 4.761905 9.2850 5.0 194.9850
## 484 4.761905 30.1900 6.0 633.9900
## 485 4.761905 18.4900 7.0 388.2900
## 486 4.761905 9.8980 6.6 207.8580
## 487 4.761905 20.5450 7.3 431.4450
## 488 4.761905 7.4300 8.3 156.0300
## 489 4.761905 1.1480 4.3 24.1080
## 490 4.761905 34.9560 9.8 734.0760
## 491 4.761905 3.4700 8.2 72.8700
## 492 4.761905 9.8300 7.2 206.4300
## 493 4.761905 10.1280 8.7 212.6880
## 494 4.761905 6.0600 8.4 127.2600
## 495 4.761905 9.9890 7.1 209.7690
## 496 4.761905 30.3680 5.5 637.7280
## 497 4.761905 6.3220 8.5 132.7620
## 498 4.761905 27.0720 6.2 568.5120
## 499 4.761905 4.9065 8.9 103.0365
## 500 4.761905 20.6080 9.6 432.7680
## 501 4.761905 3.6985 5.4 77.6685
## 502 4.761905 1.5950 9.1 33.4950
## 503 4.761905 6.9400 9.0 145.7400
## 504 4.761905 9.3310 6.3 195.9510
## 505 4.761905 4.4225 9.5 92.8725
## 506 4.761905 9.6720 9.8 203.1120
## 507 4.761905 7.2750 6.7 152.7750
## 508 4.761905 25.2150 7.7 529.5150
## 509 4.761905 15.3225 7.0 321.7725
## 510 4.761905 4.7850 5.1 100.4850
## 511 4.761905 31.7590 6.2 666.9390
## 512 4.761905 10.7275 6.1 225.2775
## 513 4.761905 18.9980 9.3 398.9580
## 514 4.761905 34.8425 7.6 731.6925
## 515 4.761905 20.4365 8.2 429.1665
## 516 4.761905 2.5735 8.5 54.0435
## 517 4.761905 13.7150 9.8 288.0150
## 518 4.761905 9.8475 8.7 206.7975
## 519 4.761905 3.4730 9.7 72.9330
## 520 4.761905 17.9800 4.3 377.5800
## 521 4.761905 6.8565 7.7 143.9865
## 522 4.761905 24.9510 7.3 523.9710
## 523 4.761905 11.2320 5.9 235.8720
## 524 4.761905 6.2870 5.0 132.0270
## 525 4.761905 24.5130 8.0 514.7730
## 526 4.761905 22.8525 7.1 479.9025
## 527 4.761905 7.8420 9.0 164.6820
## 528 4.761905 5.9860 6.7 125.7060
## 529 4.761905 27.1800 6.1 570.7800
## 530 4.761905 44.1405 9.3 926.9505
## 531 4.761905 7.6290 7.0 160.2090
## 532 4.761905 34.6720 7.2 728.1120
## 533 4.761905 11.4750 8.2 240.9750
## 534 4.761905 7.3395 8.4 154.1295
## 535 4.761905 7.0800 6.2 148.6800
## 536 4.761905 5.8345 7.4 122.5245
## 537 4.761905 3.6980 5.0 77.6580
## 538 4.761905 4.8970 6.9 102.8370
## 539 4.761905 14.6100 4.9 306.8100
## 540 4.761905 26.2440 5.1 551.1240
## 541 4.761905 4.6020 9.1 96.6420
## 542 4.761905 3.7940 7.1 79.6740
## 543 4.761905 4.0360 5.0 84.7560
## 544 4.761905 5.6310 5.5 118.2510
## 545 4.761905 3.5600 9.2 74.7600
## 546 4.761905 7.7620 4.9 163.0020
## 547 4.761905 14.7100 8.9 308.9100
## 548 4.761905 27.4275 6.0 575.9775
## 549 4.761905 12.8850 4.2 270.5850
## 550 4.761905 19.8180 7.3 416.1780
## 551 4.761905 8.5905 6.5 180.4005
## 552 4.761905 24.4395 8.9 513.2295
## 553 4.761905 26.2080 9.7 550.3680
## 554 4.761905 6.6630 8.6 139.9230
## 555 4.761905 6.7620 6.9 142.0020
## 556 4.761905 5.6220 7.7 118.0620
## 557 4.761905 7.2040 9.5 151.2840
## 558 4.761905 49.2600 4.5 1034.4600
## 559 4.761905 12.4980 5.6 262.4580
## 560 4.761905 10.8630 8.2 228.1230
## 561 4.761905 9.7110 7.3 203.9310
## 562 4.761905 44.6000 4.4 936.6000
## 563 4.761905 16.9680 5.7 356.3280
## 564 4.761905 22.3530 5.0 469.4130
## 565 4.761905 9.9250 9.0 208.4250
## 566 4.761905 40.6050 6.3 852.7050
## 567 4.761905 24.6650 9.4 517.9650
## 568 4.761905 29.5830 7.7 621.2430
## 569 4.761905 27.9510 5.5 586.9710
## 570 4.761905 25.8930 4.1 543.7530
## 571 4.761905 20.5100 7.6 430.7100
## 572 4.761905 13.3350 8.6 280.0350
## 573 4.761905 3.5455 8.3 74.4555
## 574 4.761905 7.2390 8.1 152.0190
## 575 4.761905 21.4775 8.6 451.0275
## 576 4.761905 28.4585 6.3 597.6285
## 577 4.761905 12.0600 5.8 253.2600
## 578 4.761905 6.3540 6.2 133.4340
## 579 4.761905 12.8540 7.7 269.9340
## 580 4.761905 6.9510 8.1 145.9710
## 581 4.761905 4.0830 7.3 85.7430
## 582 4.761905 15.5360 8.4 326.2560
## 583 4.761905 9.2980 8.0 195.2580
## 584 4.761905 3.6160 9.5 75.9360
## 585 4.761905 9.4590 7.0 198.6390
## 586 4.761905 10.3420 9.8 217.1820
## 587 4.761905 