1 Libreria TeachingSamplig

  • Con este código cargo la librería
library(TeachingSampling)

2 Marco de datos

data(Lucy)
  • Sin subcobertura

  • Sin sobrecobertura

  • Sin duplicados

2.1 Subconjunto del marco muestral

Lucy[1:6, 1:2]
##      ID Ubication
## 1 AB001      c1k1
## 2 AB002      c1k2
## 3 AB003      c1k3
## 4 AB004      c1k4
## 5 AB005      c1k5
## 6 AB006      c1k6
Lucy[2390:2396, 3:5]
##      Level Zone Income
## 2390   Big    E   1220
## 2391   Big    E   1030
## 2392   Big    E   1020
## 2393   Big    E   1077
## 2394   Big    E   1297
## 2395   Big    E   1640
## 2396   Big    E   1860

2.2 Variables en el marco de muestreo

names(Lucy)
## [1] "ID"        "Ubication" "Level"     "Zone"      "Income"    "Employees"
## [7] "Taxes"     "SPAM"
  • Identificación: ID

  • Ubicación: Ubication

  • Variables e información auxiliar: Income, Employes, Taxes, SPAM, Zone

colnames(Lucy)
## [1] "ID"        "Ubication" "Level"     "Zone"      "Income"    "Employees"
## [7] "Taxes"     "SPAM"

2.3 Tamaño poblacional

nrow(Lucy)
## [1] 2396

2.4 Información disponible

ncol(Lucy)
## [1] 8

2.5 Dimensiones del marco de muestreo

dim(Lucy)
## [1] 2396    8

2.6 Estadísticas descriptivas básicas

2.6.1 Income: ingreso

2.6.1.1 Medidas de localización

cat("La media del ingreso es:",mean(Lucy$Income))
## La media del ingreso es: 432.0605

2.6.1.2 Medidas de dispersión

cat("La desviación estándar del ingreso es:",sd(Lucy$Income))
## La desviación estándar del ingreso es: 266.9792

2.6.2 Employes: empleados

2.6.2.1 Medidas de localización

cat("La media del número de empleados es:",mean(Lucy$Employees))
## La media del número de empleados es: 63.4182

2.6.2.2 Medidas de dispersión

cat("El desviación estándar del número de empleados es:",sd(Lucy$Employees))
## El desviación estándar del número de empleados es: 32.88994

2.6.3 Taxes: impuestos

2.6.3.1 Medidas de localización

cat("La media de los impuestos es:",mean(Lucy$Taxes))
## La media de los impuestos es: 11.95889

2.6.3.2 Medidas de dispersión

cat("El desviación estándar de los impuestos es:",sd(Lucy$Taxes))
## El desviación estándar de los impuestos es: 17.33508

2.7 Dsitribución de los datos

2.7.1 Gráfico de caja y bigotes

2.7.1.1 Income: ingreso

boxplot(Lucy$Income, horizontal=TRUE, main="Gráfico de caja y bigotes de los ingresos", col="blue")

boxplot(Lucy$Income ~ Lucy$Level, horizontal=FALSE, main="Histograma de los ingresos según tamaño", xlab="Tamaño", ylab="Ingresos", col=c("blue","red","green"))

2.7.1.2 Employees: empleados

boxplot(Lucy$Employees, horizontal=TRUE, main="Gráfico de caja y bigotes del número de empleados", col="blue")

boxplot(Lucy$Employees ~ Lucy$Level, horizontal=FALSE, main="Histograma del número de emplados según tamaño", xlab="Tamaño", ylab="Ingresos", col=c("blue","red","green"))

2.7.1.3 Taxes: impuestos

boxplot(Lucy$Taxes, horizontal=TRUE, main="Gráfico de caja y bigotes de los impuestos", col="green")

boxplot(Lucy$Taxes ~ Lucy$Level, horizontal=FALSE, main="Gráfico de caja y bigotes de los impuestos según tamaño", xlab="Tamaño", ylab="Ingresos", col=c("blue","red","green"))

2.7.2 Gráfico de barras

2.7.2.1 Level: tamaño

barplot(table(Lucy$Level), main="Gráfico de barras del tamaño de la empresa", col=c("yellow", "orange", "red"), las=1)

2.7.2.2 Zone: zona

barplot(table(Lucy$Zone), main="Gráfico de barras de la zona donde se ubica la empresa", col=c("yellow", "orange", "red", "purple", "blue"), las=1)

2.7.2.3 SPAM: correo masivo

barplot(table(Lucy$SPAM), main="Gráfico de barras de SPAM", col=c("yellow", "orange"), las=1)

2.8 Estadísticas descriptivas robustas

attach(Lucy)

2.8.1 Income: ingreso

2.8.1.1 Medidas de localización

cat("La mediana de los ingresos es:",median(Income))
## La mediana de los ingresos es: 390

2.8.1.2 Medidas de dispersión

cat("El rango intercuartílico de los ingresos es:",IQR(Income))
## El rango intercuartílico de los ingresos es: 346

2.8.2 Employes: empleados

2.8.2.1 Medidas de localización

cat("La mediana del número de empleados es:",median(Employees))
## La mediana del número de empleados es: 63

2.8.2.2 Medidas de dispersión

cat("El rango intercuartílico del número de empleados es:",IQR(Employees))
## El rango intercuartílico del número de empleados es: 46

2.8.3 Taxes: impuestos

2.8.3.1 Medidas de localización

cat("La mediana de los impuestos es:",median(Taxes))
## La mediana de los impuestos es: 7

2.8.3.2 Medidas de dispersión

cat("El rango intercuartílico de los impuestos es:",IQR(Taxes))
## El rango intercuartílico de los impuestos es: 13

2.9 Dsitribución de los datos

2.9.1 Histograma

2.9.1.1 Income: ingreso

hist(Income, main="Histograma de los ingresos", xlab="Ingresos", ylab="frecuencia", col=rainbow(7))

2.9.1.2 Employees: empleados

hist(Employees, main="Histograma del número de empleados", xlab="Ingresos", ylab="frecuencia", col=rainbow(14))

2.9.1.3 Taxes: impuestos

hist(Taxes, main="Histograma de los impuestos", xlab="Ingresos", ylab="frecuencia", col=rainbow(7))

2.9.2 Gráfico de sectores

2.9.2.1 Level: tamaño

pie(table(Level), main="Graico de sectores del tamaño de la empresa", col=c("yellow", "orange", "red"), las=1, edges=2)

2.9.2.2 Zone: zona

pie(table(Zone), main="Gráfico de sectores de la zona donde se ubica la empresa", col=c("yellow", "orange", "red", "purple", "blue"), las=1, edges=23)

2.9.2.3 SPAM: correo masivo

pie(table(SPAM), main="Gráfico de sectores de SPAM", col=c("yellow", "orange"), las=1, edges=235)

#detach(Lucy)

2.10 Estructura del marco muestral

str(Lucy)
## 'data.frame':    2396 obs. of  8 variables:
##  $ ID       : Factor w/ 2396 levels "AB001","AB002",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Ubication: Factor w/ 2396 levels "c10k1","c10k10",..: 991 1002 1013 1024 1035 1046 1057 1068 1079 992 ...
##  $ Level    : Factor w/ 3 levels "Big","Medium",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ Zone     : Factor w/ 5 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Income   : int  281 329 405 360 391 296 490 473 350 361 ...
##  $ Employees: int  41 19 68 89 91 89 22 57 84 25 ...
##  $ Taxes    : num  3 4 7 5 7 3 10.5 10 5 5 ...
##  $ SPAM     : Factor w/ 2 levels "no","yes": 1 2 1 1 2 1 2 2 2 1 ...

2.11 Resumen del marco de muestreo

summary(Lucy[,3:8],digits=1)
##     Level      Zone        Income       Employees       Taxes        SPAM     
##  Big   :  83   A:307   Min.   :   1   Min.   :  1   Min.   :  0.5   no : 937  
##  Medium: 737   B:727   1st Qu.: 230   1st Qu.: 38   1st Qu.:  2.0   yes:1459  
##  Small :1576   C:974   Median : 390   Median : 63   Median :  7.0             
##                D:223   Mean   : 432   Mean   : 63   Mean   : 12.0             
##                E:165   3rd Qu.: 576   3rd Qu.: 84   3rd Qu.: 15.0             
##                        Max.   :2510   Max.   :263   Max.   :305.0
nrow(Lucy)
## [1] 2396

2.12 Total y total estimado

\[\widehat{t}_{y}(S=s)=\frac{N}{n}{\sum}_{i=1}^{n}y_i=N\frac{{\sum}_{i=1}^{n}y_i}{n}=N\bar{y}{\implies}\widehat{t}_{y}(S=U)=\frac{N}{N}{\sum}_{i=1}^{N}y_i=N\frac{{\sum}_{i=1}^{N}y_i}{N}=N\mu_{y}\]

2.12.1 Función del total

total <- function(x){
  nrow(Lucy)*mean(x)
}
total(Income)
## [1] 1035217
total(Income) == sum(Income)
## [1] TRUE
total(Employees)
## [1] 151950
total(Employees) == sum(Employees)
## [1] TRUE
total(Taxes)
## [1] 28653.5
total(Taxes) == sum(Taxes)
## [1] TRUE

2.13 Matriz de correlaciones

cor(Lucy[,c("Income","Employees","Taxes")])
##              Income Employees     Taxes
## Income    1.0000000  0.645536 0.9169541
## Employees 0.6455360  1.000000 0.6468550
## Taxes     0.9169541  0.646855 1.0000000

2.14 Gráfico de correlaciones

panel.hist <- function(x, ...)
{
    usr <- par("usr"); on.exit(par(usr))
    par(usr=c(usr[1:2], 0, 1.5) )
    h <- hist(x, plot=FALSE)
    breaks <- h$breaks; nB <- length(breaks)
    y <- h$counts; y <- y/max(y)
    rect(breaks[-nB], 0, breaks[-1], y, col="#adff2f", ...)
}
pairs(Lucy[,c("Income","Employees","Taxes")], bg="blue", horOdd=TRUE, diag.panel=panel.hist)

panel.cor <- function(x, y, digits=2, prefix="", cex.cor, ...)
{
    usr <- par("usr"); on.exit(par(usr))
    par(usr=c(0, 1, 0, 1))
    r <- abs(cor(x, y))
    txt <- format(c(r, 0.123456789), digits=digits)[1]
    txt <- paste0(prefix, txt)
    if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)
    text(0.5, 0.5, txt, cex=cex.cor * r)
}
pairs(Lucy[,c("Income","Employees","Taxes")], upper.panel=panel.cor, gap=0, row1attop=FALSE)

3 Población y muestra aleatoria

3.1 Población finita

\[U=\{e_1,e_2,\ldots,e_k,\ldots,e_N\}=\{1,2,\ldots,k\ldots,N\}\text{; }N<\infty\]

\[U=\{Santiago, Nestor, Nayibe, Raul, Jhon\}\]

U <- c("Santiago", "Nestor", "Nayibe", "Raul", "Jhon")

4 Muestra aleatoria

\[s=\{x{\mid}x{\in}U\text{ & }0{\leq}\mathcal{P}(x{\in}s){\leq}1\text{ y conocida}\}=\{1,2,\ldots,k\ldots,n(S)\}{\subseteq}U\]

\[S:U{\rightarrow}\{1,2,\ldots,k\ldots,n(S)\}\]

4.1 Muestra aleatoria sin reemplazo

\[\boldsymbol{s}=\left(s_2,s_2,\ldots,s_N\right)^t{\in}\{0,1\}^N\]

\[ s_k= \begin{cases} 1&\text{ si el k-ésimo elemento pertenece a la muestra}\\ 0&\text{ en cualquier otro caso} \end{cases} \]

\[n(S)={\sum}_{k{\in}s}1\]

n <- 0;  s <- sample(U,size=n,replace=FALSE); s
## character(0)

\[s=\{\}\]

n <- 1;  s <- sample(U,size=n,replace=FALSE); s
## [1] "Nayibe"

\[s=\{Nayibe\}\]

n <- 2;  s <- sample(U,size=n,replace=FALSE); s
## [1] "Santiago" "Nestor"

\[s=\{Santiago, Nestor\}\]

n <- 3;  s <- sample(U,size=n,replace=FALSE); s
## [1] "Raul"   "Nayibe" "Jhon"

\[s=\{Raul, Nayibe, Jhon\}\]

n <- 4;  s <- sample(U,size=n,replace=FALSE); s
## [1] "Santiago" "Nayibe"   "Raul"     "Jhon"

\[s=\{Santiago, Nayibe, Raul, Jhon\}\]

n <- 5;  s <- sample(U,size=n,replace=FALSE); s
## [1] "Nestor"   "Jhon"     "Santiago" "Nayibe"   "Raul"

\[s=\{Nestor, Jhon, Santiago, Nayibe, Raul\}\]

4.2 Muestra aleatoria con reemplazo

\[\boldsymbol{s}=\left(s_1,s_2,\ldots,s_k,\ldots,s_N\right)^t{\in}\mathbb{N}^{N}\]

\[n(S)={\sum}_{k{=}1}^{m}1\]

n <- 0;  s <- sample(U,size=n,replace=TRUE); s
## character(0)

\[s=\{\}\]

n <- 1;  s <- sample(U,size=n,replace=TRUE); s
## [1] "Nestor"

\[s=\{Nestor\}\]

n <- 2;  s <- sample(U,size=n,replace=TRUE); s
## [1] "Nayibe" "Nayibe"

\[s=\{Nayibe, Nayibe\}\]

n <- 3;  s <- sample(U,size=n,replace=TRUE); s
## [1] "Nestor"   "Santiago" "Jhon"

\[s=\{Nestor, Santiago, Jhon\}\]

n <- 4;  s <- sample(U,size=n,replace=TRUE); s
## [1] "Jhon"   "Raul"   "Raul"   "Nayibe"

\[s=\{Jhon, Raul, Raul, Nayibe\}\]

n <- 5;  s <- sample(U,size=n,replace=TRUE); s
## [1] "Jhon"   "Nestor" "Jhon"   "Nestor" "Raul"

\[s=\{Jhon, Nestor, Jhon, Nestor, Raul\}\]

n <- 6;  s <- sample(U,size=n,replace=TRUE); s
## [1] "Nayibe"   "Jhon"     "Santiago" "Santiago" "Jhon"     "Nayibe"

\[s=\{Nayibe, Jhon, Santiago, Santiago, Jhon, Nayibe\}\]

5 Soportes de muestreo

\[Q{\subseteq}\left\{{\{\},\{e_1\},\{e_2\},\ldots,\{e_k\},\ldots,\{e_N\},\{e_1,e_1\},\{e_1,e_2\},\ldots,\{e_1,e_k\},\ldots,\{e_1,e_N\},\ldots,\{e_1,e_2,\ldots,e_k,\ldots,e_N\}}\right\}\]

\[Q{\subseteq}\left\{{\{\},\{Santiago\},\{Nestor\},\ldots,\{Jhon\},\ldots,\{Santiago,Nestor,\ldots,Jhon\}}\right\}\]

5.1 Simétricos

\[s{\in}Q{\implies}{\sigma}{(s)}{\in}Q\text{; }{\sigma}(s)\text{: cualquier pernutación de }s\]

5.1.1 Sin reemplazo

\[\mathcal{S}=\{0,1\}^{N}\]

\[\#{\left(\mathcal{S}\right)}={2}^{N}\]

\(N=5\)

S <- expand.grid(c(0,1),c(0,1),c(0,1),c(0,1),c(0,1));colnames(S)<-U;S
##    Santiago Nestor Nayibe Raul Jhon
## 1         0      0      0    0    0
## 2         1      0      0    0    0
## 3         0      1      0    0    0
## 4         1      1      0    0    0
## 5         0      0      1    0    0
## 6         1      0      1    0    0
## 7         0      1      1    0    0
## 8         1      1      1    0    0
## 9         0      0      0    1    0
## 10        1      0      0    1    0
## 11        0      1      0    1    0
## 12        1      1      0    1    0
## 13        0      0      1    1    0
## 14        1      0      1    1    0
## 15        0      1      1    1    0
## 16        1      1      1    1    0
## 17        0      0      0    0    1
## 18        1      0      0    0    1
## 19        0      1      0    0    1
## 20        1      1      0    0    1
## 21        0      0      1    0    1
## 22        1      0      1    0    1
## 23        0      1      1    0    1
## 24        1      1      1    0    1
## 25        0      0      0    1    1
## 26        1      0      0    1    1
## 27        0      1      0    1    1
## 28        1      1      0    1    1
## 29        0      0      1    1    1
## 30        1      0      1    1    1
## 31        0      1      1    1    1
## 32        1      1      1    1    1
N <- 5;cbind("N"=N, "#(s)"=2**(N))
##      N #(s)
## [1,] 5   32

\[\mathcal{S}=\left\{(0, 0, 0, 0, 0),(1, 0, 0, 0, 0),\ldots,(1, 1, 0, 0, 0),\ldots,(1, 1, 1, 0, 0),\ldots,(1, 1, 1, 1, 0),\ldots,(1, 1, 1, 0, 1),\ldots,(1, 1, 1, 1, 1)\right\}\]

\[\#{\left(\mathcal{S}\right)}={2}^{5}=32\]

5.1.1.1 De tamaño fijo

\[\mathcal{S}_n=\left\{\boldsymbol{s}{\in}\mathcal{S}{\mid}{\sum}_{k{\in}U}s_k=n\right\}\]

\[\#{\left(\mathcal{S}\right)}=\binom{N}{n}=\binom{N}{N-n}\text{; }n=0,1,\ldots,N\]

\(N=5\text{ & }n=2\)

S <- S[rowSums(S)==2,];S
##    Santiago Nestor Nayibe Raul Jhon
## 4         1      1      0    0    0
## 6         1      0      1    0    0
## 7         0      1      1    0    0
## 10        1      0      0    1    0
## 11        0      1      0    1    0
## 13        0      0      1    1    0
## 18        1      0      0    0    1
## 19        0      1      0    0    1
## 21        0      0      1    0    1
## 25        0      0      0    1    1
N <- 5;n <- 2;cbind("n"=n, "#(s)"=choose(N,n))
##      n #(s)
## [1,] 2   10

\[\mathcal{S}_{2}=\left\{\boldsymbol{s}{\in}\mathcal{S}{\mid}{\sum}_{k{\in}U}s_k=2\right\}\]

\[\#{\left(\mathcal{S}_{2}\right)}=\binom{5}{2}=\binom{5}{5-2}=10\]