7.8510 9.2 164.8710
## 588 4.761905 10.7650 7.7 226.0650
## 589 4.761905 29.8050 5.3 625.9050
## 590 4.761905 3.6550 4.4 76.7550
## 591 4.761905 13.9590 4.3 293.1390
## 592 4.761905 8.4840 9.4 178.1640
## 593 4.761905 2.2790 9.8 47.8590
## 594 4.761905 11.2800 4.8 236.8800
## 595 4.761905 14.5200 5.3 304.9200
## 596 4.761905 2.2230 8.7 46.6830
## 597 4.761905 7.8300 9.5 164.4300
## 598 4.761905 20.9970 5.3 440.9370
## 599 4.761905 9.2125 9.2 193.4625
## 600 4.761905 7.0320 9.6 147.6720
## 601 4.761905 4.1540 6.4 87.2340
## 602 4.761905 3.2495 4.5 68.2395
## 603 4.761905 38.7800 6.9 814.3800
## 604 4.761905 16.3530 7.8 343.4130
## 605 4.761905 18.1615 4.5 381.3915
## 606 4.761905 6.3500 8.6 133.3500
## 607 4.761905 18.7775 5.2 394.3275
## 608 4.761905 9.9580 6.4 209.1180
## 609 4.761905 1.5305 5.2 32.1405
## 610 4.761905 5.7890 8.9 121.5690
## 611 4.761905 1.4480 6.2 30.4080
## 612 4.761905 44.5365 6.7 935.2665
## 613 4.761905 13.9830 7.2 293.6430
## 614 4.761905 4.0465 9.0 84.9765
## 615 4.761905 33.7250 4.2 708.2250
## 616 4.761905 17.4240 4.2 365.9040
## 617 4.761905 21.7800 6.9 457.3800
## 618 4.761905 21.9775 4.4 461.5275
## 619 4.761905 29.5590 4.0 620.7390
## 620 4.761905 13.0380 8.5 273.7980
## 621 4.761905 10.7520 9.2 225.7920
## 622 4.761905 4.5805 9.8 96.1905
## 623 4.761905 33.1065 4.9 695.2365
## 624 4.761905 41.6250 4.4 874.1250
## 625 4.761905 4.5675 6.8 95.9175
## 626 4.761905 7.8880 9.1 165.6480
## 627 4.761905 6.0870 8.7 127.8270
## 628 4.761905 41.2900 5.0 867.0900
## 629 4.761905 7.9950 7.5 167.8950
## 630 4.761905 0.6045 8.2 12.6945
## 631 4.761905 32.0950 6.7 673.9950
## 632 4.761905 11.7465 5.4 246.6765
## 633 4.761905 8.3770 7.0 175.9170
## 634 4.761905 14.9550 4.7 314.0550
## 635 4.761905 11.9865 5.0 251.7165
## 636 4.761905 33.2350 5.0 697.9350
## 637 4.761905 10.1325 6.0 212.7825
## 638 4.761905 2.3100 6.3 48.5100
## 639 4.761905 4.4075 8.5 92.5575
## 640 4.761905 7.8630 7.5 165.1230
## 641 4.761905 14.8185 6.4 311.1885
## 642 4.761905 35.4200 4.7 743.8200
## 643 4.761905 5.5670 6.0 116.9070
## 644 4.761905 29.0080 4.0 609.1680
## 645 4.761905 3.0125 5.5 63.2625
## 646 4.761905 8.7120 8.7 182.9520
## 647 4.761905 21.0630 7.4 442.3230
## 648 4.761905 1.6815 5.6 35.3115
## 649 4.761905 1.5490 6.3 32.5290
## 650 4.761905 12.3700 7.1 259.7700
## 651 4.761905 18.9150 7.8 397.2150
## 652 4.761905 16.7430 9.9 351.6030
## 653 4.761905 36.3900 7.3 764.1900
## 654 4.761905 16.7940 5.1 352.6740
## 655 4.761905 12.0360 9.4 252.7560
## 656 4.761905 2.3535 5.8 49.4235
## 657 4.761905 4.9845 8.0 104.6745
## 658 4.761905 13.2225 7.9 277.6725
## 659 4.761905 6.9825 5.9 146.6325
## 660 4.761905 2.7725 4.9 58.2225
## 661 4.761905 6.4455 9.3 135.3555
## 662 4.761905 5.9990 7.9 125.9790
## 663 4.761905 17.6250 5.9 370.1250
## 664 4.761905 43.5500 9.9 914.5500
## 665 4.761905 9.8800 7.7 207.4800
## 666 4.761905 9.7260 7.6 204.2460
## 667 4.761905 8.6610 7.7 181.8810
## 668 4.761905 3.5940 6.4 75.4740
## 669 4.761905 14.3130 4.4 300.5730
## 670 4.761905 4.0620 4.1 85.3020
## 671 4.761905 28.0200 4.4 588.4200
## 672 4.761905 9.3400 5.5 196.1400
## 673 4.761905 11.0115 4.0 231.2415
## 674 4.761905 13.4560 9.3 282.5760
## 675 4.761905 22.7400 4.8 477.5400
## 676 4.761905 8.3770 4.6 175.9170
## 677 4.761905 22.4280 7.3 470.9880
## 678 4.761905 14.6940 6.0 308.5740
## 679 4.761905 29.4750 8.1 618.9750
## 680 4.761905 14.5500 9.4 305.5500
## 681 4.761905 1.9740 6.5 41.4540
## 682 4.761905 1.7405 7.0 36.5505
## 683 4.761905 14.7960 7.1 310.7160
## 684 4.761905 2.1480 6.6 45.1080
## 685 4.761905 6.9240 4.9 145.4040
## 686 4.761905 4.9100 6.4 103.1100
## 687 4.761905 6.4830 8.0 136.1430
## 688 4.761905 31.7800 4.3 667.3800
## 689 4.761905 7.2880 6.1 153.0480
## 690 4.761905 10.0650 7.5 211.3650
## 691 4.761905 31.5855 6.7 663.2955