Support(N=length(U), n=2, U)
##       [,1]       [,2]    
##  [1,] "Santiago" "Nestor"
##  [2,] "Santiago" "Nayibe"
##  [3,] "Santiago" "Raul"  
##  [4,] "Santiago" "Jhon"  
##  [5,] "Nestor"   "Nayibe"
##  [6,] "Nestor"   "Raul"  
##  [7,] "Nestor"   "Jhon"  
##  [8,] "Nayibe"   "Raul"  
##  [9,] "Nayibe"   "Jhon"  
## [10,] "Raul"     "Jhon"

5.1.2 Con reemplazo

\[\mathcal{R}=\mathbb{N}^{N}\]

\[\#{\left(\mathcal{R}\right)}=+{\infty}\]

5.1.2.1 De tamaño fijo

\[\mathcal{R}_m=\left\{\boldsymbol{s}{\in}\mathcal{R}{\mid}{\sum}_{k{\in}U}s_k=m\right\}\]

\[\#{\left(\mathcal{R}_m\right)}=\binom{N+m-1}{m}=\binom{N+m-1}{N-1}\text{; }m=0,1,\ldots,N+m-1\]

\(N=5\text{ & }m=2\)

S <- rbind(S[rowSums(S)==2,],c(2,0,0,0,0),c(0,2,0,0,0),c(0,0,2,0,0),c(0,0,0,2,0),c(0,0,0,0,2));S
##     Santiago Nestor Nayibe Raul Jhon
## 4          1      1      0    0    0
## 6          1      0      1    0    0
## 7          0      1      1    0    0
## 10         1      0      0    1    0
## 11         0      1      0    1    0
## 13         0      0      1    1    0
## 18         1      0      0    0    1
## 19         0      1      0    0    1
## 21         0      0      1    0    1
## 25         0      0      0    1    1
## 111        2      0      0    0    0
## 12         0      2      0    0    0
## 131        0      0      2    0    0
## 14         0      0      0    2    0
## 15         0      0      0    0    2
N <- 5;m <- 2;cbind("m"=m, "#(s)"=choose(N+m-1,m))
##      m #(s)
## [1,] 2   15

\[\mathcal{R}_2=\left\{\boldsymbol{s}{\in}\mathcal{R}{\mid}{\sum}_{k{\in}U}s_k=2\right\}\]

\[\#{\left(\mathcal{R}_2\right)}=\binom{5+2-1}{2}=\binom{5+2-1}{5-1}=15\]

5.1.2.1.1 Interpretación: dos caramelos para repartir entre cinco niños

\[ \begin{bmatrix} Santiago & Santiago \\ Santiago & Nestor \\ \vdots & \vdots \\ Jhon & Jhon \end{bmatrix}{\implies} \begin{bmatrix} * & * & \mid{|} & \mid{|} & \mid{|} & \mid{|} \\ * & \mid{|} & * & \mid{|} & \mid{|} & \mid{|} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mid{|} & \mid{|} & \mid{|}& \mid{|} & * & * \end{bmatrix} \]

5.1.2.1.2 Interpretación: dos asteriscos separados por cuatro barras

\[ \sigma\left[(*,*,\mid{|},\mid{|},\mid{|},\mid{|})\right]= \begin{bmatrix} * & * & \mid{|} & \mid{|} & \mid{|} & \mid{|} \\ * & \mid{|} & * & \mid{|} & \mid{|} & \mid{|} \\ * & \mid{|} & \mid{|} & * & \mid{|} & \mid{|} \\ * & \mid{|} & \mid{|} & \mid{|} & * & \mid{|} \\ * & \mid{|} & \mid{|} & \mid{|} & \mid{|} & * \\ \mid{|} & * & * & \mid{|} & \mid{|} & \mid{|} \\ \mid{|} & * & \mid{|} & * & \mid{|} & \mid{|} \\ \mid{|} & * & \mid{|} & \mid{|} & * & \mid{|} \\ \mid{|} & * & \mid{|} & \mid{|} & \mid{|} & * \\ \mid{|} & \mid{|} & * & * & \mid{|} & \mid{|} \\ \mid{|} & \mid{|} & * & \mid{|} & * & \mid{|} \\ \mid{|} & \mid{|} & * & \mid{|} & \mid{|} & * \\ \mid{|} & \mid{|} & \mid{|} & * & * & \mid{|} \\ \mid{|} & \mid{|} & \mid{|} & * & \mid{|} & * \\ \mid{|} & \mid{|} & \mid{|} & \mid{|} & * & * \end{bmatrix} \]

5.1.3 Propiedades

  • \(\mathcal{S}\), \(\mathcal{S}_{n}\), \(\mathcal{R}\) y \(\mathcal{R}_{m}\) son soportes simétricos

  • \(\mathcal{S}{\subset}\mathcal{R}\)

  • El conjunto \(\left\{\mathcal{S}_{0},\mathcal{S}_{1},\ldots,\mathcal{S}_{N}\right\}\) es una partición de \(\mathcal{S}\)

  • El conjunto \(\left\{\mathcal{R}_{0},\mathcal{R}_{1},\ldots,\mathcal{R}_{N},\ldots\right\}\) es una partición infinita de \(\mathcal{R}\)

  • \(\mathcal{S}_{n}{\subset}\mathcal{R}_{m}\) para todo \(n=m\) con \(n=0,1,\ldots,N\)

5.2 Muestras probabilísticas

  • Es posible construir o al menos definir teóricamente un soporte \(Q=\{s_1,\ldots,s_q,\ldots,s_Q\}\) de todas las muestras poaibles selecciondas por un método de selección en partícular; en donde \(s_{q=1,\ldots,Q}\) es una muestra dentro de \(Q\)

  • Las probabilidades de selección que el proceso aleatorio le otorga a cada una de las posibles muestras pertenecientes a \(Q\) son conocidas con antelación a la selección a la muestra seleccionada.

  • Ante la imposibilidad de construir un marco muestral es imposible llevar a cabo un muestreo del tipo probabilístico, y ante ello es inviable construir estimación alguna de tipo probabilístico, es decir, obtener confiabilidades, errores de muestreo y coeficientes de variación estimados

  • El científico de datos deberá responder por los engaños o fraudes, que por ignorancia, o mala fé o por la comodidad de mantener un empleo, negocio para el cual no está capacitado, viene cometiendo contra clientes, ciudadanos y países que confían en las cifras resultantes (Andrés Gutíerrez)

6 Diseño de muestreo

\[\mathcal{p}(\cdot):{Q}\rightarrow[0,1]\]

\[{\sum}_{s{\in}Q}\mathcal{p}(s)=1\]

\[{\forall}_{s{\in}Q}\mathcal{P}(S=s)=\mathcal{p}(s)\]

p <- c(.13, .2, .15, .1, .15, .04, .02, .06, .07, .08);p
##  [1] 0.13 0.20 0.15 0.10 0.15 0.04 0.02 0.06 0.07 0.08

6.1 Propiedades

  • \({\forall}_{s{\in}Q}\mathcal{p}(s){\geq}0\)

  • \({\sum}_{s{\in}Q}\mathcal{p}(s)=1\)

p > 0 | p == 0
##  [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
p >= 0
##  [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
sum(p)
## [1] 1

6.2 Tipos

  • Sin reemplazo

  • Con reemplazo

  • De tamaño fijo

6.3 Algoritmo de selección

Procedimiento usado para seleccionar una muestra probabilística

6.3.1 Enumerativos

Listar todas la posibles muestras, generar una variable aleatoria con distribución uniforme en el intervalo \([0,1]\) y luego hacer la selección

6.4 Probabilidades de inclusión

\[ {I}_{k}(s)= \begin{cases} 1&\text{ si }k{\in}s\\ 0&\text{ si }k{\notin}s \end{cases} \]

6.4.1 De primer orden

\[ \begin{align} \pi_k&=\mathcal{P}(k{\in}s)\\ &=\mathcal{P}(I_k(s)=1)\\ &={\sum}_{s{\ni}k}\mathcal{p}(s) \end{align} \]

\[\pi_k={\sum}_{s{\ni}k}\mathcal{p}(s){\implies}\forall_{k{\in}U}\pi_k>0\]

\[\boldsymbol{\mu}=E(S)={\sum}_{s{\in}Q}s{\cdot}\mathcal{p}(S=s)\]

\[ \boldsymbol{\mu}= \begin{bmatrix} {\pi}_{1}\\ {\pi}_{2}\\ \vdots\\ {\pi}_{N} \end{bmatrix} =\boldsymbol{\pi} \]

Ik <- c(0,1)
design <- c(0.08,0.07,0.06,0.02,0.04,0.15,0.10,0.15,0.20,0.13)
mu <- t(expand.grid(Ik,Ik,Ik,Ik,Ik)[rowSums(expand.grid(Ik,Ik,Ik,Ik,Ik))==2,])%*%design
rownames(mu) <- c("Jhon","Raul","Nayibe","Nestor","Santiago")
colnames(mu) <- c("pik")
mu
##           pik
## Jhon     0.27
## Raul     0.33
## Nayibe   0.48
## Nestor   0.34
## Santiago 0.58

\[\pi_k=E[I_k(S)]={\sum}_{s{\in}Q}I_k(s){\cdot}\mathcal{p}(s)\]

\[\pi_{Santiago}=E\left[I_{Santiago}(S)\right]={\sum}_{s{\in}Q}I_{Santiago}(s){\cdot}\mathcal{p}(s)=0.13+0.20+0.15+0.10=0.58\]

\[\pi_{Nestor}=E\left[I_{Nestor}(S)\right]={\sum}_{s{\in}Q}I_{Nestor}(s){\cdot}\mathcal{p}(s)=0.13+0.15+0.04+0.02=0.34\]

\[\pi_{Nayibe}=E\left[I_{Nayibe}(S)\right]={\sum}_{s{\in}Q}I_{Nayibe}(s){\cdot}\mathcal{p}(s)=0.20+0.15+0.06+0.07=0.48\]

\[\pi_{Raul}=E\left[I_{Raul}(S)\right]={\sum}_{s{\in}Q}I_{Raul}(s){\cdot}\mathcal{p}(s)=0.15+0.04+0.06+0.08=0.33\]

\[\pi_{Jhon}=E\left[I_{Jhon}(S)\right]={\sum}_{s{\in}Q}I_{Jhon}(s){\cdot}\mathcal{p}(s)=0.1+0.02+0.07+0.08=0.27\]

\[E(\pi_k)=n(s)\]

Ind <- Ik(N=5,n=2)
Ind
##       [,1] [,2] [,3] [,4] [,5]
##  [1,]    1    1    0    0    0
##  [2,]    1    0    1    0    0
##  [3,]    1    0    0    1    0
##  [4,]    1    0    0    0    1
##  [5,]    0    1    1    0    0
##  [6,]    0    1    0    1    0
##  [7,]    0    1    0    0    1
##  [8,]    0    0    1    1    0
##  [9,]    0    0    1    0    1
## [10,]    0    0    0    1    1
colnames(Ind) <- c("Santiago", "Nestor", "Nayibe", "Raul", "Jhon")
Ind
##       Santiago Nestor Nayibe Raul Jhon
##  [1,]        1      1      0    0    0
##  [2,]        1      0      1    0    0
##  [3,]        1      0      0    1    0
##  [4,]        1      0      0    0    1
##  [5,]        0      1      1    0    0
##  [6,]        0      1      0    1    0
##  [7,]        0      1      0    0    1
##  [8,]        0      0      1    1    0
##  [9,]        0      0      1    0    1
## [10,]        0      0      0    1    1
Q <- Support(N=5,n=2,U)
Q
##       [,1]       [,2]    
##  [1,] "Santiago" "Nestor"
##  [2,] "Santiago" "Nayibe"
##  [3,] "Santiago" "Raul"  
##  [4,] "Santiago" "Jhon"  
##  [5,] "Nestor"   "Nayibe"
##  [6,] "Nestor"   "Raul"  
##  [7,] "Nestor"   "Jhon"  
##  [8,] "Nayibe"   "Raul"  
##  [9,] "Nayibe"   "Jhon"  
## [10,] "Raul"     "Jhon"
data.frame(Q,p,Ind)
##          X1     X2    p Santiago Nestor Nayibe Raul Jhon
## 1  Santiago Nestor 0.13        1      1      0    0    0
## 2  Santiago Nayibe 0.20        1      0      1    0    0
## 3  Santiago   Raul 0.15        1      0      0    1    0
## 4  Santiago   Jhon 0.10        1      0      0    0    1
## 5    Nestor Nayibe 0.15        0      1      1    0    0
## 6    Nestor   Raul 0.04        0      1      0    1    0
## 7    Nestor   Jhon 0.02        0      1      0    0    1
## 8    Nayibe   Raul 0.06        0      0      1    1    0
## 9    Nayibe   Jhon 0.07        0      0      1    0    1
## 10     Raul   Jhon 0.08        0      0      0    1    1

\[\mu=E(S)={\sum}_{s{\in}Q}s{\cdot}\mathcal{p}(S=s)=\left(\pi_1,\pi_2\ldots,\pi_N\right)^t=\boldsymbol{\pi}\]

\[ \begin{align} \boldsymbol{\pi}&=\begin{pmatrix} 0.13 & 0.20 & 0.15 & 0.10 & 0.15 & 0.04 & 0.02 & 0.06 & 0.07 & 0.18 \end{pmatrix}\begin{pmatrix} I_{_{Santiago}}(s) & I_{_{Nestor}}(s) & 0 & 0 & 0\\ I_{_{Santiago}}(s) & 0 & I_{_{Nayibe}}(s) & 0 & 0\\ I_{_{Santiago}}(s) & 0 & 0 & I_{_{Raul}}(s) & 0\\ I_{_{Santiago}}(s) & 0 & 0 & 0 & I_{_{Jhon}}(s)\\ 0 & I_{_{Nestor}}(s) & I_{_{Nayibe}}(s) & 0 & 0\\ 0 & I_{_{Nestor}}(s) & 0 & I_{_{Raul}}(s) & 0\\ 0 & I_{_{Nestor}}(s) & 0 & 0 & I_{_{Jhon}}(s)\\ 0 & 0 & I_{_{Nayibe}}(s) & I_{_{Raul}}(s) & 0\\ 0 & 0 & I_{_{Nayibe}}(s) & 0 & I_{_{Jhon}}(s)\\ 0 & 0 & 0 & I_{_{Raul}}(s) & I_{_{Jhon}}(s) \end{pmatrix}\\ \end{align} \]

multip <- p*Ind
multip
##       Santiago Nestor Nayibe Raul Jhon
##  [1,]     0.13   0.13   0.00 0.00 0.00
##  [2,]     0.20   0.00   0.20 0.00 0.00
##  [3,]     0.15   0.00   0.00 0.15 0.00
##  [4,]     0.10   0.00   0.00 0.00 0.10
##  [5,]     0.00   0.15   0.15 0.00 0.00
##  [6,]     0.00   0.04   0.00 0.04 0.00
##  [7,]     0.00   0.02   0.00 0.00 0.02
##  [8,]     0.00   0.00   0.06 0.06 0.00
##  [9,]     0.00   0.00   0.07 0.00 0.07
## [10,]     0.00   0.00   0.00 0.08 0.08
colSums(multip)
## Santiago   Nestor   Nayibe     Raul     Jhon 
##     0.58     0.34     0.48     0.33     0.27
pik <- Pik(p, Ind)
rownames(pik) <- c("pik")
pik
##     Santiago Nestor Nayibe Raul Jhon
## pik     0.58   0.34   0.48 0.33 0.27

\[ \begin{align} \forall_{\mathcal{p}(\cdot)}n(s)={n}{\implies}E[n(s)]&={\sum}_U\pi_k\\ &=n \end{align} \]

sum(pik)
## [1] 2
pik > 0
##     Santiago Nestor Nayibe Raul Jhon
## pik     TRUE   TRUE   TRUE TRUE TRUE

6.4.2 De segundo orden

\[\pi_{kl}=E[I_k(S)\&I_l(S)]={\sum}_{s{\in}Q}I_{kl}(s){\cdot}\mathcal{p}(s)\]

\[\pi_{Santiago{\&}Nestor}=E\left[I_{Santiago}(S)\&I_{Nestor}(S)\right]={\sum}_{s{\in}Q}I_{Santiago{\&}Nestor}(s){\cdot}\mathcal{p}(s)=0.13\]

\[\pi_{Santiago{\&}Nayibe}=E\left[I_{Santiago}(S)\&I_{Nayibe}(S)\right]={\sum}_{s{\in}Q}I_{Santiago{\&}Nayibe}(s){\cdot}\mathcal{p}(s)=0.20\]

\[\pi_{Santiago{\&}Raul}=E\left[I_{Santiago}(S)\&I_{Raul}(S)\right]={\sum}_{s{\in}Q}I_{Santiago{\&}Raul}(s){\cdot}\mathcal{p}(s)=0.15\]

\[\pi_{Santiago{\&}Jhon}=E\left[I_{Santiago}(S)\&I_{Jhon}(S)\right]={\sum}_{s{\in}Q}I_{Santiago{\&}Jhon}(s){\cdot}\mathcal{p}(s)=0.10\]

\[\pi_{Nestor{\&}Nayibe}=E\left[I_{Nestor}(S)\&I_{Nayibe}(S)\right]={\sum}_{s{\in}Q}I_{Nestor{\&}Nayibe}(s){\cdot}\mathcal{p}(s)=0.15\]

\[\pi_{Nestor{\&}Raul}=E\left[I_{Nestor}(S)\&I_{Raul}(S)\right]={\sum}_{s{\in}Q}I_{Nestor{\&}Raul}(s){\cdot}\mathcal{p}(s)=0.04\]

\[\pi_{Nestor{\&}Jhon}=E\left[I_{Nestor}(S)\&I_{Jhon}(S)\right]={\sum}_{s{\in}Q}I_{Nestor{\&}Jhon}(s){\cdot}\mathcal{p}(s)=0.02\]

\[\pi_{Nayibe{\&}Raul}=E\left[I_{Nayibe}(S)\&I_{Raul}(S)\right]={\sum}_{s{\in}Q}I_{Nayibe{\&}Raul}(s){\cdot}\mathcal{p}(s)=0.06\]

\[\pi_{Nayibe{\&}Jhon}=E\left[I_{Nayibe}(S)\&I_{Jhon}(S)\right]={\sum}_{s{\in}Q}I_{Nayibe{\&}Jhon}(s){\cdot}\mathcal{p}(s)=0.07\]

\[\pi_{Raul{\&}Jhon}=E\left[I_{Raul}(S)\&I_{Jhon}(S)\right]={\sum}_{s{\in}Q}I_{Raul{\&}Jhon}(s){\cdot}\mathcal{p}(s)=0.08\]

data.frame(Q,Ind,p)
##          X1     X2 Santiago Nestor Nayibe Raul Jhon    p
## 1  Santiago Nestor        1      1      0    0    0 0.13
## 2  Santiago Nayibe        1      0      1    0    0 0.20
## 3  Santiago   Raul        1      0      0    1    0 0.15
## 4  Santiago   Jhon        1      0      0    0    1 0.10
## 5    Nestor Nayibe        0      1      1    0    0 0.15
## 6    Nestor   Raul        0      1      0    1    0 0.04
## 7    Nestor   Jhon        0      1      0    0    1 0.02
## 8    Nayibe   Raul        0      0      1    1    0 0.06
## 9    Nayibe   Jhon        0      0      1    0    1 0.07
## 10     Raul   Jhon        0      0      0    1    1 0.08