## 692 4.761905 19.2640 5.2 404.5440
## 693 4.761905 24.3150 8.8 510.6150
## 694 4.761905 25.6830 9.5 539.3430
## 695 4.761905 23.6700 7.6 497.0700
## 696 4.761905 21.8425 6.6 458.6925
## 697 4.761905 5.4080 6.9 113.5680
## 698 4.761905 12.4380 4.3 261.1980
## 699 4.761905 31.3110 7.8 657.5310
## 700 4.761905 48.7500 8.0 1023.7500
## 701 4.761905 24.1640 9.6 507.4440
## 702 4.761905 4.8480 4.3 101.8080
## 703 4.761905 9.8850 5.0 207.5850
## 704 4.761905 36.2115 9.2 760.4415
## 705 4.761905 39.7755 6.3 835.2855
## 706 4.761905 25.1195 8.9 527.5095
## 707 4.761905 8.6000 7.6 180.6000
## 708 4.761905 3.4490 4.8 72.4290
## 709 4.761905 6.2480 9.1 131.2080
## 710 4.761905 3.8550 6.1 80.9550
## 711 4.761905 24.1860 9.1 507.9060
## 712 4.761905 15.1060 8.3 317.2260
## 713 4.761905 34.9335 7.2 733.6035
## 714 4.761905 6.2325 6.0 130.8825
## 715 4.761905 39.4800 8.5 829.0800
## 716 4.761905 8.9200 6.6 187.3200
## 717 4.761905 25.0110 4.5 525.2310
## 718 4.761905 1.7910 8.1 37.6110
## 719 4.761905 6.8070 7.2 142.9470
## 720 4.761905 5.2440 6.1 110.1240
## 721 4.761905 8.9460 7.1 187.8660
## 722 4.761905 40.7835 5.1 856.4535
## 723 4.761905 6.6180 7.9 138.9780
## 724 4.761905 12.8695 7.4 270.2595
## 725 4.761905 4.6680 7.4 98.0280
## 726 4.761905 11.4000 6.6 239.4000
## 727 4.761905 8.3355 5.9 175.0455
## 728 4.761905 34.8700 8.9 732.2700
## 729 4.761905 19.4520 6.8 408.4920
## 730 4.761905 18.2630 9.3 383.5230
## 731 4.761905 4.4640 4.4 93.7440
## 732 4.761905 8.4000 4.8 176.4000
## 733 4.761905 0.9850 9.5 20.6850
## 734 4.761905 26.5580 8.9 557.7180
## 735 4.761905 2.6860 6.4 56.4060
## 736 4.761905 40.9750 6.0 860.4750
## 737 4.761905 28.4200 8.1 596.8200
## 738 4.761905 29.3800 9.0 616.9800
## 739 4.761905 36.6240 6.0 769.1040
## 740 4.761905 42.2820 9.8 887.9220
## 741 4.761905 19.4635 8.5 408.7335
## 742 4.761905 4.2415 8.8 89.0715
## 743 4.761905 7.1630 8.8 150.4230
## 744 4.761905 3.7690 9.5 79.1490
## 745 4.761905 12.6680 5.6 266.0280
## 746 4.761905 1.9210 8.6 40.3410
## 747 4.761905 32.6150 5.2 684.9150
## 748 4.761905 2.6325 5.8 55.2825
## 749 4.761905 5.5305 8.0 116.1405
## 750 4.761905 28.4305 9.0 597.0405
## 751 4.761905 4.4640 4.1 93.7440
## 752 4.761905 6.8200 8.6 143.2200
## 753 4.761905 8.7100 7.0 182.9100
## 754 4.761905 18.3200 8.4 384.7200
## 755 4.761905 12.7305 7.4 267.3405
## 756 4.761905 38.9160 6.2 817.2360
## 757 4.761905 14.2960 4.9 300.2160
## 758 4.761905 28.9560 4.5 608.0760
## 759 4.761905 9.4250 5.6 197.9250
## 760 4.761905 11.0780 8.0 232.6380
## 761 4.761905 38.6000 5.6 810.6000
## 762 4.761905 36.0650 4.2 757.3650
## 763 4.761905 25.5520 9.9 536.5920
## 764 4.761905 2.6725 7.6 56.1225
## 765 4.761905 11.1000 6.6 233.1000
## 766 4.761905 38.1840 4.7 801.8640
## 767 4.761905 11.4090 9.8 239.5890
## 768 4.761905 4.1070 6.3 86.2470
## 769 4.761905 19.1280 7.9 401.6880
## 770 4.761905 3.4290 7.7 72.0090
## 771 4.761905 19.1080 4.5 401.2680
## 772 4.761905 30.0545 8.0 631.1445
## 773 4.761905 23.7965 5.7 499.7265
## 774 4.761905 2.6210 6.3 55.0410
## 775 4.761905 6.5650 6.0 137.8650
## 776 4.761905 7.2150 8.0 151.5150
## 777 4.761905 22.8585 4.2 480.0285
## 778 4.761905 4.6690 9.6 98.0490
## 779 4.761905 6.3125 6.1 132.5625
## 780 4.761905 39.5415 5.6 830.3715
## 781 4.761905 8.7200 8.3 183.1200
## 782 4.761905 18.9520 7.8 397.9920
## 783 4.761905 1.5310 4.1 32.1510
## 784 4.761905 17.6040 8.8 369.6840
## 785 4.761905 2.5400 4.1 53.3400
## 786 4.761905 26.1030 9.0 548.1630
## 787 4.761905 28.7560 5.5 603.8760
## 788 4.761905 2.7475 9.3 57.6975
## 789 4.761905 9.0705 5.6 190.4805
## 790 4.761905 20.6185 9.7 432.9885
## 791 4.761905 2.3205 4.0 48.7305
## 792 4.761905 13.7100 9.2 287.9100
## 793 4.761905 48.6850 4.9 1022.3850
## 794 4.761905 32.4100 9.3 680.6100
## 795 4.761905 4.6610 6.6 97.8810
## 796 4.761905 