6.5 Estimación del total

\[\hat{t}_{y\pi}={\sum}_{k{\ni}S}\frac{y_k}{\pi_k}\]

y <- as.matrix(c(32,442,5454,646,656),col=1)
#y <- as.matrix(c(32,34,46,89,35),col=1)
colnames(y) <- c("yk")
rownames(y) <- c("Santiago", "Nestor", "Nayibe", "Raul", "Jhon")
y
##            yk
## Santiago   32
## Nestor    442
## Nayibe   5454
## Raul      646
## Jhon      656
y["Santiago",]
## [1] 32
y["Nestor",]
## [1] 442
y["Nayibe",]
## [1] 5454
y["Raul",]
## [1] 646
y["Jhon",]
## [1] 656

6.5.1 \(\left\{Santiago,Nestor\right\}\)

\[\hat{t}_{y}={\sum}_{\left\{Santiago,Nestor\right\}}\frac{y_k}{\pi_k}=\frac{32}{0.58}+\frac{442}{0.34}\]

sum(y[c("Santiago","Nestor"),]/pik[,c("Santiago","Nestor")])
## [1] 1355.172

6.5.2 \(\left\{Santiago,Nayibe\right\}\)

\[\hat{t}_{y}={\sum}_{\left\{Santiago,Nayibe\right\}}\frac{y_k}{\pi_k}=\frac{32}{0.58}+\frac{5454}{0.48}\]

sum(y[c("Santiago","Nayibe"),]/pik[,c("Santiago","Nayibe")])
## [1] 11417.67

6.5.3 \(\left\{Santiago,Raul\right\}\)

\[\hat{t}_{y}={\sum}_{\left\{Santiago,Raul\right\}}\frac{y_k}{\pi_k}=\frac{32}{0.58}+\frac{646}{0.33}\]

sum(y[c("Santiago","Raul"),]/pik[,c("Santiago","Raul")])
## [1] 2012.748

6.5.4 \(\left\{Santiago,Jhon\right\}\)

\[\hat{t}_{y}={\sum}_{\left\{Santiago,Jhon\right\}}\frac{y_k}{\pi_k}=\frac{32}{0.58}+\frac{656}{0.27}\]

sum(y[c("Santiago","Jhon"),]/pik[,c("Santiago","Jhon")])
## [1] 2484.802

6.5.5 \(\left\{Nestor,Nayibe\right\}\)

\[\hat{t}_{y}={\sum}_{\left\{Nestor,Nayibe\right\}}\frac{y_k}{\pi_k}=\frac{442}{0.34}+\frac{5454}{0.48}\]

sum(y[c("Nestor","Nayibe"),]/pik[,c("Nestor","Nayibe")])
## [1] 12662.5

6.5.6 \(\left\{Nestor,Raul\right\}\)

\[\hat{t}_{y}={\sum}_{\left\{Nestor,Raul\right\}}\frac{y_k}{\pi_k}=\frac{442}{0.34}+\frac{646}{0.33}\]

sum(y[c("Nestor","Raul"),]/pik[,c("Nestor","Raul")])
## [1] 3257.576

6.5.7 \(\left\{Nestor,Jhon\right\}\)

\[\hat{t}_{y}={\sum}_{\left\{Nestor,Jhon\right\}}\frac{y_k}{\pi_k}=\frac{442}{0.34}+\frac{656}{0.27}\]

sum(y[c("Nestor","Jhon"),]/pik[,c("Nestor","Jhon")])
## [1] 3729.63

6.5.8 \(\left\{Nayibe,Raul\right\}\)

\[\hat{t}_{y}={\sum}_{\left\{Nayibe,Raul\right\}}\frac{y_k}{\pi_k}=\frac{5454}{0.48}+\frac{646}{0.33}\]

sum(y[c("Nayibe","Raul"),]/pik[,c("Nayibe","Raul")])
## [1] 13320.08

6.5.9 \(\left\{Nayibe,Jhon\right\}\)

\[\hat{t}_{y}={\sum}_{\left\{Nayibe,Jhon\right\}}\frac{y_k}{\pi_k}=\frac{5454}{0.48}+\frac{656}{0.27}\]

sum(y[c("Nayibe","Jhon"),]/pik[,c("Nayibe","Jhon")])
## [1] 13792.13

6.5.10 \(\left\{Raul,Jhon\right\}\)

\[\hat{t}_{y}={\sum}_{\left\{Raul,Jhon\right\}}\frac{y_k}{\pi_k}=\frac{646}{0.33}+\frac{656}{0.27}\]

sum(y[c("Raul","Jhon"),]/pik[,c("Raul","Jhon")])
## [1] 4387.205

7 Características de interés y parámetros de interés

\[\mathbf{T}=\mathcal{f}(y_1,y_2,\ldots,y_n)\]

7.1 Total poblacional

\[t_y={\sum}_{k{\in}U}y_k\]

ty <- sum(y)
names(ty) <- "ty"
ty
##   ty 
## 7230

7.1.1 Estimación

typi <- (Ind)%*%t(t(y)/pik)
colnames(typi) <- c("typi")
typi
##            typi
##  [1,]  1355.172
##  [2,] 11417.672
##  [3,]  2012.748
##  [4,]  2484.802
##  [5,] 12662.500
##  [6,]  3257.576
##  [7,]  3729.630
##  [8,] 13320.076
##  [9,] 13792.130
## [10,]  4387.205
data.frame(Q,p,Ind,typi)
##          X1     X2    p Santiago Nestor Nayibe Raul Jhon      typi
## 1  Santiago Nestor 0.13        1      1      0    0    0  1355.172
## 2  Santiago Nayibe 0.20        1      0      1    0    0 11417.672
## 3  Santiago   Raul 0.15        1      0      0    1    0  2012.748
## 4  Santiago   Jhon 0.10        1      0      0    0    1  2484.802
## 5    Nestor Nayibe 0.15        0      1      1    0    0 12662.500
## 6    Nestor   Raul 0.04        0      1      0    1    0  3257.576
## 7    Nestor   Jhon 0.02        0      1      0    0    1  3729.630
## 8    Nayibe   Raul 0.06        0      0      1    1    0 13320.076
## 9    Nayibe   Jhon 0.07        0      0      1    0    1 13792.130
## 10     Raul   Jhon 0.08        0      0      0    1    1  4387.205

7.2 Media poblacional

\[\bar{y}_U=\frac{t_y}{N}=\frac{{\sum}_{k{\in}U}y_k}{N}\]

N <- nrow(y)
names(N) <- "N"
N
## N 
## 5
ybar <- ty/N
names(ybar) <- "ybar"
ybar
## ybar 
## 1446

7.2.1 Estimación

ybars <- (1/n)*(Ind)%*%t(t(y)/pik)
colnames(typi) <- c("ybars")
ybars
##              yk
##  [1,]  677.5862
##  [2,] 5708.8362
##  [3,] 1006.3741
##  [4,] 1242.4010
##  [5,] 6331.2500
##  [6,] 1628.7879
##  [7,] 1864.8148
##  [8,] 6660.0379
##  [9,] 6896.0648
## [10,] 2193.6027
data.frame(Q,p,Ind,typi)
##          X1     X2    p Santiago Nestor Nayibe Raul Jhon     ybars
## 1  Santiago Nestor 0.13        1      1      0    0    0  1355.172
## 2  Santiago Nayibe 0.20        1      0      1    0    0 11417.672
## 3  Santiago   Raul 0.15        1      0      0    1    0  2012.748
## 4  Santiago   Jhon 0.10        1      0      0    0    1  2484.802
## 5    Nestor Nayibe 0.15        0      1      1    0    0 12662.500
## 6    Nestor   Raul 0.04        0      1      0    1    0  3257.576
## 7    Nestor   Jhon 0.02        0      1      0    0    1  3729.630
## 8    Nayibe   Raul 0.06        0      0      1    1    0 13320.076
## 9    Nayibe   Jhon 0.07        0      0      1    0    1 13792.130
## 10     Raul   Jhon 0.08        0      0      0    1    1  4387.205

7.3 Varianza poblacional

\[S_{yU}^2=\frac{{\sum}_{k{\in}U}(y_k-\bar{y}_U)^2}{N-1}\]

SyU2 <- (t(y-ybar)%*%(y-ybar))/(N-1)
rownames(SyU2) <- "SyU2"
SyU2
##           yk
## SyU2 5083894

7.4 Estadística y estimador

\[T:Q\rightarrow\mathbb{R}\]

  • Cuando la estadística se usa para estimar un parámetro se dice estimador

  • A las realizaciones del estimador en una muestra \(s\) se les dice a.estimares

7.4.1 Esperanza

\[ E(T)={\sum}_{s{\in}Q}T(s){\cdot}\mathcal{p}(s) \]

7.4.2 Varianza

\[ \begin{align} V(T)&=E[T-E(T)]^2\\ &={\sum}_{s{\in}Q}[T(s)-E\left(T)\right]^2{\cdot}\mathcal{p}(s) \end{align} \]

7.4.3 Covarianza

\[ \begin{align} \forall_{T{\neq}U}C(T,U)&=E(T{\cdot}U)-E(T){\cdot}E(U)\\ &={\sum}_{s{\in}Q}\left[T(s){\cdot}U(s)\right]{\cdot}\mathcal{p}(s)-{\sum}_{s{\in}Q}T(s){\cdot}\mathcal{p}(s){\sum}_{s{\in}Q}U(s){\cdot}\mathcal{p}(s) \end{align} \]

7.4.4 \(I_k:S\rightarrow\left\{0,1\right\}\)

\[ \begin{align} I_k(s)&=\begin{cases} 1\text{ si }k{\in}S\\ 0\text{ si }k{\notin}S \end{cases} \end{align} \]

\[ \begin{align} E[I_k(s)]&=0{\cdot}\mathcal{p}[I_k(s)=0]+1{\cdot}\mathcal{p}[I_k(s)=1]\\ &=1{\cdot}\mathcal{p}(I_k=1)\\ &=\mathcal{p}(k{\in}S)\\ &=\pi_k \end{align} \]

\[ \begin{align} V(I_k(s))&=(0-\pi_k)^2{\cdot}\mathcal{p}[I_k(s)=0]+(1-\pi_k)^2{\cdot}\mathcal{p}[I_k(s)=1]\\ &=\pi_k^2(1-\pi_k)+(1-\pi_k)^2\pi_k\\ &=(1-\pi_k)[\pi_k^2+(1-\pi_k)\pi_k]\\ &=(1-\pi_k)(\pi_k^2+\pi_k-\pi_k^2)\\ &=(1-\pi_k)\pi_k\\ \end{align} \]

\[ \begin{align} V[I_{Santiago}(s)]&=(1-\pi_{Santiago})\pi_{Santiago}\\ &=(1-0.58)0.58\\ &=0.42{\cdot}0.58\\ &=0.2436 \end{align} \]

(1-0.58)*0.58
## [1] 0.2436

\[ \begin{align} V[I_{Nestor}(s)]&=(1-\pi_{Nestor})\pi_{Nestor}\\ &=(1-0.34)0.34\\ &=0.66{\cdot}0.34\\ &=0.2244 \end{align} \]

(1-0.34)*0.34
## [1] 0.2244

\[ \begin{align} V[I_{Nayibe}(s)]&=(1-\pi_{Nayibe})\pi_{Nayibe}\\ &=(1-0.48)0.48\\ &=0.52{\cdot}0.48\\ &=0.2496 \end{align} \]

(1-0.48)*0.48
## [1] 0.2496

\[ \begin{align} V[I_{Raul}(s)]&=(1-\pi_{Raul})\pi_{Raul}\\ &=(1-0.33)0.33\\ &=0.67{\cdot}0.33\\ &=0.2211 \end{align} \]

(1-0.33)*0.33
## [1] 0.2211

\[ \begin{align} V[I_{Jhon}(s)]&=(1-\pi_{Jhon})\pi_{Jhon}\\ &=(1-0.27)0.27\\ &=0.73{\cdot}0.27\\ &=0.1971 \end{align} \]

(1-0.27)*0.27
## [1] 0.1971

\[ \begin{align} \forall_{k{\neq}l}C(I_k(s),I_l(s))&=\left\{0{\cdot}[\mathcal{p}(I_{k}(s){\cdot}I_{l}(s)=0]+1{\cdot}\mathcal{p}[(I_{k}(s){\cdot}I_{l}(s)=1]\right\}-\pi_k{\cdot}\pi_l\\ &=\pi_{kl}-\pi_k{\cdot}\pi_l\\ &=\Delta_{kl} \end{align} \]

\[ \begin{align} C[I_{Santiago}(s),I_{Nestor}(s)]&=\pi_{Santiago,Nestor}-\pi_{Santiago}\pi_{Nestor}\\ &=0.13-0.58{\cdot}0.34\\ &=0.13-0.1972\\ &=-0.0672 \end{align} \]

0.13-0.58*0.34
## [1] -0.0672

\[ \begin{align} C[I_{Santiago}(s),I_{Nayibe}(s)]&=\pi_{Santiago,Nayibe}-\pi_{Santiago}\pi_{Nayibe}\\ &=0.20-0.58{\cdot}0.48\\ &=0.20-0.2784\\ &=-0.0784 \end{align} \]

0.20-0.58*0.48
## [1] -0.0784

\[ \begin{align} C[I_{Santiago}(s),I_{Raul}(s)]&=\pi_{Santiago,Raul}-\pi_{Santiago}\pi_{Raul}\\ &=0.15-0.58{\cdot}0.33\\ &=0.15-0.1914\\ &=-0.0414 \end{align} \]

0.15-0.58*0.33
## [1] -0.0414

\[ \begin{align} C[I_{Santiago}(s),I_{Jhon}(s)]&=\pi_{Santiago,Jhon}-\pi_{Santiago}\pi_{Jhon}\\ &=0.10-0.58{\cdot}0.27\\ &=0.10-0.1566\\ &=-0.0566 \end{align} \]

0.10-0.58*0.27
## [1] -0.0566

\[ \begin{align} C[I_{Nestor}(s),I_{Nayibe}(s)]&=\pi_{Nestor,Nayibe}-\pi_{Nestor}\pi_{Nayibe}\\ &=0.15-0.34{\cdot}0.48\\ &=0.15-0.1632\\ &=-0.0132 \end{align} \]

0.15-0.34*0.48
## [1] -0.0132

\[ \begin{align} C[I_{Nestor}(s),I_{Raul}(s)]&=\pi_{Nestor,Raul}-\pi_{Nestor}\pi_{Raul}\\ &=0.04-0.34{\cdot}0.33\\ &=0.04-0.1122\\ &=-0.0722 \end{align} \]

0.04-0.34*0.33
## [1] -0.0722

\[ \begin{align} C[I_{Nestor}(s),I_{Jhon}(s)]&=\pi_{Nestor,Jhon}-\pi_{Nestor}\pi_{Jhon}\\ &=0.02-0.34{\cdot}0.27\\ &=0.02-0.0918\\ &=-0.0718 \end{align} \]

0.02-0.34*0.27
## [1] -0.0718

\[ \begin{align} C[I_{Nayibe}(s),I_{Raul}(s)]&=\pi_{Nayibe,Raul}-\pi_{Nayibe}\pi_{Raul}\\ &=0.06-0.48{\cdot}0.33\\ &=0.06-0.1584\\ &=-0.0984 \end{align} \]

0.06-0.48*0.33
## [1] -0.0984

\[ \begin{align} C[I_{Nayibe}(s),I_{Jhon}(s)]&=\pi_{Nayibe,Jhon}-\pi_{Nayibe}\pi_{Jhon}\\ &=0.07-0.48{\cdot}0.27\\ &=0.07-0.1296\\ &=-0.0596 \end{align} \]

0.07-0.48*0.27
## [1] -0.0596

\[ \begin{align} C[I_{Raul}(s),I_{Jhon}(s)]&=\pi_{Raul,Jhon}-\pi_{Raul}\pi_{Jhon}\\ &=0.08-0.33{\cdot}0.27\\ &=0.08-0.0891\\ &=-0.0091 \end{align} \]

0.08-0.33*0.27
## [1] -0.0091

7.4.5 \(n(S):S\rightarrow\mathbb{Z}^{+}\)

\[ \begin{align} n(S)&={\sum}_{k{\in}U}I_k(s)\\ &={\sum}_{k{\in}U}I_k \end{align} \]

\[ \begin{align} E[n(S)]&=E\left[{\sum}_{U}I_k(s)\right]\\ &={\sum}_{U}E\left[I_k(s)\right]\\ &={\sum}_{U}\pi_k \end{align} \]

\[ \begin{align} E[n(S)]&=\pi_{Santiago}+\pi_{Nestor}+\pi_{Nayibe}+\pi_{Raul}+\pi_{Jhon}\\ &=0.58+0.34+0.48+0.33+0.27\\ &=2 \end{align} \]

sum(pik)
## [1] 2

\[ \begin{align} V[n(S)]&=V\left[{\sum}_{U}I_k(s)\right]\\ &={\sum}_{k{\in}U}V\left[I_k(s)\right]+{\sum}_{k{\in}U}{\sum}_{k{\neq}l}C\left[I_k(s),I_l(s)\right]\\ &={\sum}_{k{\in}U}(\pi_k-\pi_k^2)+{\sum}_{k{\in}U}{\sum}_{k{\neq}l}(\pi_{kl}-\pi_k\pi_l)\\ &={\sum}_{k{\in}U}(\pi_k-\pi_k^2)-{\sum}_{k{\in}U}{\sum}_{k{\neq}l}(\pi_k\pi_l-\pi_{kl})\\ &={\sum}_{k{\in}U}\pi_k-{\sum}_{k{\in}U}\pi_k^2-{\sum}_{k{\in}U}{\sum}_{k{\neq}l}\pi_k\pi_l+{\sum}_{k{\in}U}{\sum}_{k{\neq}l}\pi_{kl}\\ &={\sum}_{k{\in}U}\pi_k-\left({\sum}_{k{\in}U}\pi_k\right)^2+{\sum}_{k{\in}U}{\sum}_{k{\neq}l}\pi_{kl} \end{align} \]

\[ \begin{align} \left({\sum}_{k{\in}U}\pi_k\right)^2&={\sum}_{k{\in}U}\pi_k{\sum}_{k{\in}U}\pi_k\\ &={\sum}_{k{\in}U}\pi_k^2+{\sum}_{k{\in}U}{\sum}_{k{\neq}l}\pi_k\pi_l\\ \end{align} \]

Sample <- Ik(N=5, n=2)
SubInd <- OrderWR(N=5, 2)
K <- matrix(c(Sample[, SubInd]), ncol=2)
L <- t(t(K[, 1]) * K[, 2])
Ikl <- matrix(c(L), ncol=nrow(SubInd))
M <- p * Ikl
O <- apply(M, 2, sum)
P <- matrix(c(O), ncol=N)
colnames(P) = rownames(P) <- c("Santiago", "Nestor", "Nayibe", "Raul", "Jhon")
P
##          Santiago Nestor Nayibe Raul Jhon
## Santiago     0.58   0.13   0.20 0.15 0.10
## Nestor       0.13   0.34   0.15 0.04 0.02
## Nayibe       0.20   0.15   0.48 0.06 0.07
## Raul         0.15   0.04   0.06 0.33 0.08
## Jhon         0.10   0.02   0.07 0.08 0.27
library(TeachingSampling)
pikl <- Pikl(N=5, n=2, p=p)
colnames(pikl)=rownames(pikl) <- c("Santiago", "Nestor", "Nayibe", "Raul", "Jhon")
pikl
##          Santiago Nestor Nayibe Raul Jhon
## Santiago     0.58   0.13   0.20 0.15 0.10
## Nestor       0.13   0.34   0.15 0.04 0.02
## Nayibe       0.20   0.15   0.48 0.06 0.07
## Raul         0.15   0.04   0.06 0.33 0.08
## Jhon         0.10   0.02   0.07 0.08 0.27

\[ \begin{align} V[n(S)]&=\pi_{Santiago}+\pi_{Nestor}+\pi_{Nayibe}+\pi_{Raul}+\pi_{Jhon}-\left(\pi_{Santiago}+\pi_{Nestor}+\pi_{Nayibe}+\pi_{Raul}+\pi_{Jhon}\right)^2+{\sum}_{k{\in}U}{\sum}_{k{\neq}l}\pi_{kl}\\ &=0.58+0.34+0.48+0.33+0.27-(0.58+0.34+0.48+0.33+0.27)^2+{\sum}_{k{\in}U}{\sum}_{k{\neq}l}\pi_{kl}\\ &=2-2^2+\pi_{Santiago,Nestor}+\pi_{Santiago,Nayibe}+\cdots+\pi_{Santiago,Jhon}+\cdots+\pi_{Raul,Jhon}\\ &=2-4+0.13+0.20+\cdots+0.10+\cdots+0.08\\ &=-2+\pi_{Santiago,Nestor}+\pi_{Santiago,Nayibe}+\cdots+\pi_{Santiago,Jhon}+\cdots+\pi_{Raul,Jhon}\\ &=-2+2\\ &=0 \end{align} \]

diag(pikl)=0
sum(pik)-sum(pik)**2+sum(rowSums(pikl))
## [1] 0

\[ \begin{align} {\sum}_{l{\in}U}\pi_{kl}&={\sum}_{l{\in}U}E[I_k(S)I_l(S)]\\ &={\sum}_{l{\in}U}{\sum}_{s{\in}Q}I_k(s)I_l(s)\mathcal{p}(s)\\ &={\sum}_{s{\in}Q}I_k(s)\mathcal{p}(s){\sum}_{l{\in}U}I_l(S)\\ &=n(S){\sum}_{s{\in}Q}I_l(s)\mathcal{p}(s)\\ &=n{\cdot}\pi_{l} \end{align} \]

data.frame(Q,Ind,p)
##          X1     X2 Santiago Nestor Nayibe Raul Jhon    p
## 1  Santiago Nestor        1      1      0    0    0 0.13
## 2  Santiago Nayibe        1      0      1    0    0 0.20
## 3  Santiago   Raul        1      0      0    1    0 0.15
## 4  Santiago   Jhon        1      0      0    0    1 0.10
## 5    Nestor Nayibe        0      1      1    0    0 0.15
## 6    Nestor   Raul        0      1      0    1    0 0.04
## 7    Nestor   Jhon        0      1      0    0    1 0.02
## 8    Nayibe   Raul        0      0      1    1    0 0.06
## 9    Nayibe   Jhon        0      0      1    0    1 0.07
## 10     Raul   Jhon        0      0      0    1    1 0.08

\[{\sum}_U\pi_{Santiago,l}=\pi_{Santiago,Santiago}+\pi_{Nestor,Santiago}+\pi_{Nayibe,Santiago}+\pi_{Raul,Santiago}+\pi_{Jhon,Santiago}=n{\cdot}\pi_{Santiago}\]

all.equal(.58+.13+.15+.20+.10,2*.58)
## [1] TRUE

\[{\sum}_U\pi_{Nestor,l}=\pi_{Santiago,Nestor}+\pi_{Nestor,Nestor}+\pi_{Nayibe,Nestor}+\pi_{Raul,Nestor}+\pi_{Jhon,Nestor}=n{\cdot}\pi_{Nestor}\]

all.equal(.13+.34+.15+.04+.02,2*.34)
## [1] TRUE

\[{\sum}_U\pi_{Nayibe,l}=\pi_{Santiago,Nayibe}+\pi_{Nestor,Nayibe}+\pi_{Nayibe,Nayibe}+\pi_{Raul,Nayibe}+\pi_{Jhon,Nayibe}=n{\cdot}\pi_{Nayibe}\]

all.equal(.20+0.15+.48+.06+.07,2*.48)
## [1] TRUE

\[{\sum}_U\pi_{Raul,l}=\pi_{Santiago,Raul}+\pi_{Nestor,Raul}+\pi_{Nayibe,Raul}+\pi_{Jhon,Raul}+\pi_{Jhon,Raul}=n{\cdot}\pi_{Raul}\]

all.equal(.15+.04+.06+.33+.08,2*.33)
## [1] TRUE

\[{\sum}_U\pi_{Jhon,l}=\pi_{Santiago,Jhon}+\pi_{Nestor,Jhon}+\pi_{Nayibe,Jhon}+\pi_{Raul,Jhon}+\pi_{Jhon,Jhon}=n{\cdot}\pi_{Jhon}\]

all.equal(.10+.02+.07+.08+.27,2*.27)
## [1] TRUE
data.frame(Q,Ind,p)
##          X1     X2 Santiago Nestor Nayibe Raul Jhon    p
## 1  Santiago Nestor        1      1      0    0    0 0.13
## 2  Santiago Nayibe        1      0      1    0    0 0.20
## 3  Santiago   Raul        1      0      0    1    0 0.15
## 4  Santiago   Jhon        1      0      0    0    1 0.10
## 5    Nestor Nayibe        0      1      1    0    0 0.15
## 6    Nestor   Raul        0      1      0    1    0 0.04
## 7    Nestor   Jhon        0      1      0    0    1 0.02
## 8    Nayibe   Raul        0      0      1    1    0 0.06
## 9    Nayibe   Jhon        0      0      1    0    1 0.07
## 10     Raul   Jhon        0      0      0    1    1 0.08

\[ \begin{align} {\sum}_U\Delta_{kl}&={\sum}_{U}\left(\pi_{kl}-\pi_k\pi_l\right)\\ &={\sum}_{U}\pi_{kl}-{\sum}_{U}\pi_k\pi_l\\ &=n\pi_{l}-\pi_l{\sum}_{U}\pi_k\\ &=n\pi_{l}-\pi_ln\\ &=0 \end{align} \]

Ind <- Ik(N=5, n=2)
multip <- p * Ind
pik <- colSums(multip)
t(pik)
##      [,1] [,2] [,3] [,4] [,5]
## [1,] 0.58 0.34 0.48 0.33 0.27
P1 <- as.matrix(t(pik))
deltakl <- P - (t(P1) %*% P1)
sum(deltakl)
## [1] -3.608225e-16
deltakl <- Deltakl(N=5, n=2, p=p)
sum(deltakl)
## [1] -3.608225e-16

\[ \begin{align} \pi_k\left(1-\pi_k\right)&=V\left[I_{k}(S)\right]\\ &=C\left[I_{k}(S),I_{k}(S)\right]\\ &=C\left[I_{k}(S),n-{\sum}_{l{\neq}k}I_{l}(S)\right]\\ &=C\left[I_{k}(S),n\right]-{\sum}_{l{\neq}k}C\left[I_{k}(S),I_{l}(S)\right]\\ &=0-{\sum}_{l{\neq}k}C\left[I_{k}(S),I_{l}(S)\right]\\ &=-{\sum}_{l{\neq}k}(\pi_{kl}-\pi_{k}\pi_{l})\\ &={\sum}_{l{\neq}k}(\pi_{k}\pi_{l}-\pi_{kl})\\ \end{align} \]

pikl <- Pikl(N=5, n=2, p=p)
colnames(pikl)=rownames(pikl) <- c("Santiago", "Nestor", "Nayibe", "Raul", "Jhon")
pikl
##          Santiago Nestor Nayibe Raul Jhon
## Santiago     0.58   0.13   0.20 0.15 0.10
## Nestor       0.13   0.34   0.15 0.04 0.02
## Nayibe       0.20   0.15   0.48 0.06 0.07
## Raul         0.15   0.04   0.06 0.33 0.08
## Jhon         0.10   0.02   0.07 0.08 0.27

\[ \begin{align} \pi_{Santiago}\left(1-\pi_{Santiago}\right)&={\sum}_{l{\neq}{Santiago}}(\pi_{{Santiago}}\pi_{l}-\pi_{{Santiago},l})\\ \end{align} \]

all.equal(pikl["Santiago","Santiago"]*(1-pikl["Santiago","Santiago"]),sum(pikl["Santiago","Santiago"]*pikl["Nestor","Nestor"]-pikl["Santiago","Nestor"],pikl["Santiago","Santiago"]*pikl["Nayibe","Nayibe"]-pikl["Santiago","Nayibe"],pikl["Santiago","Santiago"]*pikl["Raul","Raul"]-pikl["Santiago","Raul"],pikl["Santiago","Santiago"]*pikl["Jhon","Jhon"]-pikl["Santiago","Jhon"]))
## [1] TRUE

\[ \begin{align} \pi_{Nestor}\left(1-\pi_{Nestor}\right)&={\sum}_{l{\neq}{Nestor}}(\pi_{{Nestor}}\pi_{l}-\pi_{{Nestor},l})\\ \end{align} \]

all.equal(pikl["Nestor","Nestor"]*(1-pikl["Nestor","Nestor"]),sum(pikl["Nestor","Nestor"]*pikl["Santiago","Santiago"]-pikl["Nestor","Santiago"],pikl["Nestor","Nestor"]*pikl["Nayibe","Nayibe"]-pikl["Nestor","Nayibe"],pikl["Nestor","Nestor"]*pikl["Raul","Raul"]-pikl["Nestor","Raul"],pikl["Nestor","Nestor"]*pikl["Jhon","Jhon"]-pikl["Nestor","Jhon"]))
## [1] TRUE

\[ \begin{align} \pi_{Nayibe}\left(1-\pi_{Nayibe}\right)&={\sum}_{l{\neq}{Nayibe}}(\pi_{{Nayibe}}\pi_{l}-\pi_{{Nayibe},l})\\ \end{align} \]

all.equal(pikl["Nayibe","Nayibe"]*(1-pikl["Nayibe","Nayibe"]),sum(pikl["Nayibe","Nayibe"]*pikl["Santiago","Santiago"]-pikl["Nayibe","Santiago"],pikl["Nayibe","Nayibe"]*pikl["Nestor","Nestor"]-pikl["Nayibe","Nestor"],pikl["Nayibe","Nayibe"]*pikl["Raul","Raul"]-pikl["Nayibe","Raul"],pikl["Nayibe","Nayibe"]*pikl["Jhon","Jhon"]-pikl["Nayibe","Jhon"]))
## [1] TRUE

\[ \begin{align} \pi_{Raul}\left(1-\pi_{Raul}\right)&={\sum}_{l{\neq}{Raul}}(\pi_{{Raul}}\pi_{l}-\pi_{{Raul},l})\\ \end{align} \]

all.equal(pikl["Raul","Raul"]*(1-pikl["Raul","Raul"]),sum(pikl["Raul","Raul"]*pikl["Santiago","Santiago"]-pikl["Raul","Santiago"],pikl["Raul","Raul"]*pikl["Nestor","Nestor"]-pikl["Raul","Nestor"],pikl["Raul","Raul"]*pikl["Nayibe","Nayibe"]-pikl["Raul","Nayibe"],pikl["Raul","Raul"]*pikl["Jhon","Jhon"]-pikl["Raul","Jhon"]))
## [1] TRUE

\[ \begin{align} \pi_{Jhon}\left(1-\pi_{Jhon}\right)&={\sum}_{l{\neq}{Jhon}}(\pi_{{Jhon}}\pi_{l}-\pi_{{Jhon},l})\\ \end{align} \]

all.equal(pikl["Jhon","Jhon"]*(1-pikl["Jhon","Jhon"]),sum(pikl["Jhon","Jhon"]*pikl["Santiago","Santiago"]-pikl["Jhon","Santiago"],pikl["Jhon","Jhon"]*pikl["Nestor","Nestor"]-pikl["Jhon","Nestor"],pikl["Jhon","Jhon"]*pikl["Nayibe","Nayibe"]-pikl["Jhon","Nayibe"],pikl["Jhon","Jhon"]*pikl["Raul","Raul"]-pikl["Jhon","Raul"]))
## [1] TRUE

7.5 Propiedades de un estimador

  • Sesgo

\[B(\widehat{T})=E(\widehat{T})-T\]

  • Error cuadrático medio

\[ \begin{align} ECM(\widehat{T})&=E[\widehat{T}-T]^2\\ &=V(\widehat{T})+B^2(\widehat{T}) \end{align} \]

8 Estrategia de muestreo

\[\left(\mathcal{p}(\cdot),\widehat{T}\right)\text{ con }\widehat{T}\text{ un estimador de un parámetro }T\text{ y }\mathcal{p}(\cdot)\text{ un diseño de muestreo definido sobre un soporte }Q\]

8.1 Estimadores de muestreo

El objetivo de una investigación por muestreo probabilístico es estimar una parámetro (o valor poblacional fijo) de interés a través de una muestra aleatoria (o subconjunto de la población elegido siguiendo un diseño de muestreo estadístico). Una medida de precisión de un estimador es dado por:

  • Indicador de precisión

\[cve(\widehat{T})=\frac{\sqrt{\widehat{V}(\widehat{T})}}{\widehat{T}}\]

Una medida comunmente usada para expresar el error cometido al seleccionar una muestra y no utilizar toda la población

8.1.1 Estimador de Horvitz - Thompson

\[ \begin{align} \widehat{t}_{y,\pi}&={\sum}_{s}\frac{y_k}{\pi_k}\\ &={\sum}_{s}f_ky_k \end{align} \]

8.1.1.1 Esperanza del estimador

\[ \begin{align} \forall_{k{\in}U}\pi_k>0{\implies}E(\widehat{t}_{y,\pi})&={t}_{y} \end{align} \]

\[ \begin{align} E[\widehat{t}_{y,\pi}]&=E\left[{\sum}_{s}\frac{y_k}{\pi_k}\right]\\ &=E\left[{\sum}_{U}I_k(S)\frac{y_k}{\pi_k}\right]\\ &={\sum}_{U}E\left[I_k(S)\right]\frac{y_k}{\pi_k}\\ &={\sum}_{U}\pi_k\frac{y_k}{\pi_k}\\ &={\sum}_{U}y_k\\ &=t_y \end{align} \]

8.1.1.2 Varianza del estimador

\[ \begin{align} V[\widehat{t}_{y,\pi}]&=V\left[{\sum}_{s}\frac{y_k}{\pi_k}\right]\\ &={\sum}_{U}V\left[I_k(S)\right]\frac{y_k^2}{\pi_k^2}+{\sum}_{U}{\sum}_{k{\neq}l}C\left[I_k(S),I_l(S)\right]\frac{y_k}{\pi_k}\frac{y_l}{\pi_l}\\ &={\sum}_{U}\left[\pi_k-\pi_k^2\right]\frac{y_k^2}{\pi_k^2}+{\sum}_{U}{\sum}_{k{\neq}l}\left[\pi_{kl}-\pi_k\pi_l\right]\frac{y_k}{\pi_k}\frac{y_l}{\pi_l}\\ &={{\sum}{\sum}}_{U}\left[\pi_{kl}-\pi_k\pi_l\right]\frac{y_k}{\pi_k}\frac{y_l}{\pi_l}\\ &={{\sum}{\sum}}_{U}\Delta_{kl}\frac{y_k}{\pi_k}\frac{y_l}{\pi_l} \end{align} \]

\[ \begin{align} n(S)=n{\implies}V[\widehat{t}_{y,\pi}]&=-\frac{1}{2}{{\sum}{\sum}}_{U}\Delta_{kl}\left[\frac{y_k}{\pi_k}-\frac{y_l}{\pi_l}\right]^2 \end{align} \]

\[ \begin{align} V[\widehat{t}_{y,\pi}]&=-\frac{1}{2}{{\sum}{\sum}}_{U}\Delta_{kl}\left[\frac{y_k}{\pi_k}-\frac{y_l}{\pi_l}\right]^2\\ &=-\frac{1}{2}{{\sum}{\sum}}_{U}\Delta_{kl}\left[\frac{y_k^2}{\pi_k^2}-2\frac{y_k}{\pi_k}\frac{y_l}{\pi_l}+\frac{y_l^2}{\pi_l^2}\right]\\ &=-\frac{1}{2}\left[{{\sum}{\sum}}_{U}\Delta_{kl}\frac{y_k^2}{\pi_k^2}-2{{\sum}{\sum}}_{U}\Delta_{kl}\frac{y_k}{\pi_k}\frac{y_l}{\pi_l}+{{\sum}{\sum}}_{U}\Delta_{kl}\frac{y_l^2}{\pi_l^2}\right]\\ &=-\frac{1}{2}\left[2{{\sum}{\sum}}_{U}\Delta_{kl}\frac{y_k^2}{\pi_k^2}-2{{\sum}{\sum}}_{U}\Delta_{kl}\frac{y_k}{\pi_k}\frac{y_l}{\pi_l}\right]\\ &=-{\sum}_{k{\in}U}\frac{y_k^2}{\pi_k^2}{\sum}_{l{\in}U}\Delta_{kl}+{{\sum}{\sum}}_{U}\Delta_{kl}\frac{y_k}{\pi_k}\frac{y_l}{\pi_l}\\ &=-\left[{\sum}_{k{\in}U}\frac{y_k^2}{\pi_k^2}\right]{\cdot}0+{{\sum}{\sum}}_{U}\Delta_{kl}\frac{y_k}{\pi_k}\frac{y_l}{\pi_l}\\ &={{\sum}{\sum}}_{U}\Delta_{kl}\frac{y_k}{\pi_k}\frac{y_l}{\pi_l} \end{align} \]