2.7180 4.3 57.0780
## 797 4.761905 3.0435 5.5 63.9135
## 798 4.761905 12.2450 8.1 257.1450
## 799 4.761905 4.6390 9.8 97.4190
## 800 4.761905 21.6725 9.4 455.1225
## 801 4.761905 6.9030 7.9 144.9630
## 802 4.761905 12.0800 5.1 253.6800
## 803 4.761905 23.5865 6.9 495.3165
## 804 4.761905 22.0320 8.0 462.6720
## 805 4.761905 34.0155 8.0 714.3255
## 806 4.761905 15.4940 4.2 325.3740
## 807 4.761905 9.3180 8.5 195.6780
## 808 4.761905 10.0460 9.0 210.9660
## 809 4.761905 0.8875 8.6 18.6375
## 810 4.761905 31.0900 6.0 652.8900
## 811 4.761905 4.3000 6.2 90.3000
## 812 4.761905 20.1300 5.0 422.7300
## 813 4.761905 16.2425 6.5 341.0925
## 814 4.761905 4.7575 6.0 99.9075
## 815 4.761905 19.4480 5.0 408.4080
## 816 4.761905 21.2840 5.0 446.9640
## 817 4.761905 15.9040 9.2 333.9840
## 818 4.761905 13.5520 9.6 284.5920
## 819 4.761905 19.2320 8.4 403.8720
## 820 4.761905 11.7900 6.0 247.5900
## 821 4.761905 10.5780 6.7 222.1380
## 822 4.761905 4.7680 4.1 100.1280
## 823 4.761905 0.5085 5.9 10.6785
## 824 4.761905 10.3065 8.7 216.4365
## 825 4.761905 21.0280 4.5 441.5880
## 826 4.761905 4.4020 6.6 92.4420
## 827 4.761905 32.4495 7.7 681.4395
## 828 4.761905 6.1920 8.5 130.0320
## 829 4.761905 32.4750 5.2 681.9750
## 830 4.761905 37.1100 4.3 779.3100
## 831 4.761905 4.2240 7.6 88.7040
## 832 4.761905 12.5140 9.5 262.7940
## 833 4.761905 4.7400 4.1 99.5400
## 834 4.761905 4.5650 9.2 95.8650
## 835 4.761905 14.2555 5.4 299.3655
## 836 4.761905 2.6190 5.8 54.9990
## 837 4.761905 9.6350 5.6 202.3350
## 838 4.761905 13.3890 5.1 281.1690
## 839 4.761905 27.9350 5.8 586.6350
## 840 4.761905 8.7660 5.0 184.0860
## 841 4.761905 7.7910 7.9 163.6110
## 842 4.761905 3.0150 6.0 63.3150
## 843 4.761905 3.9470 5.0 82.8870
## 844 4.761905 1.4870 8.9 31.2270
## 845 4.761905 1.0660 5.9 22.3860
## 846 4.761905 14.0670 5.9 295.4070
## 847 4.761905 3.6630 9.7 76.9230
## 848 4.761905 1.1190 8.6 23.4990
## 849 4.761905 32.7960 4.0 688.7160
## 850 4.761905 29.7300 4.2 624.3300
## 851 4.761905 3.7050 9.2 77.8050
## 852 4.761905 9.8480 9.2 206.8080
## 853 4.761905 18.6165 5.0 390.9465
## 854 4.761905 26.3950 10.0 554.2950
## 855 4.761905 23.9875 8.8 503.7375
## 856 4.761905 16.4295 4.2 345.0195
## 857 4.761905 8.4480 6.3 177.4080
## 858 4.761905 5.6620 8.2 118.9020
## 859 4.761905 17.2770 5.1 362.8170
## 860 4.761905 21.4335 5.0 450.1035
## 861 4.761905 4.3135 7.0 90.5835
## 862 4.761905 1.2760 7.8 26.7960
## 863 4.761905 5.0760 4.3 106.5960
## 864 4.761905 17.8745 7.0 375.3645
## 865 4.761905 11.9385 6.6 250.7085
## 866 4.761905 5.0715 7.3 106.5015
## 867 4.761905 36.2120 6.5 760.4520
## 868 4.761905 6.2820 4.9 131.9220
## 869 4.761905 3.6465 4.3 76.5765
## 870 4.761905 12.9180 9.3 271.2780
## 871 4.761905 8.6870 7.1 182.4270
## 872 4.761905 2.8250 9.6 59.3250
## 873 4.761905 10.7150 6.2 225.0150
## 874 4.761905 26.7180 9.9 561.0780
## 875 4.761905 4.6580 5.9 97.8180
## 876 4.761905 26.1040 6.3 548.1840
## 877 4.761905 2.6175 4.0 54.9675
## 878 4.761905 1.9875 6.1 41.7375
## 879 4.761905 36.0080 4.5 756.1680
## 880 4.761905 4.8400 8.6 101.6400
## 881 4.761905 16.6050 6.0 348.7050
## 882 4.761905 4.0720 9.5 85.5120
## 883 4.761905 15.9950 9.9 335.8950
## 884 4.761905 10.3260 7.5 216.8460
## 885 4.761905 8.3340 7.6 175.0140
## 886 4.761905 15.9530 5.0 335.0130
## 887 4.761905 4.3950 6.7 92.2950
## 888 4.761905 36.7350 9.5 771.4350
## 889 4.761905 4.8760 6.8 102.3960
## 890 4.761905 38.4600 5.6 807.6600
## 891 4.761905 20.9150 7.2 439.2150
## 892 4.761905 23.1640 8.1 486.4440
## 893 4.761905 23.1225 8.6 485.5725
## 894 4.761905 7.0950 9.4 148.9950
## 895 4.761905 15.1350 8.9 317.8350
## 896 4.761905 39.6640 4.2 832.9440
## 897 4.761905 21.2590 5.0 446.4390
## 898 4.761905 14.1810 8.8 297.8010
## 899 4.761905 29.9600 5.3 629.1600
## 900 4.761905 15.7680 4.6 