8.1.2 Estimador de la varianza

  • Un estimador para \(\widehat{t}_{y,\pi}\)

\[ \begin{align} \widehat{V}[\widehat{t}_{y,\pi}]&={{\sum}{\sum}}_{s}\frac{\Delta_{kl}}{\pi_{kl}}\frac{y_k}{\pi_k}\frac{y_l}{\pi_l} \end{align} \]

  • Si el diseño es de tamaño fijo \(n(S)=cte\)

\[ \begin{align} \widehat{V}[\widehat{t}_{y,\pi}]&=-\frac{1}{2}{{\sum}{\sum}}_{U}\frac{\Delta_{kl}}{\pi_{kl}}\left[\frac{y_k}{\pi_k}-\frac{y_l}{\pi_l}\right]^2 \end{align} \]

8.1.3 Intervalo de confianza

Suponiendo normalidad

\[{\sum}_{Q_0{\supset}s}\mathcal{p}(s)\stackrel{n{\rightarrow}\infty}{=}P\left(Z<z_{1-\alpha}\right)=1-\alpha\]

  • En la teoría

\[\widehat{t}_{y,\pi}{\pm}z_{1-\frac{\alpha}{2}}\sqrt{V[\widehat{t}_{y,\pi}]}\]

  • En la práctica

\[\widehat{t}_{y,\pi}{\pm}z_{1-\frac{\alpha}{2}}\sqrt{\widehat{V}[\widehat{t}_{y,\pi}]}\]

8.1.3.1 Confiabilidad

\[ {\sum}_{Q_0{\supset}s}\mathcal{p}\left(\widehat{t}_{y,\pi}-z_{1-\frac{\alpha}{2}}\sqrt{\widehat{V}[\widehat{t}_{y,\pi}]}<{t}_{y}<\widehat{t}_{y,\pi}+z_{1-\frac{\alpha}{2}}\sqrt{\widehat{V}[\widehat{t}_{y,\pi}]}\right)\stackrel{n{\rightarrow}\infty}{=}1-\alpha \]

8.1.3.2 Precisión

\[\left[\widehat{t}_{y,\pi}{+}z_{1-\frac{\alpha}{2}}\sqrt{\widehat{V}[\widehat{t}_{y,\pi}]}\right]-\left[\widehat{t}_{y,\pi}{-}z_{1-\frac{\alpha}{2}}\sqrt{\widehat{V}[\widehat{t}_{y,\pi}]}\right]=2{\times}z_{1-\frac{\alpha}{2}}\sqrt{\widehat{V}[\widehat{t}_{y,\pi}]}\]

8.1.4 Estimación de otros parámetros

\[ \begin{align} \widehat{\bar{y}}_{\pi}&=\frac{1}{N}\widehat{t}_{y,\pi}\\ &=\frac{1}{N}{\sum}_{s}\frac{y_k}{\pi_k}\\ \end{align} \]

\[ \begin{align} V\left[\widehat{\bar{y}}_{\pi}\right]&=V\left[\frac{1}{N}\widehat{t}_{y,\pi}\right]\\ &=\frac{1}{N^2}V\left[\widehat{t}_{y,\pi}\right]\\ \end{align} \]

\[ \begin{align} \widehat{V}\left[\widehat{\bar{y}}_{\pi}\right]&=\widehat{V}\left[\frac{1}{N}\widehat{t}_{y,\pi}\right]\\ &=\frac{1}{N^2}\widehat{V}\left[\widehat{t}_{y,\pi}\right]\\ \end{align} \]

\[ N={\sum}_{U}1 \]

\[ \widehat{N}_{\pi}={\sum}_{s}\frac{1}{\pi_{k}} \]

\[ \begin{align} \tilde{y}_{s}&=\frac{{\sum}_{s}\frac{y_k}{\pi_{k}}}{{\sum}_{s}\frac{1}{\pi_{k}}}\\ &=\frac{\widehat{t}_{y\pi}}{\widehat{N}_{\pi}} \end{align} \]

8.1.4.1 Aún cuando se conoce N

\[\forall_{k{\in}U}y_k=c\]

\[ \begin{align} \widehat{\bar{y}}_{\pi}&=\frac{1}{N}\widehat{t}_{y,\pi}\\ &=\frac{1}{N}{\sum}_{s}\frac{c}{\pi_k}\\ &=\frac{c}{N}{\sum}_{s}\frac{1}{\pi_k}\\ &=\frac{c}{N}\widehat{N}_{\pi}\\ &=c\frac{\widehat{N}_{\pi}}{N}\\ \end{align} \]

\[ \begin{align} \tilde{y}_{s}&=\frac{{\sum}_{s}\frac{c}{\pi_{k}}}{{\sum}_{s}\frac{1}{\pi_{k}}}\\ &=\frac{c{\sum}_{s}\frac{1}{\pi_{k}}}{{\sum}_{s}\frac{1}{\pi_{k}}}\\ &=\frac{c\widehat{N}_{\pi}}{\widehat{N}_{\pi}}\\ &=c \end{align} \]

8.1.5 Estimador alternativo

\[ \begin{align} \widehat{t}_{y,alt}&=N\tilde{y}_{s}\\ &=N\frac{{\sum}_{s}\frac{y_k}{\pi_{k}}}{{\sum}_{s}\frac{1}{\pi_{k}}}\\ &=N\frac{\widehat{t}_{y\pi}}{\widehat{N}_{\pi}}\\ &=\frac{N}{\widehat{N}_{\pi}}\widehat{t}_{y\pi} \end{align} \]

8.1.6 Estimador de Hansen - Hurtwitz

Diseño de muestreo con reemplazo; se extraen \(m\) muestras, de manera independiente, de tamaño \(1\)

\[m\text{ muestras independientes de tamaño }1\]

\[{\sum}_{U}p_k=1\]

\[p_k\text{: probabilidad de selección}\]

\[{\forall}_{k{\in}U\&i=1,\ldots,m}\mathcal{P}(k{\in}s_i)=p_k\]

El elemento seleccionado es reemplazado en la población y vuelve a ser parte del próximo sorteo aleatorio con la misma probabilidad de selección \(p_k\)

La probabilidad de inclusión \(\pi_k\) no es lo mismo que la probabilidad de selección \(p_k\)

\[\#(S)=n_{k}(S){\leq}m\]

\[E[n_{k}(S)]=mp_k\]

\[V[n_{k}(S)]=mp_k(1-p_k)\]

\[\pi_k\text{: es la probabilidad de que el elemento sea seleccionado al menos una vez en la muestra}\]

8.1.6.1 Diseño de muestreo (distribución multinomial)

\[ \mathcal{p}(s)= \begin{cases} \frac{m!}{n_1(s)!n_2(s)!{\cdots}n_N(s)!}{\prod}_{U}({p}_{k})^{n_k(s)} & \text{si }{\sum}_{U}n_k(s)=m\\ 0 & \text{en otro caso} \end{cases} \]

\[{\sum}_{x{\in}Q}\mathcal{p}(s)=1\]

8.1.6.2 Cardinalidad del soporte

\[\#(Q)=\binom{N+m-1}{m}\]

library(gtools)
combinations(n=5,r=2,v=U, set=TRUE, repeats.allowed=TRUE)
##       [,1]       [,2]      
##  [1,] "Jhon"     "Jhon"    
##  [2,] "Jhon"     "Nayibe"  
##  [3,] "Jhon"     "Nestor"  
##  [4,] "Jhon"     "Raul"    
##  [5,] "Jhon"     "Santiago"
##  [6,] "Nayibe"   "Nayibe"  
##  [7,] "Nayibe"   "Nestor"  
##  [8,] "Nayibe"   "Raul"    
##  [9,] "Nayibe"   "Santiago"
## [10,] "Nestor"   "Nestor"  
## [11,] "Nestor"   "Raul"    
## [12,] "Nestor"   "Santiago"
## [13,] "Raul"     "Raul"    
## [14,] "Raul"     "Santiago"
## [15,] "Santiago" "Santiago"

8.1.6.3 Probabilidades de inclusión

\[ \begin{align} \pi_k&=\mathcal{p}(k{\in}S)\\ &=1-\mathcal{p}(k{\notin}S)\\ &=1-\binom{m}{m}{(1-p_k)}^{m}{p_k}^{m-m}\\ &=1-{\left(1-p_k\right)}^{m} \end{align} \]

\[ \begin{align} \forall_{i=1,\ldots,m}\mathcal{P}(k,l{\not\in}s_i)&=\mathcal{P}(k{\not\in}s_i\&l{\not\in}s_i)\\ &=1-\mathcal{P}(k{\in}s_i{\cup}l{\in}s_i)\\ &=1-\left[\mathcal{P}(k{\in}s_i)+\mathcal{P}(l{\in}s_i)-\mathcal{P}(k{\in}s_i{\cap}l{\in}s_i)\right]\\ &=1-\left[p_k+p_l\right]\\ &=1-p_k-p_l \end{align} \]

\[ \begin{align} \mathcal{P}\left(k{\not\in}s{\cup}l{\not\in}s\right)&=\mathcal{P}\left(k{\notin}s\right)+\mathcal{P}\left(l{\not\in}s\right)-\mathcal{P}\left(k{\not\in}s{\cap}l{\not\in}s\right)\\ &=\mathcal{P}\left(k{\not\in}s\right)+\mathcal{P}\left(l{\not\in}s\right)-\mathcal{P}\left(k{\not\in}s{\&}l{\not\in}s\right)\\ &=\mathcal{P}\left(k{\not\in}s\right)+\mathcal{P}\left(l{\not\in}s\right)-\mathcal{P}\left(k,l{\not\in}s\right) \end{align} \]

\[ \begin{align} \pi_{kl}&=\mathcal{p}(k{\in}s{\cap}l{\in}s)\\ &=1-\mathcal{p}(k{\notin}s{\cup}l{\notin}s)\\ &=1-\left[\mathcal{p}(k{\notin}s)+\mathcal{p}(l{\notin}s)-\mathcal{p}({k,l}{\notin}s)\right]\\ &=1-\left[\left(1-p_k\right)^m+\left(1-p_l\right)^m-\binom{m}{m}{(1-p_k-p_l)}^{m}{(p_k+p_l)}^{m-m}\right]\\ &=1-{\left(1-p_k\right)}^{m}-{\left(1-p_l\right)}^{m}+{(1-p_k-p_l)}^{m} \end{align} \]

8.1.6.4 Muestra y extracción ordenada

Con \(N=5\) y \(m=2\)

  • Extracciones ordenadas con reemplazo

\[ \begin{align} {N}^{m}&={5}^{2}\\ &=25 \end{align} \]

extracciones <- expand.grid('primer elemnto'=1:5,'segundo elemento'=1:5)
head(extracciones)
##   primer elemnto segundo elemento
## 1              1                1
## 2              2                1
## 3              3                1
## 4              4                1
## 5              5                1
## 6              1                2
muestras <- OrderWR(N=5, m=2, ID=U)
head(muestras)
##      [,1]       [,2]      
## [1,] "Santiago" "Santiago"
## [2,] "Santiago" "Nestor"  
## [3,] "Santiago" "Nayibe"  
## [4,] "Santiago" "Raul"    
## [5,] "Santiago" "Jhon"    
## [6,] "Nestor"   "Santiago"
  • Muestras con reemplazo

\[ \begin{align} \binom{N+m-1}{m}&=\binom{5+2-1}{2}\\ &=15 \end{align} \]

extracciones[extracciones$`primer elemnto`<=extracciones$`segundo elemento`,]
##    primer elemnto segundo elemento
## 1               1                1
## 6               1                2
## 7               2                2
## 11              1                3
## 12              2                3
## 13              3                3
## 16              1                4
## 17              2                4
## 18              3                4
## 19              4                4
## 21              1                5
## 22              2                5
## 23              3                5
## 24              4                5
## 25              5                5
muestras[muestras[,1]<=muestras[,2],]
##       [,1]       [,2]      
##  [1,] "Santiago" "Santiago"
##  [2,] "Nestor"   "Santiago"
##  [3,] "Nestor"   "Nestor"  
##  [4,] "Nestor"   "Raul"    
##  [5,] "Nayibe"   "Santiago"
##  [6,] "Nayibe"   "Nestor"  
##  [7,] "Nayibe"   "Nayibe"  
##  [8,] "Nayibe"   "Raul"    
##  [9,] "Raul"     "Santiago"
## [10,] "Raul"     "Raul"    
## [11,] "Jhon"     "Santiago"
## [12,] "Jhon"     "Nestor"  
## [13,] "Jhon"     "Nayibe"  
## [14,] "Jhon"     "Raul"    
## [15,] "Jhon"     "Jhon"

\[ \mathcal{p}_{k}= \begin{cases} \frac{1}{8} & \text{para }k{\in}\{Santiago, Nestor\}\\ \frac{1}{4} & \text{para }k{\in}\{Nayibe, Raul, Jhon\} \end{cases} \]

\[ \begin{align} {\sum}_U\mathcal{p}_{k}&=\mathcal{p}_{Santiago}+\mathcal{p}_{Nestor}+\mathcal{p}_{Nayibe}+\mathcal{p}_{Raul}+\mathcal{p}_{Jhon}\\ &=1 \end{align} \]

pk <- c(1/8,1/8,1/4,1/4,1/4)
sum(pk)
## [1] 1
muestras <- as.data.frame(OrderWR(N=5, m=2, ID=U));colnames(muestras) <- c("e1", "e2")

\[p(\left\{Santiago, Santiago\right\})=\frac{2!}{2!0!0!0!0!}\left[\left(\frac{1}{8}\right)^{2}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[ 1,], n=t(c(2,0,0,0,0)), "p(s)"=dmultinom(x=c(2,0,0,0,0), prob=pk))
##         e1       e2 n.1 n.2 n.3 n.4 n.5     p(s)
## 1 Santiago Santiago   2   0   0   0   0 0.015625

\[p(\left\{Santiago, Nestor\right\})=\frac{2!}{1!1!0!0!0!}\left[\left(\frac{1}{8}\right)^{1}\left(\frac{1}{8}\right)^{1}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[ 2,], n=t(c(1,1,0,0,0)), "p(s)"=dmultinom(x=c(1,1,0,0,0), prob=pk))
##         e1     e2 n.1 n.2 n.3 n.4 n.5    p(s)
## 2 Santiago Nestor   1   1   0   0   0 0.03125

\[p(\left\{Santiago, Nayibe\right\})=\frac{2!}{1!0!1!0!0!}\left[\left(\frac{1}{8}\right)^{1}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[ 3,], n=t(c(1,0,1,0,0)), "p(s)"=dmultinom(x=c(1,0,1,0,0), prob=pk))
##         e1     e2 n.1 n.2 n.3 n.4 n.5   p(s)
## 3 Santiago Nayibe   1   0   1   0   0 0.0625

\[p(\left\{Santiago, Raul\right\})=\frac{2!}{1!0!0!1!0!}\left[\left(\frac{1}{8}\right)^{1}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[ 4,], n=t(c(1,0,0,1,0)), "p(s)"=dmultinom(x=c(1,0,0,1,0), prob=pk))
##         e1   e2 n.1 n.2 n.3 n.4 n.5   p(s)
## 4 Santiago Raul   1   0   0   1   0 0.0625

\[p(\left\{Santiago, Jhon\right\})=\frac{2!}{1!0!0!0!1!}\left[\left(\frac{1}{8}\right)^{1}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{1}\right]\]

cbind(muestras[ 5,], n=t(c(1,0,0,0,1)), "p(s)"=dmultinom(x=c(1,0,0,0,1), prob=pk))
##         e1   e2 n.1 n.2 n.3 n.4 n.5   p(s)
## 5 Santiago Jhon   1   0   0   0   1 0.0625

\[p(\left\{Nestor, Santiago\right\})=\frac{2!}{1!1!0!0!0!}\left[\left(\frac{1}{8}\right)^{1}\left(\frac{1}{8}\right)^{1}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[ 6,], n=t(c(1,1,0,0,0)), "p(s)"=dmultinom(x=c(1,1,0,0,0), prob=pk))
##       e1       e2 n.1 n.2 n.3 n.4 n.5    p(s)
## 6 Nestor Santiago   1   1   0   0   0 0.03125

\[p(\left\{Nestor, Nestor\right\})=\frac{2!}{0!2!0!0!0!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{2}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[ 7,], n=t(c(0,2,0,0,0)), "p(s)"=dmultinom(x=c(0,2,0,0,0), prob=pk))
##       e1     e2 n.1 n.2 n.3 n.4 n.5     p(s)
## 7 Nestor Nestor   0   2   0   0   0 0.015625

\[p(\left\{Nestor, Nayibe\right\})=\frac{2!}{0!1!1!0!0!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{1}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[ 8,], n=t(c(0,1,1,0,0)), "p(s)"=dmultinom(x=c(0,1,1,0,0), prob=pk))
##       e1     e2 n.1 n.2 n.3 n.4 n.5   p(s)
## 8 Nestor Nayibe   0   1   1   0   0 0.0625

\[p(\left\{Nestor, Raul\right\})=\frac{2!}{0!1!0!1!0!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{1}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[ 9,], n=t(c(0,1,0,1,0)), "p(s)"=dmultinom(x=c(1,0,0,0,1), prob=pk))
##       e1   e2 n.1 n.2 n.3 n.4 n.5   p(s)
## 9 Nestor Raul   0   1   0   1   0 0.0625

\[p(\left\{Nestor, Jhon\right\})=\frac{2!}{0!1!0!0!1!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{1}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{1}\right]\]

cbind(muestras[10,], n=t(c(0,1,0,0,1)), "p(s)"=dmultinom(x=c(0,1,0,0,1), prob=pk))
##        e1   e2 n.1 n.2 n.3 n.4 n.5   p(s)
## 10 Nestor Jhon   0   1   0   0   1 0.0625

\[p(\left\{Nayibe, Santiago\right\})=\frac{2!}{1!0!1!0!0!}\left[\left(\frac{1}{8}\right)^{1}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[11,], n=t(c(1,0,1,0,0)), "p(s)"=dmultinom(x=c(1,0,1,0,0), prob=pk))
##        e1       e2 n.1 n.2 n.3 n.4 n.5   p(s)
## 11 Nayibe Santiago   1   0   1   0   0 0.0625