331.1280
## 901 4.761905 20.1780 7.5 423.7380
## 902 4.761905 9.1940 5.1 193.0740
## 903 4.761905 6.9325 4.2 145.5825
## 904 4.761905 4.0355 8.1 84.7455
## 905 4.761905 5.8320 6.0 122.4720
## 906 4.761905 15.6760 7.9 329.1960
## 907 4.761905 42.3050 8.8 888.4050
## 908 4.761905 20.7200 6.6 435.1200
## 909 4.761905 7.9540 6.2 167.0340
## 910 4.761905 24.5050 4.2 514.6050
## 911 4.761905 4.3725 7.3 91.8225
## 912 4.761905 11.2260 8.6 235.7460
## 913 4.761905 37.2480 6.8 782.2080
## 914 4.761905 20.5360 7.6 431.2560
## 915 4.761905 14.9400 5.8 313.7400
## 916 4.761905 10.6470 4.1 223.5870
## 917 4.761905 2.1425 9.3 44.9925
## 918 4.761905 18.9340 6.8 397.6140
## 919 4.761905 10.3455 8.7 217.2555
## 920 4.761905 3.9390 6.3 82.7190
## 921 4.761905 16.1055 5.1 338.2155
## 922 4.761905 4.9110 7.0 103.1310
## 923 4.761905 1.2730 5.2 26.7330
## 924 4.761905 29.0990 6.6 611.0790
## 925 4.761905 10.5660 6.5 221.8860
## 926 4.761905 2.7560 9.0 57.8760
## 927 4.761905 4.4155 5.2 92.7255
## 928 4.761905 17.8290 6.8 374.4090
## 929 4.761905 39.7125 7.6 833.9625
## 930 4.761905 2.5310 7.2 53.1510
## 931 4.761905 29.9760 7.1 629.4960
## 932 4.761905 8.3350 9.5 175.0350
## 933 4.761905 37.2200 5.1 781.6200
## 934 4.761905 22.4280 7.6 470.9880
## 935 4.761905 18.9450 9.8 397.8450
## 936 4.761905 12.8580 5.1 270.0180
## 937 4.761905 27.6115 7.5 579.8415
## 938 4.761905 22.3700 7.4 469.7700
## 939 4.761905 13.8135 4.2 290.0835
## 940 4.761905 17.1870 5.9 360.9270
## 941 4.761905 13.3040 6.9 279.3840
## 942 4.761905 44.9190 6.6 943.2990
## 943 4.761905 22.8400 5.7 479.6400
## 944 4.761905 12.6975 5.3 266.6475
## 945 4.761905 3.5280 4.2 74.0880
## 946 4.761905 32.8580 7.3 690.0180
## 947 4.761905 8.4250 5.3 176.9250
## 948 4.761905 2.6890 4.7 56.4690
## 949 4.761905 8.9525 7.9 188.0025
## 950 4.761905 10.5720 8.9 222.0120
## 951 4.761905 5.9865 9.3 125.7165
## 952 4.761905 3.2850 4.7 68.9850
## 953 4.761905 12.5700 8.7 263.9700
## 954 4.761905 4.2080 7.6 88.3680
## 955 4.761905 19.7730 5.7 415.2330
## 956 4.761905 14.8995 6.8 312.8895
## 957 4.761905 22.7205 5.4 477.1305
## 958 4.761905 13.8060 7.1 289.9260
## 959 4.761905 7.9000 7.8 165.9000
## 960 4.761905 44.3970 8.4 932.3370
## 961 4.761905 4.5990 9.8 96.5790
## 962 4.761905 2.0890 9.8 43.8690
## 963 4.761905 0.7750 7.4 16.2750
## 964 4.761905 14.5230 6.7 304.9830
## 965 4.761905 3.3330 6.4 69.9930
## 966 4.761905 3.8270 5.8 80.3670
## 967 4.761905 14.9850 7.2 314.6850
## 968 4.761905 12.1515 9.3 255.1815
## 969 4.761905 2.3700 9.5 49.7700
## 970 4.761905 8.6225 9.0 181.0725
## 971 4.761905 42.3150 9.0 888.6150
## 972 4.761905 12.9185 6.7 271.2885
## 973 4.761905 30.4780 5.5 640.0380
## 974 4.761905 12.0120 5.4 252.2520
## 975 4.761905 8.6130 8.2 180.8730
## 976 4.761905 4.9920 7.0 104.8320
## 977 4.761905 14.9320 8.5 313.5720
## 978 4.761905 7.9800 4.9 167.5800
## 979 4.761905 1.2725 5.1 26.7225
## 980 4.761905 3.3885 6.5 71.1585
## 981 4.761905 11.9180 9.8 250.2780
## 982 4.761905 11.6300 8.4 244.2300
## 983 4.761905 43.8660 7.4 921.1860
## 984 4.761905 34.9860 6.1 734.7060
## 985 4.761905 33.7295 6.0 708.3195
## 986 4.761905 15.9275 8.5 334.4775
## 987 4.761905 1.4760 4.3 30.9960
## 988 4.761905 24.8000 6.2 520.8000
## 989 4.761905 41.1700 4.3 864.5700
## 990 4.761905 30.1480 8.4 633.1080
## 991 4.761905 14.1400 4.5 296.9400
## 992 4.761905 38.3000 6.0 804.3000
## 993 4.761905 5.8030 8.8 121.8630
## 994 4.761905 8.7450 6.6 183.6450
## 995 4.761905 3.0475 5.9 63.9975
## 996 4.761905 2.0175 6.2 42.3675
## 997 4.761905 48.6900 4.4 1022.4900
## 998 4.761905 1.5920 7.7 33.4320
## 999 4.761905 3.2910 4.1 69.1110
## 1000 4.761905 30.9190 6.6 649.2990
# Dimensionality Reduction technique
# Will use PCA so as to understand the variance displayed by each feature
reduced_df<-prcomp(new_df,center = TRUE)
# Since prcomp uses single value decomposition that tests each points covariance and correlation to each other.
reduced_df$sdev
## [1] 3.403819e+02 2.053220e+01 1.719967e+00 1.246753e+00 7.268821e-01
## [6] 6.944099e-01 5.945089e-01 5.811926e-01 5.690861e-01 5.568613e-01
## [11] 4.180209e-01 4.106769e-01 4.077796e-01 4.004978e-01 3.904585e-01
## [16] 3.316253e-14 3.958663e-15 3.729380e-15 4.310238e-16 1.295179e-16
## [21] 1.009774e-16 7.798827e-17 1.648208e-17 1.265091e-33
# Checking the standard deviation of each PC
plot(reduced_df$sdev,main="Standard deviation of each Principal Component",ylab = "Standard Deviation",xlab = "Princial Components",type = "bar",col="blue")
## Warning in plot.xy(xy, type, ...): plot type 'bar' will be truncated to first
## character
### We can observe that the first three Principal components have a significant standard deviation in our dataset
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
# Getting the sum of square distances from the projected point in our data
eigen_values<-get_eigenvalue(reduced_df)
eigen_values
## eigenvalue variance.percent cumulative.variance.percent
## Dim.1 1.158598e+05 9.963088e+01 99.63088
## Dim.2 4.215713e+02 3.625202e-01 99.99340
## Dim.3 2.958285e+00 2.543907e-03 99.99595
## Dim.4 1.554394e+00 1.336664e-03 99.99728
## Dim.5 5.283577e-01 4.543485e-04 99.99774
## Dim.6 4.822052e-01 4.146608e-04 99.99815
## Dim.7 3.534408e-01 3.039330e-04 99.99846
## Dim.8 3.377848e-01 2.904700e-04 99.99875
## Dim.9 3.238590e-01 2.784948e-04 99.99903
## Dim.10 3.100945e-01 2.666584e-04 99.99929
## Dim.11 1.747415e-01 1.502648e-04 99.99944
## Dim.12 1.686555e-01 1.450313e-04 99.99959
## Dim.13 1.662842e-01 1.429921e-04 99.99973
## Dim.14 1.603985e-01 1.379309e-04 99.99987
## Dim.15 1.524578e-01 1.311025e-04 100.00000
## Dim.16 1.099753e-27 9.457064e-31 100.00000
## Dim.17 1.567101e-29 1.347591e-32 100.00000
## Dim.18 1.390828e-29 1.196009e-32 100.00000
## Dim.19 1.857815e-31 1.597584e-34 100.00000
## Dim.20 1.677488e-32 1.442516e-35 100.00000
## Dim.21 1.019644e-32 8.768181e-36 100.00000
## Dim.22 6.082171e-33 5.230218e-36 100.00000
## Dim.23 2.716589e-34 2.336066e-37 100.00000
## Dim.24 1.600456e-66 1.376274e-69 100.00000
# We get to understand from these that dimension 1 or PCA 1 explains almost 99 % of all the variance in my dataset
summary(reduced_df)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7
## Standard deviation 340.3819 20.53220 1.71997 1.24675 0.7269 0.6944 0.5945
## Proportion of Variance 0.9963 0.00363 0.00003 0.00001 0.0000 0.0000 0.0000
## Cumulative Proportion 0.9963 0.99993 0.99996 0.99997 1.0000 1.0000 1.0000
## PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15
## Standard deviation 0.5812 0.5691 0.5569 0.418 0.4107 0.4078 0.4005 0.3905
## Proportion of Variance 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000
## Cumulative Proportion 1.0000 1.0000 1.0000 1.000 1.0000 1.0000 1.0000 1.0000
## PC16 PC17 PC18 PC19 PC20
## Standard deviation 3.316e-14 3.959e-15 3.729e-15 4.31e-16 1.295e-16
## Proportion of Variance 0.000e+00 0.000e+00 0.000e+00 0.00e+00 0.000e+00
## Cumulative Proportion 1.000e+00 1.000e+00 1.000e+00 1.00e+00 1.000e+00
## PC21 PC22 PC23 PC24
## Standard deviation 1.01e-16 7.799e-17 1.648e-17 1.265e-33
## Proportion of Variance 0.00e+00 0.000e+00 0.000e+00 0.000e+00
## Cumulative Proportion 1.00e+00 1.000e+00 1.000e+00 1.000e+00
New PCA
# Columns that are numeric are more thus i will exclude non numeric columns
pca_d<-prcomp(df[,c(6,7,8,12,14,15,16)],scale. = TRUE)
summary(pca_d)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6
## Standard deviation 2.2185 1.0002 0.9939 0.30001 1.499e-16 1.095e-16
## Proportion of Variance 0.7031 0.1429 0.1411 0.01286 0.000e+00 0.000e+00
## Cumulative Proportion 0.7031 0.8460 0.9871 1.00000 1.000e+00 1.000e+00
## PC7
## Standard deviation 1.298e-17
## Proportion of Variance 0.000e+00
## Cumulative Proportion 1.000e+00
# PC1 explains about 70% of variation in our dataset followed by PC2
# Plotting a scree plot of the Principle components explained variance
library(factoextra)
fviz_eig(pca_d)

# From the scree plot above we can see that only PC1 ,PC2 and PC3 contain core information about our set that we will concentrate on that
# Getting the variables that contributed to the principle components
library(ggbiplot)
## Loading required package: plyr
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
## Loading required package: scales
## Loading required package: grid
ggbiplot(pca_d,obs.scale = 1,var.scale = 1,varname.adjust = 0.6,circle = TRUE)

# Rating contributes positively to PC1 which holds the core information of our dataset
# Most variables are clustered together at negative value of PC1
str(df)