\[p(\left\{Nayibe, Nestor\right\})=\frac{2!}{0!1!1!0!0!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{1}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[12,], n=t(c(0,1,1,0,0)), "p(s)"=dmultinom(x=c(0,1,1,0,0), prob=pk))
##        e1     e2 n.1 n.2 n.3 n.4 n.5   p(s)
## 12 Nayibe Nestor   0   1   1   0   0 0.0625

\[p(\left\{Nayibe, Nayibe\right\})=\frac{2!}{0!0!2!0!0!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{2}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[13,], n=t(c(0,0,2,0,0)), "p(s)"=dmultinom(x=c(0,0,2,0,0), prob=pk))
##        e1     e2 n.1 n.2 n.3 n.4 n.5   p(s)
## 13 Nayibe Nayibe   0   0   2   0   0 0.0625

\[p(\left\{Nayibe, Raul\right\})=\frac{2!}{0!0!1!1!0!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[14,], n=t(c(0,0,1,1,0)), "p(s)"=dmultinom(x=c(0,0,1,1,0), prob=pk))
##        e1   e2 n.1 n.2 n.3 n.4 n.5  p(s)
## 14 Nayibe Raul   0   0   1   1   0 0.125

\[p(\left\{Nayibe, Jhon\right\})=\frac{2!}{0!0!1!0!1!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{1}\right]\]

cbind(muestras[15,], n=t(c(0,0,1,0,1)), "p(s)"=dmultinom(x=c(0,0,1,0,1), prob=pk))
##        e1   e2 n.1 n.2 n.3 n.4 n.5  p(s)
## 15 Nayibe Jhon   0   0   1   0   1 0.125

\[p(\left\{Raul, Santiago\right\})=\frac{2!}{1!0!0!1!0!}\left[\left(\frac{1}{8}\right)^{1}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[16,], n=t(c(1,0,0,1,0)), "p(s)"=dmultinom(x=c(1,0,0,1,0), prob=pk))
##      e1       e2 n.1 n.2 n.3 n.4 n.5   p(s)
## 16 Raul Santiago   1   0   0   1   0 0.0625

\[p(\left\{Raul, Nestor\right\})=\frac{2!}{0!1!0!1!0!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{1}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[17,], n=t(c(0,1,0,1,0)), "p(s)"=dmultinom(x=c(0,1,0,1,0), prob=pk))
##      e1     e2 n.1 n.2 n.3 n.4 n.5   p(s)
## 17 Raul Nestor   0   1   0   1   0 0.0625

\[p(\left\{Raul, Nayibe\right\})=\frac{2!}{0!0!1!1!0!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[18,], n=t(c(0,0,1,1,0)), "p(s)"=dmultinom(x=c(0,0,1,1,0), prob=pk))
##      e1     e2 n.1 n.2 n.3 n.4 n.5  p(s)
## 18 Raul Nayibe   0   0   1   1   0 0.125

\[p(\left\{Raul, Raul\right\})=\frac{2!}{0!0!0!2!0!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{2}\left(\frac{1}{4}\right)^{0}\right]\]

cbind(muestras[19,], n=t(c(0,0,0,2,0)), "p(s)"=dmultinom(x=c(0,0,0,2,0), prob=pk))
##      e1   e2 n.1 n.2 n.3 n.4 n.5   p(s)
## 19 Raul Raul   0   0   0   2   0 0.0625

\[p(\left\{Raul, Jhon\right\})=\frac{2!}{0!0!0!1!1!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{1}\right]\]

cbind(muestras[20,], n=t(c(0,0,0,1,1)), "p(s)"=dmultinom(x=c(0,0,0,1,1), prob=pk))
##      e1   e2 n.1 n.2 n.3 n.4 n.5  p(s)
## 20 Raul Jhon   0   0   0   1   1 0.125

\[p(\left\{Jhon, Santiago\right\})=\frac{2!}{1!0!0!0!1!}\left[\left(\frac{1}{8}\right)^{1}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{1}\right]\]

cbind(muestras[21,], n=t(c(1,0,0,0,1)), "p(s)"=dmultinom(x=c(1,0,0,0,1), prob=pk))
##      e1       e2 n.1 n.2 n.3 n.4 n.5   p(s)
## 21 Jhon Santiago   1   0   0   0   1 0.0625

\[p(\left\{Jhon, Nestor\right\})=\frac{2!}{0!1!0!0!1!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{1}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{1}\right]\]

cbind(muestras[22,], n=t(c(0,1,0,0,1)), "p(s)"=dmultinom(x=c(0,1,0,0,1), prob=pk))
##      e1     e2 n.1 n.2 n.3 n.4 n.5   p(s)
## 22 Jhon Nestor   0   1   0   0   1 0.0625

\[p(\left\{Jhon, Nayibe\right\})=\frac{2!}{0!0!1!0!1!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{1}\right]\]

cbind(muestras[23,], n=t(c(0,0,1,0,1)), "p(s)"=dmultinom(x=c(0,0,1,0,1), prob=pk))
##      e1     e2 n.1 n.2 n.3 n.4 n.5  p(s)
## 23 Jhon Nayibe   0   0   1   0   1 0.125

\[p(\left\{Jhon, Raul\right\})=\frac{2!}{0!0!0!1!1!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{1}\left(\frac{1}{4}\right)^{1}\right]\]

cbind(muestras[24,], n=t(c(0,0,0,1,1)), "p(s)"=dmultinom(x=c(0,0,0,1,1), prob=pk))
##      e1   e2 n.1 n.2 n.3 n.4 n.5  p(s)
## 24 Jhon Raul   0   0   0   1   1 0.125

\[p(\left\{Jhon, Jhon\right\})=\frac{2!}{0!0!0!0!2!}\left[\left(\frac{1}{8}\right)^{0}\left(\frac{1}{8}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{0}\left(\frac{1}{4}\right)^{2}\right]\]

cbind(muestras[25,], n=t(c(0,0,0,0,2)), "p(s)"=dmultinom(x=c(0,0,0,0,2), prob=pk))
##      e1   e2 n.1 n.2 n.3 n.4 n.5   p(s)
## 25 Jhon Jhon   0   0   0   0   2 0.0625

8.1.6.5 Estimador del total poblacional

\[U_1,U_2,\ldots,U_n\text{ variables aleatorias }i.i.d\]

\[E\left[U_i\right]=\mu\]

\[V\left[U_i\right]=\sigma^2\]

\[\overline{U}={\sum}_{i=1}^{m}\frac{U_i}{m}\]

\[ \begin{align} E\left[\overline{U}\right]&=\frac{1}{m}{\sum}_{i=1}^{m}E\left[U_i\right]\\ &=\frac{1}{m}{\sum}_{i=1}^{m}\mu\\ &=\frac{1}{m}{m}\mu\\ &=\mu \end{align} \]

\[ \begin{align} V\left[\overline{U}\right]&=\frac{1}{m^2}{\sum}_{i=1}^{m}V\left[U_i\right]\\ &=\frac{\sigma^2}{m} \end{align} \]

\[ \begin{align} {\sum}_{i=1}^{m}\left(U_i-\overline{U}\right)^2&={\sum}_{i=1}^{m}\left(U_i^2-2U_i\overline{U}+\overline{U}^2\right)\\ &={\sum}_{i=1}^{m}U_i^2-2\overline{U}{\sum}_{i=1}^{m}U_i+{\sum}_{i=1}^{m}\overline{U}^2\\ &={\sum}_{i=1}^{m}U_i^2-2\overline{U}{m}\frac{{\sum}_{i=1}^{m}U_i}{m}+{m}\overline{U}^2\\ &={\sum}_{i=1}^{m}U_i^2-2{m}\overline{U}^2+{m}\overline{U}^2\\ &={\sum}_{i=1}^{m}U_i^2-m{\overline{U}}^2 \end{align} \]

\[ \begin{align} E\left[{\sum}_{i=1}^{m}(U_i-\overline{U})^2\right]&={\sum}_{i=1}^{m}E\left[U_i^2\right]-mE\left[{\overline{U}}^2\right] \end{align} \]

\[ \begin{align} E\left[U_i^2\right]&=V\left[U_i\right]+E^2\left[U_i\right]\\ &=\sigma^2+{\mu}^2 \end{align} \]

\[ \begin{align} E\left[\overline{U}^2\right]&=V\left[\overline{U}\right]+E^2\left[\overline{U}\right]\\ &=\frac{\sigma^2}{m}+{\mu}^2 \end{align} \]

\[ \begin{align} E\left[{\sum}_{i=1}^{m}(U_i-\overline{U})^2\right]&={\sum}_{i=1}^{m}\left[\sigma^2+{\mu}^2\right]-m\left[\frac{\sigma^2}{m}+{\mu}^2\right]\\ &=m\sigma^2+m{\mu}^2-m\frac{\sigma^2}{m}-m{\mu}^2\\ &=m\sigma^2-m\frac{\sigma^2}{m}\\ &=m\sigma^2-\sigma^2\\ &=(m-1)\sigma^2 \end{align} \]

\[ \begin{align} E\left[{\sum}_{i=1}^{m}(U_i-\overline{U})^2\right]&=(m-1)\sigma^2\\ E\left[\frac{{\sum}_{i=1}^{m}(U_i-\overline{U})^2}{m-1}\right]&=\sigma^2 \end{align} \]

\[\widehat{\sigma}^2=\frac{1}{m-1}{\sum}_{i=1}^{m}(U_i-\overline{U})^2\]

\[ \begin{align} \widehat{V}\left[\overline{U}\right]&=\frac{\frac{1}{m-1}{\sum}_{i=1}^{m}(U_i-\overline{U})^2}{m}\\ &=\frac{1}{m(m-1)}{\sum}_{i=1}^{m}(U_i-\overline{U})^2 \end{align} \]

8.1.6.6 Variable aleatoria expandida

\[{\forall}_{k{\in}U,i=1,\ldots,m}Z_i=\frac{y_{k_i}}{p_{k_i}}\]

\[ \begin{align} \mathcal{P}\left(Z_i=\frac{y_{k}}{p_{k}}\right)&=\mathcal{P}\left(\frac{y_{k_i}}{p_{k_i}}=\frac{y_{k}}{p_{k}}\right)\\ &={p}_{k} \end{align} \]

\[ \begin{align} E\left(Z_i\right)&={\sum}_{U}\frac{y_{k}}{p_{k}}p_k\\ &={\sum}_{U}y_{k}\\ &={t}_{y} \end{align} \]

\[ \begin{align} V\left(Z_i\right)&={\sum}_{U}\left({\frac{y_{k}}{p_{k}}-{t}_{y}}\right)^{2}p_k \end{align} \]

\[ \begin{align} \widehat{t}_{y,p}&=\frac{1}{m}{\sum}_{i=1}^{m}\frac{y_{k_i}}{p_{k_i}} \end{align} \]

\[\forall_{k{\in}U}p_k>0{\implies}E\left(\widehat{t}_{y,p}\right)={t}_{y}\]

\[ \begin{align} E\left[\widehat{t}_{y,p}\right]&=\frac{1}{m}{\sum}_{i=1}^{m}E\left[{Z_{i}}\right]\\ &=\frac{1}{m}{\sum}_{i=1}^{m}{\sum}_{k=1}^{N}\frac{y_{k}}{p_{k}}p_k\\ &=\frac{1}{m}{m}{\sum}_{k=1}^{N}\frac{y_{k}}{p_{k}}p_k\\ &={\sum}_{k=1}^{N}\frac{y_{k}}{p_{k}}p_k\\ &={\sum}_{k=1}^{N}{y_{k}}\\ &={t}_{y} \end{align} \]

\[ \begin{align} V\left[\widehat{t}_{y,p}\right]&=\frac{1}{{m}^{2}}{\sum}_{i=1}^{m}V\left[{Z_{i}}\right]\\ &=\frac{1}{{m}^{2}}{\sum}_{i=1}^{m}E\left[{Z_{i}}-E\left({Z_{i}}\right)\right]^{2}\\ &=\frac{1}{{m}^{2}}{m}E\left[{Z_{k}}-{t}_{y}\right]^{2}\\ &=\frac{1}{{m}}E\left[{Z_{k}}-{t}_{y}\right]^{2}\\ &=\frac{1}{{m}}{\sum}_{i=1}^{N}\left[{Z_{k}}-{t}_{y}\right]^{2}p_k\\ &=\frac{1}{{m}}{\sum}_{i=1}^{N}\left[\frac{y_{k}}{p_{k}}-{t}_{y}\right]^{2}p_k \end{align} \]

\[ \begin{align} V\left[\widehat{t}_{y,p}\right]&=\frac{1}{m}{\sum}_{i=1}^{N}\left[\frac{y_{k}}{p_{k}}-{t}_{y}\right]^{2}p_k\\ &=\frac{1}{m}{\sum}_{i=1}^{N}\left[\frac{y_{k}^{2}}{p_{k}^{2}}-2\frac{y_{k}}{p_{k}}{t}_{y}+{t}_{y}^{2}\right]p_k\\ &=\frac{1}{m}{\sum}_{i=1}^{N}\left[p_k\frac{y_{k}^{2}}{p_{k}^{2}}-2p_k\frac{y_{k}}{p_{k}}{t}_{y}+p_k{t}_{y}^{2}\right]\\ &=\frac{1}{m}{\sum}_{i=1}^{N}\left[\frac{y_{k}^{2}}{p_{k}}-2{y_{k}}{t}_{y}+p_k{t}_{y}^{2}\right]\\ &=\frac{1}{m}\left[{\sum}_{i=1}^{N}\frac{y_{k}^{2}}{p_{k}}-2{t}_{y}{\sum}_{i=1}^{N}{y_{k}}+{t}_{y}^{2}{\sum}_{i=1}^{N}p_k\right]\\ &=\frac{1}{m}\left[{\sum}_{i=1}^{N}\frac{y_{k}^{2}}{p_{k}}-2{t}_{y}{t}_{y}+{t}_{y}^{2}\right]\\ &=\frac{1}{m}\left[{\sum}_{i=1}^{N}\frac{y_{k}^{2}}{p_{k}}-{t}_{y}^{2}\right] \end{align} \]

\[ \begin{align} \widehat{V}\left[\widehat{t}_{y,p}\right]&=\frac{1}{m\left(m-1\right)}{\sum}_{i=1}^{m}\left[\frac{y_{i}}{p_{i}}-\widehat{t}_{y,p}\right]^{2}\\ \end{align} \]

\[ \begin{align} \frac{1}{m}E\left[{Z_{k}}-{t}_{y}\right]^{2}&=\frac{1}{m}V\left[{Z_{i}}\right]\\ \frac{1}{m}\widehat{V}\left[{Z_{i}}\right]&=\frac{1}{m}\frac{1}{m-1}{\sum}_{i=1}^{m}\left[{Z_{i}}-\bar{Z}\right]^{2}\\ &=\frac{1}{m}\frac{1}{m-1}{\sum}_{i=1}^{m}\left[\frac{y_{i}}{p_{i}}-\widehat{t}_{y,p}\right]^{2} \end{align} \]

\[ \begin{align} m\left(m-1\right)\widehat{V}\left[\widehat{t}_{y,p}\right]&={\sum}_{i=1}^{m}\left[\frac{y_{i}}{p_{i}}-\widehat{t}_{y,p}\right]^{2}\\ &={\sum}_{i=1}^{m}\left[\frac{y_{i}^{2}}{p_{i}^{2}}-2\widehat{t}_{y}\frac{y_{i}}{p_{i}}+\widehat{t}_{y,p}^{2}\right]\\ &={\sum}_{i=1}^{m}\left[\frac{y_{i}}{p_{i}}\right]^{2}-2\widehat{t}_{y,p}{\sum}_{i=1}^{m}\frac{y_{i}}{p_{i}}+m\widehat{t}_{y,p}^{2}\\ &={\sum}_{i=1}^{m}\left[\frac{y_{i}}{p_{i}}\right]^{2}-2\widehat{t}_{y,p}\frac{m}{m}{\sum}_{i=1}^{m}\frac{y_{i}}{p_{i}}+m\widehat{t}_{y,p}^{2}\\ &={\sum}_{i=1}^{m}\left[\frac{y_{i}}{p_{i}}\right]^{2}-2\widehat{t}_{y,p}{m}\frac{1}{m}{\sum}_{i=1}^{m}\frac{y_{i}}{p_{i}}+m\widehat{t}_{y,p}^{2}\\ &={\sum}_{i=1}^{m}\left[\frac{y_{i}}{p_{i}}\right]^{2}-2\widehat{t}_{y,p}{m}\widehat{t}_{y,p}+{m}\widehat{t}_{y,p}^{2}\\ &={\sum}_{i=1}^{m}\left[\frac{y_{i}}{p_{i}}\right]^{2}-2{m}\widehat{t}_{y,p}^{2}+m\widehat{t}_{y,p}^{2}\\ &={\sum}_{i=1}^{m}\left[\frac{y_{i}}{p_{i}}\right]^{2}-{m}\widehat{t}_{y,p}^{2}\\ \widehat{V}\left[\widehat{t}_{y,p}\right]&=\frac{1}{m\left(m-1\right)}\left\{{\sum}_{i=1}^{m}\left[\frac{y_{i}}{p_{i}}\right]^{2}-{m}\widehat{t}_{y,p}^{2}\right\} \end{align} \]

y
##            yk
## Santiago   32
## Nestor    442
## Nayibe   5454
## Raul      646
## Jhon      656
pk <- c(.5, .12, .20, .155, .025)
sum(pk)
## [1] 1
s <- sample(x=5, size=3, replace=TRUE, prob=pk)
s
## [1] 4 4 3
pkm <- pk[s]
pkm
## [1] 0.155 0.155 0.200
ym <- y[s]
ym
## [1]  646  646 5454
typ <- mean(ym[1:3]/pkm[1:3])
typ
## [1] 11868.49
typ <- HH(ym,pkm)
typ
##                          y
## Estimation     11868.49462
## Standard Error  7700.75269
## CVE               64.88399
Vtyp <- (1/3)*(1/(3-1))*sum((ym[1:3]/pkm[1:3]-typ["Estimation","y"])**2)
Vtyp
## [1] 59301592
cve <- sqrt(Vtyp)/typ["Estimation","y"]
cve
## [1] 0.6488399