## Classes 'data.table' and 'data.frame': 1000 obs. of 16 variables:
## $ Invoice ID : chr "750-67-8428" "226-31-3081" "631-41-3108" "123-19-1176" ...
## $ Branch : chr "A" "C" "A" "A" ...
## $ Customer type : chr "Member" "Normal" "Normal" "Member" ...
## $ Gender : chr "Female" "Female" "Male" "Male" ...
## $ Product line : chr "Health and beauty" "Electronic accessories" "Home and lifestyle" "Health and beauty" ...
## $ Unit price : num 74.7 15.3 46.3 58.2 86.3 ...
## $ Quantity : int 7 5 7 8 7 7 6 10 2 3 ...
## $ Tax : num 26.14 3.82 16.22 23.29 30.21 ...
## $ Date : chr "1/5/2019" "3/8/2019" "3/3/2019" "1/27/2019" ...
## $ Time : chr "13:08" "10:29" "13:23" "20:33" ...
## $ Payment : chr "Ewallet" "Cash" "Credit card" "Ewallet" ...
## $ cogs : num 522.8 76.4 324.3 465.8 604.2 ...
## $ gross margin percentage: num 4.76 4.76 4.76 4.76 4.76 ...
## $ gross income : num 26.14 3.82 16.22 23.29 30.21 ...
## $ Rating : num 9.1 9.6 7.4 8.4 5.3 4.1 5.8 8 7.2 5.9 ...
## $ Total : num 549 80.2 340.5 489 634.4 ...
## - attr(*, ".internal.selfref")=<externalptr>
# Getting the distribution of our categorical columns in the reduced dimension
ggbiplot(pca_d,obs.scale = 1,var.scale = 1,varname.adjust = 0.6,circle = TRUE,groups =df$Payment)

# Payment by Credit card and E-wallet is rampant and seems to be heavily clustered across core information(one with the highest variation) in the dataset
# an attempt to extract information from the lower principal components
ggbiplot(pca_d,choice=c(3,4),obs.scale = 1,var.scale = 1,varname.adjust = 0.6,circle = TRUE,groups =df$Payment)

# Its not easily interpratable.
PartII on Feature Selection
Performing elbow method to find appropriate number of clusters so as not to get the correct weights of the Entropy weighted Kmeans feature selection function
# Normalizing so as to perform cluster based feature selection using min max scaler
normalize<-function(x){
return ((x-min(x))/(max(x)-min(x)))}
Normalizing Features
norm_df<-as.data.frame(lapply(new_df, normalize))
summary(norm_df)
## BranchA BranchB BranchC X.Customer.type.Member
## Min. :0.00 Min. :0.000 Min. :0.000 Min. :0.000
## 1st Qu.:0.00 1st Qu.:0.000 1st Qu.:0.000 1st Qu.:0.000
## Median :0.00 Median :0.000 Median :0.000 Median :1.000
## Mean :0.34 Mean :0.332 Mean :0.328 Mean :0.501
## 3rd Qu.:1.00 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :1.00 Max. :1.000 Max. :1.000 Max. :1.000
##
## X.Customer.type.Normal GenderFemale GenderMale
## Min. :0.000 Min. :0.000 Min. :0.000
## 1st Qu.:0.000 1st Qu.:0.000 1st Qu.:0.000
## Median :0.000 Median :1.000 Median :0.000
## Mean :0.499 Mean :0.501 Mean :0.499
## 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :1.000 Max. :1.000 Max. :1.000
##
## X.Product.line.Electronic.accessories X.Product.line.Fashion.accessories
## Min. :0.00 Min. :0.000
## 1st Qu.:0.00 1st Qu.:0.000
## Median :0.00 Median :0.000
## Mean :0.17 Mean :0.178
## 3rd Qu.:0.00 3rd Qu.:0.000
## Max. :1.00 Max. :1.000
##
## X.Product.line.Food.and.beverages X.Product.line.Health.and.beauty
## Min. :0.000 Min. :0.000
## 1st Qu.:0.000 1st Qu.:0.000
## Median :0.000 Median :0.000
## Mean :0.174 Mean :0.152
## 3rd Qu.:0.000 3rd Qu.:0.000
## Max. :1.000 Max. :1.000
##
## X.Product.line.Home.and.lifestyle X.Product.line.Sports.and.travel
## Min. :0.00 Min. :0.000
## 1st Qu.:0.00 1st Qu.:0.000
## Median :0.00 Median :0.000
## Mean :0.16 Mean :0.166
## 3rd Qu.:0.00 3rd Qu.:0.000
## Max. :1.00 Max. :1.000
##
## X.Unit.price. Quantity Tax PaymentCash
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.2536 1st Qu.:0.2222 1st Qu.:0.1102 1st Qu.:0.000
## Median :0.5023 Median :0.4444 Median :0.2356 Median :0.000
## Mean :0.5073 Mean :0.5011 Mean :0.3026 Mean :0.344
## 3rd Qu.:0.7550 3rd Qu.:0.7778 3rd Qu.:0.4464 3rd Qu.:1.000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.000
##
## PaymentCredit.card PaymentEwallet cogs X.gross.margin.percentage.
## Min. :0.000 Min. :0.000 Min. :0.0000 Min. : NA
## 1st Qu.:0.000 1st Qu.:0.000 1st Qu.:0.1102 1st Qu.: NA
## Median :0.000 Median :0.000 Median :0.2356 Median : NA
## Mean :0.311 Mean :0.345 Mean :0.3026 Mean :NaN
## 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:0.4464 3rd Qu.: NA
## Max. :1.000 Max. :1.000 Max. :1.0000 Max. : NA
## NA's :1000
## X.gross.income. Rating Total
## Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.1102 1st Qu.:0.2500 1st Qu.:0.1102
## Median :0.2356 Median :0.5000 Median :0.2356
## Mean :0.3026 Mean :0.4955 Mean :0.3026
## 3rd Qu.:0.4464 3rd Qu.:0.7500 3rd Qu.:0.4464
## Max. :1.0000 Max. :1.0000 Max. :1.0000
##
# Using the encoded set of data excluding the gross margin which is non variant. 4 are the optimum clusters
fviz_nbclust(norm_df[,c(-21)],FUNcluster = kmeans,method = "wss")
# Using Embedding methods: Entropy Weighted K means
library(wskm)
## Loading required package: latticeExtra
##
## Attaching package: 'latticeExtra'
## The following object is masked from 'package:ggplot2':
##
## layer
## Loading required package: fpc
#Setting the initial clusters as 3 first and a variable for weight distribution
# We get to see the importance of every variable to the kmeans cluster
# We will exclude the gross margin percentage as its inclusion would give us errors in distance metrics.
my_model<-ewkm(norm_df[,c(-21)],2,lambda = 2,maxiter=1000)