8.2 Estrategia \(\left(\widehat{t}_{y,\pi},p(s)\right)\)

8.2.1 \(\widehat{t}_{y,\pi}={\sum}_{s}\frac{y_k}{\pi_k}\)

\[ \begin{align} \widehat{t}_{y,\pi}&={\sum}_{s}d_ky_k \end{align} \]

data.frame(Q,p,Ind,typi)
##          X1     X2    p X1.1 X2.1 X3 X4 X5     ybars
## 1  Santiago Nestor 0.13    1    1  0  0  0  1355.172
## 2  Santiago Nayibe 0.20    1    0  1  0  0 11417.672
## 3  Santiago   Raul 0.15    1    0  0  1  0  2012.748
## 4  Santiago   Jhon 0.10    1    0  0  0  1  2484.802
## 5    Nestor Nayibe 0.15    0    1  1  0  0 12662.500
## 6    Nestor   Raul 0.04    0    1  0  1  0  3257.576
## 7    Nestor   Jhon 0.02    0    1  0  0  1  3729.630
## 8    Nayibe   Raul 0.06    0    0  1  1  0 13320.076
## 9    Nayibe   Jhon 0.07    0    0  1  0  1 13792.130
## 10     Raul   Jhon 0.08    0    0  0  1  1  4387.205

8.2.1.1 \(s=\left\{Santiago,Nestor\right\}\)

\[ \begin{align} \widehat{t}_{y,\pi}&=\breve{y}_{Santiago}+\breve{y}_{Nestor}\\ &=\frac{y_{Santiago}}{\pi_{Santiago}}+\frac{y_{Nestor}}{\pi_{Nestor}} \end{align} \]

typi <- y[1]/pik[1]+y[2]/pik[2]
typi
## [1] 1355.172

\[\widehat{t}_{y,\pi}={\sum}_{k{\in}\{{Santiago},{Nestor}\}}\frac{y_k}{\pi_k}\]

HT(y[c(1,2)],pik[c(1,2)])
##          [,1]
## [1,] 1355.172

8.2.1.2 \(s=\left\{Santiago,Nayibe\right\}\)

\[ \begin{align} \widehat{t}_{y,\pi}&=\breve{y}_{Santiago}+\breve{y}_{Nayibe}\\ &=\frac{y_{Santiago}}{\pi_{Santiago}}+\frac{y_{Nayibe}}{\pi_{Nayibe}} \end{align} \]

typi <- y[1]/pik[1]+y[3]/pik[3]
typi
## [1] 11417.67

\[\widehat{t}_{y,\pi}={\sum}_{k{\in}\{{Santiago},{Nayibe}\}}\frac{y_k}{\pi_k}\]

HT(y[c(1,3)],pik[c(1,3)])
##          [,1]
## [1,] 11417.67

8.2.1.3 \(s=\left\{Santiago,Raul\right\}\)

\[ \begin{align} \widehat{t}_{y,\pi}&=\breve{y}_{Santiago}+\breve{y}_{Raul}\\ &=\frac{y_{Santiago}}{\pi_{Santiago}}+\frac{y_{Raul}}{\pi_{Raul}} \end{align} \]

typi <- y[1]/pik[1]+y[4]/pik[4]
typi
## [1] 2012.748

\[\widehat{t}_{y,\pi}={\sum}_{k{\in}\{{Santiago},{Raul}\}}\frac{y_k}{\pi_k}\]

HT(y[c(1,4)],pik[c(1,4)])
##          [,1]
## [1,] 2012.748

8.2.1.4 \(s=\left\{Santiago,Jhon\right\}\)

\[ \begin{align} \widehat{t}_{y,\pi}&=\breve{y}_{Santiago}+\breve{y}_{Jhon}\\ &=\frac{y_{Santiago}}{\pi_{Santiago}}+\frac{y_{Jhon}}{\pi_{Jhon}} \end{align} \]

typi <- y[1]/pik[1]+y[5]/pik[5]
typi
## [1] 2484.802

\[\widehat{t}_{y,\pi}={\sum}_{k{\in}\{{Santiago},{Jhon}\}}\frac{y_k}{\pi_k}\]

HT(y[c(1,5)],pik[c(1,5)])
##          [,1]
## [1,] 2484.802

8.2.1.5 \(s=\left\{Nestor,Nayibe\right\}\)

\[ \begin{align} \widehat{t}_{y,\pi}&=\breve{y}_{Nestor}+\breve{y}_{Nayibe}\\ &=\frac{y_{Nestor}}{\pi_{Nestor}}+\frac{y_{Nayibe}}{\pi_{Nayibe}} \end{align} \]

typi <- y[2]/pik[2]+y[3]/pik[3]
typi
## [1] 12662.5

\[\widehat{t}_{y,\pi}={\sum}_{k{\in}\{{Nestor},{Nayibe}\}}\frac{y_k}{\pi_k}\]

HT(y[c(2,3)],pik[c(2,3)])
##         [,1]
## [1,] 12662.5

8.2.1.6 \(s=\left\{Nestor,Raul\right\}\)

\[ \begin{align} \widehat{t}_{y,\pi}&=\breve{y}_{Nestor}+\breve{y}_{Raul}\\ &=\frac{y_{Nestor}}{\pi_{Nestor}}+\frac{y_{Raul}}{\pi_{Raul}} \end{align} \]

typi <- y[2]/pik[2]+y[4]/pik[4]
typi
## [1] 3257.576

\[\widehat{t}_{y,\pi}={\sum}_{k{\in}\{{Nestor},{Raul}\}}\frac{y_k}{\pi_k}\]

HT(y[c(2,4)],pik[c(2,4)])
##          [,1]
## [1,] 3257.576

8.2.1.7 \(s=\left\{Nestor,Jhon\right\}\)

\[ \begin{align} \widehat{t}_{y,\pi}&=\breve{y}_{Nestor}+\breve{y}_{Jhon}\\ &=\frac{y_{Nestor}}{\pi_{Nestor}}+\frac{y_{Jhon}}{\pi_{Jhon}} \end{align} \]

typi <- y[2]/pik[2]+y[5]/pik[5]
typi
## [1] 3729.63

\[\widehat{t}_{y,\pi}={\sum}_{k{\in}\{{Nestor},{Jhon}\}}\frac{y_k}{\pi_k}\]

HT(y[c(2,5)],pik[c(2,5)])
##         [,1]
## [1,] 3729.63

8.2.1.8 \(s=\left\{Nayibe,Raul\right\}\)

\[ \begin{align} \widehat{t}_{y,\pi}&=\breve{y}_{Nayibe}+\breve{y}_{Raul}\\ &=\frac{y_{Nayibe}}{\pi_{Nayibe}}+\frac{y_{Raul}}{\pi_{Raul}} \end{align} \]

typi <- y[3]/pik[3]+y[4]/pik[4]
typi
## [1] 13320.08

\[\widehat{t}_{y,\pi}={\sum}_{k{\in}\{{Nayibe},{Raul}\}}\frac{y_k}{\pi_k}\]

HT(y[c(3,4)],pik[c(3,4)])
##          [,1]
## [1,] 13320.08

8.2.1.9 \(s=\left\{Nayibe,Jhon\right\}\)

\[ \begin{align} \widehat{t}_{y,\pi}&=\breve{y}_{Nayibe}+\breve{y}_{Jhon}\\ &=\frac{y_{Nayibe}}{\pi_{Nayibe}}+\frac{y_{Jhon}}{\pi_{Jhon}} \end{align} \]

typi <- y[3]/pik[3]+y[5]/pik[5]
typi
## [1] 13792.13

\[\widehat{t}_{y,\pi}={\sum}_{k{\in}\{{Nayibe},{Jhon}\}}\frac{y_k}{\pi_k}\]

HT(y[c(3,5)],pik[c(3,5)])
##          [,1]
## [1,] 13792.13

8.2.1.10 \(s=\left\{Raul,Jhon\right\}\)

\[ \begin{align} \widehat{t}_{y,\pi}&=\breve{y}_{Raul}+\breve{y}_{Jhon}\\ &=\frac{y_{Raul}}{\pi_{Raul}}+\frac{y_{Jhon}}{\pi_{Jhon}} \end{align} \]

typi <- y[4]/pik[4]+y[5]/pik[5]
typi
## [1] 4387.205

\[\widehat{t}_{y,\pi}={\sum}_{k{\in}\{{Raul},{Jhon}\}}\frac{y_k}{\pi_k}\]

HT(y[c(4,5)],pik[c(4,5)])
##          [,1]
## [1,] 4387.205

8.2.2 \(\widehat{V}[\widehat{t}_{y,\pi}]={{\sum}{\sum}}_{s}\frac{\Delta_{kl}}{\pi_{kl}}\frac{y_k}{\pi_k}\frac{y_l}{\pi_l}\)

8.2.2.1 \(s=\left\{Santiago,Nestor\right\}\)

\[ \Delta_{{Santiago},{Santiago}}=\pi_{{Santiago},{Santiago}}-\pi_{{Santiago}}\pi_{{Santiago}} \]

delta11 <- pikl["Santiago","Santiago"]-pikl["Santiago","Santiago"]*pikl["Santiago","Santiago"]
delta11
## [1] 0.2436

\[ \Delta_{{Santiago},{Nestor}}=\pi_{{Santiago},{Nestor}}-\pi_{{Santiago}}\pi_{{Nestor}} \]

delta12 <- pikl["Santiago","Nestor"]-pikl["Santiago","Santiago"]*pikl["Nestor","Nestor"]
delta12
## [1] -0.0672

\[ \Delta_{{Nestor},{Santiago}}=\pi_{{Nestor},{Santiago}}-\pi_{{Nestor}}\pi_{{Santiago}} \]

delta21 <- pikl["Nestor","Santiago"]-pikl["Nestor","Nestor"]*pikl["Santiago","Santiago"]
delta21
## [1] -0.0672

\[ \Delta_{{Nestor},{Nestor}}=\pi_{{Nestor},{Nestor}}-\pi_{{Nestor}}\pi_{{Nestor}} \]

delta22 <- pikl["Nestor","Nestor"]-pikl["Nestor","Nestor"]*pikl["Nestor","Nestor"]
delta22
## [1] 0.2244

\[ \frac{\Delta_{{Santiago},{Santiago}}}{\pi_{{Santiago},{Santiago}}}=\frac{\pi_{{Santiago},{Santiago}}-\pi_{{Santiago}}\pi_{{Santiago}}}{\pi_{{Santiago},{Santiago}}} \]

delta11/pikl["Santiago","Santiago"]
## [1] 0.42

\[ \frac{\Delta_{{Santiago},{Nestor}}}{\pi_{{Santiago},{Nestor}}}=\frac{\pi_{{Santiago},{Nestor}}-\pi_{{Santiago}}\pi_{{Nestor}}}{\pi_{{Santiago},{Nestor}}} \]

delta12/pikl["Santiago","Nestor"]
## [1] -0.5169231

\[ \frac{\Delta_{{Nestor},{Santiago}}}{\pi_{{Nestor},{Santiago}}}=\frac{\pi_{{Nestor},{Santiago}}-\pi_{{Nestor}}\pi_{{Santiago}}}{\pi_{{Nestor},{Santiago}}} \]

delta21/pikl["Nestor","Santiago"]
## [1] -0.5169231

\[ \frac{\Delta_{{Nestor},{Nestor}}}{\pi_{{Nestor},{Nestor}}}=\frac{\pi_{{Nestor},{Nestor}}-\pi_{{Nestor}}\pi_{{Nestor}}}{\pi_{{Nestor},{Nestor}}} \]

delta22/pikl["Nestor","Nestor"]
## [1] 0.66

\[y_{Santiago}\]

y1 <- y[1]
y1
## [1] 32

\[y_{Nestor}\]

y2 <- y[2]
y2
## [1] 442

\[\breve{y}_{Santiago}=\frac{y_{Santiago}}{\pi_{Santiago}}\]

y1/pik[1]
## [1] 55.17241

\[\breve{y}_{Nestor}=\frac{y_{Nestor}}{\pi_{Nestor}}\]

y2/pik[2]
## [1] 1300

\[ \begin{align} \widehat{V}[\widehat{t}_{y,\pi}]&=\frac{\Delta_{{Santiago},{Santiago}}}{\pi_{{Santiago},{Santiago}}}\frac{y_{Santiago}^{2}}{\pi_{Santiago}^{2}}+2\frac{\Delta_{{Santiago},{Nestor}}}{\pi_{{Santiago},{Nestor}}}\frac{y_{Santiago}}{\pi_{Santiago}}\frac{y_{Nestor}}{\pi_{Nestor}}+\frac{\Delta_{{Nestor},{Nestor}}}{\pi_{{Nestor},{Nestor}}}\frac{y_{Nestor}^{2}}{\pi_{Nestor}^{2}} \end{align} \]

Vtypi <- delta11/pikl["Santiago","Santiago"]*(y1/pik[1])**2+2*delta12/pikl["Santiago","Nestor"]*(y1/pik[1])*(y2/pik[2])+delta22/pikl["Nestor","Nestor"]*(y2/pik[2])**2
Vtypi
## [1] 1042527

8.2.2.2 \(s=\left\{Santiago,Nayibe\right\}\)

\[ \Delta_{{Santiago},{Santiago}}=\pi_{{Santiago},{Santiago}}-\pi_{{Santiago}}\pi_{{Santiago}} \]

delta11 <- pikl["Santiago","Santiago"]-pikl["Santiago","Santiago"]*pikl["Santiago","Santiago"]
delta11
## [1] 0.2436

\[ \Delta_{{Santiago},{Nayibe}}=\pi_{{Santiago},{Nayibe}}-\pi_{{Santiago}}\pi_{{Nayibe}} \]

delta13 <- pikl["Santiago","Nayibe"]-pikl["Santiago","Santiago"]*pikl["Nayibe","Nayibe"]
delta13
## [1] -0.0784

\[ \Delta_{{Nayibe},{Santiago}}=\pi_{{Nayibe},{Santiago}}-\pi_{{Nayibe}}\pi_{{Santiago}} \]

delta31 <- pikl["Nayibe","Santiago"]-pikl["Nayibe","Nayibe"]*pikl["Santiago","Santiago"]
delta31
## [1] -0.0784

\[ \Delta_{{Nayibe},{Nayibe}}=\pi_{{Nayibe},{Nayibe}}-\pi_{{Nayibe}}\pi_{{Nayibe}} \]

delta33 <- pikl["Nayibe","Nayibe"]-pikl["Nayibe","Nayibe"]*pikl["Nayibe","Nayibe"]
delta33
## [1] 0.2496

\[ \frac{\Delta_{{Santiago},{Santiago}}}{\pi_{{Santiago},{Santiago}}}=\frac{\pi_{{Santiago},{Santiago}}-\pi_{{Santiago}}\pi_{{Santiago}}}{\pi_{{Santiago},{Santiago}}} \]

delta11/pikl["Santiago","Santiago"]
## [1] 0.42

\[ \frac{\Delta_{{Santiago},{Nayibe}}}{\pi_{{Santiago},{Nayibe}}}=\frac{\pi_{{Santiago},{Nayibe}}-\pi_{{Santiago}}\pi_{{Nayibe}}}{\pi_{{Santiago},{Nayibe}}} \]

delta13/pikl["Santiago","Nayibe"]
## [1] -0.392

\[ \frac{\Delta_{{Nayibe},{Santiago}}}{\pi_{{Nayibe},{Santiago}}}=\frac{\pi_{{Nayibe},{Santiago}}-\pi_{{Nayibe}}\pi_{{Santiago}}}{\pi_{{Nayibe},{Santiago}}} \]

delta31/pikl["Nayibe","Santiago"]
## [1] -0.392

\[ \frac{\Delta_{{Nayibe},{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}}=\frac{\pi_{{Nayibe},{Nayibe}}-\pi_{{Nayibe}}\pi_{{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}} \]

delta33/pikl["Nayibe","Nayibe"]
## [1] 0.52

\[y_{Santiago}\]

y1 <- y[1]
y1
## [1] 32

\[y_{Nayibe}\]

y3 <- y[3]
y3
## [1] 5454

\[\breve{y}_{Santiago}=\frac{y_{Santiago}}{\pi_{Santiago}}\]

y1/pik[1]
## [1] 55.17241

\[\breve{y}_{Nayibe}=\frac{y_{Nayibe}}{\pi_{Nayibe}}\]

y3/pik[3]
## [1] 11362.5

\[ \begin{align} \widehat{V}[\widehat{t}_{y,\pi}]&=\frac{\Delta_{{Santiago},{Santiago}}}{\pi_{{Santiago},{Santiago}}}\frac{y_{Santiago}^{2}}{\pi_{Santiago}^{2}}+2\frac{\Delta_{{Santiago},{Nayibe}}}{\pi_{{Santiago},{Nayibe}}}\frac{y_{Santiago}}{\pi_{Santiago}}\frac{y_{Nayibe}}{\pi_{Nayibe}}+\frac{\Delta_{{Nayibe},{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}}\frac{y_{Nayibe}^{2}}{\pi_{Nayibe}^{2}} \end{align} \]

Vtypi <- delta11/pikl["Santiago","Santiago"]*(y1/pik[1])**2+2*delta13/pikl["Santiago","Nayibe"]*(y1/pik[1])*(y3/pik[3])+delta33/pikl["Nayibe","Nayibe"]*(y3/pik[3])**2
Vtypi
## [1] 66645123