my_model
## K-means clustering with 2 clusters of sizes 344, 656
##
## Cluster means:
## BranchA BranchB BranchC X.Customer.type.Member X.Customer.type.Normal
## 1 0.3197674 0.3197674 0.3604651 0.4883721 0.5116279
## 2 0.3506098 0.3384146 0.3109756 0.5076220 0.4923780
## GenderFemale GenderMale X.Product.line.Electronic.accessories
## 1 0.5174419 0.4825581 0.2063953
## 2 0.4923780 0.5076220 0.1509146
## X.Product.line.Fashion.accessories X.Product.line.Food.and.beverages
## 1 0.1656977 0.1656977
## 2 0.1844512 0.1783537
## X.Product.line.Health.and.beauty X.Product.line.Home.and.lifestyle
## 1 0.1424419 0.1482558
## 2 0.1570122 0.1661585
## X.Product.line.Sports.and.travel X.Unit.price. Quantity Tax
## 1 0.1715116 0.5193478 0.5012920 0.3057288
## 2 0.1631098 0.5009145 0.5010163 0.3009795
## PaymentCash PaymentCredit.card PaymentEwallet cogs X.gross.income.
## 1 1 0.0000000 0.0000000 0.3057288 0.3057288
## 2 0 0.4740854 0.5259146 0.3009795 0.3009795
## Rating Total
## 1 0.4950097 0.3057288
## 2 0.4956809 0.3009795
##
## Clustering vector:
## [1] 2 1 2 2 2 2 2 2 2 2 2 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 1 1 2 2 2 2
## [38] 2 2 1 2 1 1 1 1 1 2 2 2 2 1 1 2 2 2 1 1 2 1 1 2 2 2 2 1 1 2 2 1 1 2 1 2 1
## [75] 2 2 2 2 2 1 2 2 2 2 1 2 1 2 1 1 1 2 2 2 2 2 2 1 2 1 1 1 1 1 1 2 2 1 1 1 2
## [112] 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 1 1 2 2 1 2 1 1 2 2 1 1 2 2 2 2 2
## [149] 2 2 2 2 2 2 1 2 1 2 2 2 2 1 2 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 1 1 2 2 2
## [186] 2 2 1 2 2 2 2 1 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 2 2 1 2 1 1 2 2 2 2
## [223] 1 1 1 2 2 2 1 2 1 2 1 1 2 2 2 2 1 2 2 2 2 1 2 1 1 2 2 2 2 2 2 1 1 1 2 2 2
## [260] 2 2 2 1 1 2 2 2 1 2 2 2 1 2 1 2 1 1 2 1 2 2 2 1 2 1 1 1 1 2 1 2 2 1 1 2 1
## [297] 1 2 1 1 2 2 1 2 1 2 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1 1 2 1 2 2 1 1 2 1 1 2 1
## [334] 2 2 2 2 1 2 2 2 2 1 2 1 2 1 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1 2 1 1 1 1 1 1 2
## [371] 1 2 2 1 2 2 2 2 2 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2
## [408] 1 2 2 1 2 1 2 2 2 2 2 2 1 2 1 2 2 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2
## [445] 1 2 2 2 2 2 1 1 2 2 1 1 2 1 1 2 1 2 1 1 2 2 2 1 2 1 2 1 2 1 1 2 2 2 2 2 1
## [482] 1 2 1 2 2 1 2 1 2 2 2 2 2 2 1 1 1 1 1 2 2 2 1 2 2 1 2 1 2 2 2 2 1 2 2 2 2
## [519] 2 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 1 2 1
## [556] 2 1 2 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 2 2 1 2 1 2 1 1 2 2 2 2 1 2 1 1 2 2
## [593] 1 2 1 2 2 2 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 1 2 2 2 2 1 2 2 1 1 2 1 2
## [630] 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 1 1 2 1 1 2 2 2 2 2 1 2 1 2 2 2 1 2
## [667] 2 2 2 2 2 1 2 2 2 1 2 1 2 2 1 2 2 2 2 2 2 1 1 1 1 2 1 1 1 1 2 2 2 2 2 2 2
## [704] 1 1 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 1 1 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 1
## [741] 1 2 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 1 2 2
## [778] 1 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 1 1 2 2 2 2 1
## [815] 1 2 1 2 2 2 2 2 1 1 2 2 2 2 1 2 1 1 1 2 2 1 2 2 1 2 1 1 2 2 1 2 2 2 1 1 1
## [852] 2 2 2 2 1 1 1 1 1 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2 1 1 2 2 2 2 2 2 1 1 2 2
## [889] 2 2 1 1 2 1 2 2 2 1 1 2 2 2 2 1 2 1 2 2 2 2 2 2 1 2 1 1 2 1 2 2 2 1 2 2 2
## [926] 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
## [963] 2 1 2 2 2 2 1 2 2 2 1 1 1 2 1 2 2 2 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1
## [1000] 1
##
## Within cluster sum of squares by cluster:
## [1] 1027.784 2297.495
## (between_SS / total_SS = 9.3 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iterations"
## [9] "total.iterations" "restarts" "weights"
library(cluster)
# Plotting the cluster with 2 as my maximum clusters
fviz_cluster(my_model,data=norm_df[,c(-21)])

# We get to the the importance of each parameter to the individual clusters
(my_model$weights)*10000
## BranchA BranchB BranchC X.Customer.type.Member
## 1 0.04347526 0.04347526 0.04347526 0.04347526
## 2 0.04347410 0.04347410 0.04347410 0.04347410
## X.Customer.type.Normal GenderFemale GenderMale
## 1 0.04347526 0.04347526 0.04347526
## 2 0.04347410 0.04347410 0.04347410
## X.Product.line.Electronic.accessories X.Product.line.Fashion.accessories
## 1 0.04347526 0.04347526
## 2 0.04347410 0.04347410
## X.Product.line.Food.and.beverages X.Product.line.Health.and.beauty
## 1 0.04347526 0.04347526
## 2 0.04347410 0.04347410
## X.Product.line.Home.and.lifestyle X.Product.line.Sports.and.travel
## 1 0.04347526 0.04347526
## 2 0.04347410 0.04347410
## X.Unit.price. Quantity Tax PaymentCash PaymentCredit.card
## 1 0.04347526 0.04347526 0.2538423 3332.763 3332.7630089
## 2 0.04347410 0.04347410 0.0434741 9999.044 0.0434741
## PaymentEwallet cogs X.gross.income. Rating Total
## 1 3332.7630089 0.2538423 0.2538423 0.04347526 0.2538423
## 2 0.0434741 0.0434741 0.0434741 0.04347410 0.0434741
Important variables to cluster one are
Important variables to cluster two are
- Price
- Quantity
- gross Income
- Total