8.2.2.3 \(s=\left\{Santiago,Raul\right\}\)

\[ \Delta_{{Santiago},{Santiago}}=\pi_{{Santiago},{Santiago}}-\pi_{{Santiago}}\pi_{{Santiago}} \]

delta11 <- pikl["Santiago","Santiago"]-pikl["Santiago","Santiago"]*pikl["Santiago","Santiago"]
delta11
## [1] 0.2436

\[ \Delta_{{Santiago},{Raul}}=\pi_{{Santiago},{Raul}}-\pi_{{Santiago}}\pi_{{Raul}} \]

delta14 <- pikl["Santiago","Raul"]-pikl["Santiago","Santiago"]*pikl["Raul","Raul"]
delta14
## [1] -0.0414

\[ \Delta_{{Raul},{Santiago}}=\pi_{{Raul},{Santiago}}-\pi_{{Raul}}\pi_{{Santiago}} \]

delta41 <- pikl["Raul","Santiago"]-pikl["Raul","Raul"]*pikl["Santiago","Santiago"]
delta41
## [1] -0.0414

\[ \Delta_{{Raul},{Raul}}=\pi_{{Raul},{Raul}}-\pi_{{Raul}}\pi_{{Raul}} \]

delta44 <- pikl["Raul","Raul"]-pikl["Raul","Raul"]*pikl["Raul","Raul"]
delta44
## [1] 0.2211

\[ \frac{\Delta_{{Santiago},{Santiago}}}{\pi_{{Santiago},{Santiago}}}=\frac{\pi_{{Santiago},{Santiago}}-\pi_{{Santiago}}\pi_{{Santiago}}}{\pi_{{Santiago},{Santiago}}} \]

delta11/pikl["Santiago","Santiago"]
## [1] 0.42

\[ \frac{\Delta_{{Santiago},{Raul}}}{\pi_{{Santiago},{Raul}}}=\frac{\pi_{{Santiago},{Raul}}-\pi_{{Santiago}}\pi_{{Raul}}}{\pi_{{Santiago},{Raul}}} \]

delta14/pikl["Santiago","Raul"]
## [1] -0.276

\[ \frac{\Delta_{{Raul},{Santiago}}}{\pi_{{Raul},{Santiago}}}=\frac{\pi_{{Raul},{Santiago}}-\pi_{{Raul}}\pi_{{Santiago}}}{\pi_{{Raul},{Santiago}}} \]

delta41/pikl["Raul","Santiago"]
## [1] -0.276

\[ \frac{\Delta_{{Raul},{Raul}}}{\pi_{{Raul},{Raul}}}=\frac{\pi_{{Raul},{Raul}}-\pi_{{Raul}}\pi_{{Raul}}}{\pi_{{Raul},{Raul}}} \]

delta44/pikl["Raul","Raul"]
## [1] 0.67

\[y_{Santiago}\]

y1 <- y[1]
y1
## [1] 32

\[y_{Raul}\]

y4 <- y[4]
y4
## [1] 646

\[\breve{y}_{Santiago}=\frac{y_{Santiago}}{\pi_{Santiago}}\]

y1/pik[1]
## [1] 55.17241

\[\breve{y}_{Raul}=\frac{y_{Raul}}{\pi_{Raul}}\]

y4/pik[4]
## [1] 1957.576

\[ \begin{align} \widehat{V}[\widehat{t}_{y,\pi}]&=\frac{\Delta_{{Santiago},{Santiago}}}{\pi_{{Santiago},{Santiago}}}\frac{y_{Santiago}^{2}}{\pi_{Santiago}^{2}}+2\frac{\Delta_{{Santiago},{Raul}}}{\pi_{{Santiago},{Raul}}}\frac{y_{Santiago}}{\pi_{Santiago}}\frac{y_{Raul}}{\pi_{Raul}}+\frac{\Delta_{{Raul},{Raul}}}{\pi_{{Raul},{Raul}}}\frac{y_{Raul}^{2}}{\pi_{Raul}^{2}} \end{align} \]

Vtypi <- delta11/pikl["Santiago","Santiago"]*(y1/pik[1])**2+2*delta14/pikl["Santiago","Raul"]*(y1/pik[1])*(y4/pik[4])+delta44/pikl["Raul","Raul"]*(y4/pik[4])**2
Vtypi
## [1] 2509169

8.2.2.4 \(s=\left\{Santiago,Jhon\right\}\)

\[ \Delta_{{Santiago},{Santiago}}=\pi_{{Santiago},{Santiago}}-\pi_{{Santiago}}\pi_{{Santiago}} \]

delta11 <- pikl["Santiago","Santiago"]-pikl["Santiago","Santiago"]*pikl["Santiago","Santiago"]
delta11
## [1] 0.2436

\[ \Delta_{{Santiago},{Jhon}}=\pi_{{Santiago},{Jhon}}-\pi_{{Santiago}}\pi_{{Jhon}} \]

delta15 <- pikl["Santiago","Jhon"]-pikl["Santiago","Santiago"]*pikl["Jhon","Jhon"]
delta15
## [1] -0.0566

\[ \Delta_{{Jhon},{Santiago}}=\pi_{{Jhon},{Santiago}}-\pi_{{Jhon}}\pi_{{Santiago}} \]

delta51 <- pikl["Jhon","Santiago"]-pikl["Jhon","Jhon"]*pikl["Santiago","Santiago"]
delta51
## [1] -0.0566

\[ \Delta_{{Jhon},{Jhon}}=\pi_{{Jhon},{Jhon}}-\pi_{{Jhon}}\pi_{{Jhon}} \]

delta55 <- pikl["Jhon","Jhon"]-pikl["Jhon","Jhon"]*pikl["Jhon","Jhon"]
delta55
## [1] 0.1971

\[ \frac{\Delta_{{Santiago},{Santiago}}}{\pi_{{Santiago},{Santiago}}}=\frac{\pi_{{Santiago},{Santiago}}-\pi_{{Santiago}}\pi_{{Santiago}}}{\pi_{{Santiago},{Santiago}}} \]

delta11/pikl["Santiago","Santiago"]
## [1] 0.42

\[ \frac{\Delta_{{Santiago},{Jhon}}}{\pi_{{Santiago},{Jhon}}}=\frac{\pi_{{Santiago},{Jhon}}-\pi_{{Santiago}}\pi_{{Jhon}}}{\pi_{{Santiago},{Jhon}}} \]

delta15/pikl["Santiago","Jhon"]
## [1] -0.566

\[ \frac{\Delta_{{Jhon},{Santiago}}}{\pi_{{Jhon},{Santiago}}}=\frac{\pi_{{Jhon},{Santiago}}-\pi_{{Jhon}}\pi_{{Santiago}}}{\pi_{{Jhon},{Santiago}}} \]

delta51/pikl["Jhon","Santiago"]
## [1] -0.566

\[ \frac{\Delta_{{Jhon},{Jhon}}}{\pi_{{Jhon},{Jhon}}}=\frac{\pi_{{Jhon},{Jhon}}-\pi_{{Jhon}}\pi_{{Jhon}}}{\pi_{{Jhon},{Jhon}}} \]

delta55/pikl["Jhon","Jhon"]
## [1] 0.73

\[y_{Santiago}\]

y1 <- y[1]
y1
## [1] 32

\[y_{Jhon}\]

y5 <- y[5]
y5
## [1] 656

\[\breve{y}_{Santiago}=\frac{y_{Santiago}}{\pi_{Santiago}}\]

y1/pik[1]
## [1] 55.17241

\[\breve{y}_{Jhon}=\frac{y_{Jhon}}{\pi_{Jhon}}\]

y5/pik[5]
## [1] 2429.63

\[ \begin{align} \widehat{V}[\widehat{t}_{y,\pi}]&=\frac{\Delta_{{Santiago},{Santiago}}}{\pi_{{Santiago},{Santiago}}}\frac{y_{Santiago}^{2}}{\pi_{Santiago}^{2}}+2\frac{\Delta_{{Santiago},{Jhon}}}{\pi_{{Santiago},{Jhon}}}\frac{y_{Santiago}}{\pi_{Santiago}}\frac{y_{Jhon}}{\pi_{Jhon}}+\frac{\Delta_{{Jhon},{Jhon}}}{\pi_{{Jhon},{Jhon}}}\frac{y_{Jhon}^{2}}{\pi_{Jhon}^{2}} \end{align} \]

Vtypi <- delta11/pikl["Santiago","Santiago"]*(y1/pik[1])**2+2*delta15/pikl["Santiago","Jhon"]*(y1/pik[1])*(y5/pik[5])+delta55/pikl["Jhon","Jhon"]*(y5/pik[5])**2
Vtypi
## [1] 4158799

8.2.2.5 \(s=\left\{Nestor,Nayibe\right\}\)

\[ \Delta_{{Nestor},{Nestor}}=\pi_{{Nestor},{Nestor}}-\pi_{{Nestor}}\pi_{{Nestor}} \]

delta22 <- pikl["Nestor","Nestor"]-pikl["Nestor","Nestor"]*pikl["Nestor","Nestor"]
delta22
## [1] 0.2244

\[ \Delta_{{Nestor},{Nayibe}}=\pi_{{Nestor},{Nayibe}}-\pi_{{Nestor}}\pi_{{Nayibe}} \]

delta23 <- pikl["Nestor","Nayibe"]-pikl["Nestor","Nestor"]*pikl["Nayibe","Nayibe"]
delta23
## [1] -0.0132

\[ \Delta_{{Nayibe},{Nestor}}=\pi_{{Nayibe},{Nestor}}-\pi_{{Nayibe}}\pi_{{Nestor}} \]

delta32 <- pikl["Nayibe","Nestor"]-pikl["Nayibe","Nayibe"]*pikl["Nestor","Nestor"]
delta32
## [1] -0.0132

\[ \Delta_{{Nayibe},{Nayibe}}=\pi_{{Nayibe},{Nayibe}}-\pi_{{Nayibe}}\pi_{{Nayibe}} \]

delta33 <- pikl["Nayibe","Nayibe"]-pikl["Nayibe","Nayibe"]*pikl["Nayibe","Nayibe"]
delta33
## [1] 0.2496

\[ \frac{\Delta_{{Nestor},{Nestor}}}{\pi_{{Nestor},{Nestor}}}=\frac{\pi_{{Nestor},{Nestor}}-\pi_{{Nestor}}\pi_{{Nestor}}}{\pi_{{Nestor},{Nestor}}} \]

delta22/pikl["Nestor","Nestor"]
## [1] 0.66

\[ \frac{\Delta_{{Nestor},{Nayibe}}}{\pi_{{Nestor},{Nayibe}}}=\frac{\pi_{{Nestor},{Nayibe}}-\pi_{{Nestor}}\pi_{{Nayibe}}}{\pi_{{Nestor},{Nayibe}}} \]

delta23/pikl["Nestor","Nayibe"]
## [1] -0.088

\[ \frac{\Delta_{{Nayibe},{Nestor}}}{\pi_{{Nayibe},{Nestor}}}=\frac{\pi_{{Nayibe},{Nestor}}-\pi_{{Nayibe}}\pi_{{Nestor}}}{\pi_{{Nayibe},{Nestor}}} \]

delta32/pikl["Nayibe","Nestor"]
## [1] -0.088

\[ \frac{\Delta_{{Nayibe},{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}}=\frac{\pi_{{Nayibe},{Nayibe}}-\pi_{{Nayibe}}\pi_{{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}} \]

delta33/pikl["Nayibe","Nayibe"]
## [1] 0.52

\[y_{Nestor}\]

y2 <- y[2]
y2
## [1] 442

\[y_{Nayibe}\]

y3 <- y[3]
y3
## [1] 5454

\[\breve{y}_{Nestor}=\frac{y_{Nestor}}{\pi_{Nestor}}\]

y2/pik[2]
## [1] 1300

\[\breve{y}_{Nayibe}=\frac{y_{Nayibe}}{\pi_{Nayibe}}\]

y3/pik[3]
## [1] 11362.5

\[ \begin{align} \widehat{V}[\widehat{t}_{y,\pi}]&=\frac{\Delta_{{Nestor},{Nestor}}}{\pi_{{Nestor},{Nestor}}}\frac{y_{Nestor}^{2}}{\pi_{Nestor}^{2}}+2\frac{\Delta_{{Nestor},{Nayibe}}}{\pi_{{Nestor},{Nayibe}}}\frac{y_{Nestor}}{\pi_{Nestor}}\frac{y_{Nayibe}}{\pi_{Nayibe}}+\frac{\Delta_{{Nayibe},{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}}\frac{y_{Nayibe}^{2}}{\pi_{Nayibe}^{2}} \end{align} \]

Vtypi <- delta22/pikl["Nestor","Nestor"]*(y2/pik[2])**2+2*delta23/pikl["Nestor","Nayibe"]*(y2/pik[2])*(y3/pik[3])+delta33/pikl["Nayibe","Nayibe"]*(y3/pik[3])**2
Vtypi
## [1] 65650991

8.2.2.6 \(s=\left\{Nestor,Raul\right\}\)

\[ \Delta_{{Nestor},{Nestor}}=\pi_{{Nestor},{Nestor}}-\pi_{{Nestor}}\pi_{{Nestor}} \]

delta22 <- pikl["Nestor","Nestor"]-pikl["Nestor","Nestor"]*pikl["Nestor","Nestor"]
delta22
## [1] 0.2244

\[ \Delta_{{Nestor},{Raul}}=\pi_{{Nestor},{Raul}}-\pi_{{Nestor}}\pi_{{Raul}} \]

delta24 <- pikl["Nestor","Raul"]-pikl["Nestor","Nestor"]*pikl["Raul","Raul"]
delta24
## [1] -0.0722

\[ \Delta_{{Raul},{Nestor}}=\pi_{{Raul},{Nestor}}-\pi_{{Raul}}\pi_{{Nestor}} \]

delta42 <- pikl["Raul","Nestor"]-pikl["Raul","Raul"]*pikl["Nestor","Nestor"]
delta42
## [1] -0.0722

\[ \Delta_{{Raul},{Raul}}=\pi_{{Raul},{Raul}}-\pi_{{Raul}}\pi_{{Raul}} \]

delta44 <- pikl["Raul","Raul"]-pikl["Raul","Raul"]*pikl["Raul","Raul"]
delta44
## [1] 0.2211

\[ \frac{\Delta_{{Nestor},{Nestor}}}{\pi_{{Nestor},{Nestor}}}=\frac{\pi_{{Nestor},{Nestor}}-\pi_{{Nestor}}\pi_{{Nestor}}}{\pi_{{Nestor},{Nestor}}} \]

delta22/pikl["Nestor","Nestor"]
## [1] 0.66

\[ \frac{\Delta_{{Nestor},{Raul}}}{\pi_{{Nestor},{Raul}}}=\frac{\pi_{{Nestor},{Raul}}-\pi_{{Nestor}}\pi_{{Raul}}}{\pi_{{Nestor},{Raul}}} \]

delta24/pikl["Nestor","Raul"]
## [1] -1.805

\[ \frac{\Delta_{{Raul},{Nestor}}}{\pi_{{Raul},{Nestor}}}=\frac{\pi_{{Raul},{Nestor}}-\pi_{{Raul}}\pi_{{Nestor}}}{\pi_{{Raul},{Nestor}}} \]

delta42/pikl["Raul","Nestor"]
## [1] -1.805

\[ \frac{\Delta_{{Raul},{Raul}}}{\pi_{{Raul},{Raul}}}=\frac{\pi_{{Raul},{Raul}}-\pi_{{Raul}}\pi_{{Raul}}}{\pi_{{Raul},{Raul}}} \]

delta44/pikl["Raul","Raul"]
## [1] 0.67

\[y_{Nestor}\]

y2 <- y[2]
y2
## [1] 442

\[y_{Raul}\]

y4 <- y[4]
y4
## [1] 646

\[\breve{y}_{Nestor}=\frac{y_{Nestor}}{\pi_{Nestor}}\]

y2/pik[2]
## [1] 1300

\[\breve{y}_{Raul}=\frac{y_{Raul}}{\pi_{Raul}}\]

y4/pik[4]
## [1] 1957.576

\[ \begin{align} \widehat{V}[\widehat{t}_{y,\pi}]&=\frac{\Delta_{{Nestor},{Nestor}}}{\pi_{{Nestor},{Nestor}}}\frac{y_{Nestor}^{2}}{\pi_{Nestor}^{2}}+2\frac{\Delta_{{Nestor},{Raul}}}{\pi_{{Nestor},{Raul}}}\frac{y_{Nestor}}{\pi_{Nestor}}\frac{y_{Raul}}{\pi_{Raul}}+\frac{\Delta_{{Raul},{Raul}}}{\pi_{{Raul},{Raul}}}\frac{y_{Raul}^{2}}{\pi_{Raul}^{2}} \end{align} \]

Vtypi <- delta22/pikl["Nestor","Nestor"]*(y2/pik[2])**2+2*delta24/pikl["Nestor","Raul"]*(y2/pik[2])*(y4/pik[4])+delta44/pikl["Raul","Raul"]*(y4/pik[4])**2
Vtypi
## [1] -5503994

8.2.2.7 \(s=\left\{Nestor,Jhon\right\}\)

\[ \Delta_{{Nestor},{Nestor}}=\pi_{{Nestor},{Nestor}}-\pi_{{Nestor}}\pi_{{Nestor}} \]

delta22 <- pikl["Nestor","Nestor"]-pikl["Nestor","Nestor"]*pikl["Nestor","Nestor"]
delta22
## [1] 0.2244

\[ \Delta_{{Nestor},{Jhon}}=\pi_{{Nestor},{Jhon}}-\pi_{{Nestor}}\pi_{{Jhon}} \]

delta25 <- pikl["Nestor","Jhon"]-pikl["Nestor","Nestor"]*pikl["Jhon","Jhon"]
delta25
## [1] -0.0718

\[ \Delta_{{Jhon},{Nestor}}=\pi_{{Jhon},{Nestor}}-\pi_{{Jhon}}\pi_{{Nestor}} \]

delta52 <- pikl["Jhon","Nestor"]-pikl["Jhon","Jhon"]*pikl["Nestor","Nestor"]
delta52
## [1] -0.0718

\[ \Delta_{{Jhon},{Jhon}}=\pi_{{Jhon},{Jhon}}-\pi_{{Jhon}}\pi_{{Jhon}} \]

delta55 <- pikl["Jhon","Jhon"]-pikl["Jhon","Jhon"]*pikl["Jhon","Jhon"]
delta55
## [1] 0.1971

\[ \frac{\Delta_{{Nestor},{Nestor}}}{\pi_{{Nestor},{Nestor}}}=\frac{\pi_{{Nestor},{Nestor}}-\pi_{{Nestor}}\pi_{{Nestor}}}{\pi_{{Nestor},{Nestor}}} \]

delta22/pikl["Nestor","Nestor"]
## [1] 0.66

\[ \frac{\Delta_{{Nestor},{Jhon}}}{\pi_{{Nestor},{Jhon}}}=\frac{\pi_{{Nestor},{Jhon}}-\pi_{{Nestor}}\pi_{{Jhon}}}{\pi_{{Nestor},{Jhon}}} \]

delta25/pikl["Nestor","Jhon"]
## [1] -3.59

\[ \frac{\Delta_{{Jhon},{Nestor}}}{\pi_{{Jhon},{Nestor}}}=\frac{\pi_{{Jhon},{Nestor}}-\pi_{{Jhon}}\pi_{{Nestor}}}{\pi_{{Jhon},{Nestor}}} \]

delta52/pikl["Jhon","Nestor"]
## [1] -3.59

\[ \frac{\Delta_{{Jhon},{Jhon}}}{\pi_{{Jhon},{Jhon}}}=\frac{\pi_{{Jhon},{Jhon}}-\pi_{{Jhon}}\pi_{{Jhon}}}{\pi_{{Jhon},{Jhon}}} \]

delta55/pikl["Jhon","Jhon"]
## [1] 0.73

\[y_{Nestor}\]

y2 <- y[2]
y2
## [1] 442

\[y_{Jhon}\]

y5 <- y[5]
y5
## [1] 656

\[\breve{y}_{Nestor}=\frac{y_{Nestor}}{\pi_{Nestor}}\]

y2/pik[2]
## [1] 1300

\[\breve{y}_{Jhon}=\frac{y_{Jhon}}{\pi_{Jhon}}\]

y5/pik[5]
## [1] 2429.63

\[ \begin{align} \widehat{V}[\widehat{t}_{y,\pi}]&=\frac{\Delta_{{Nestor},{Nestor}}}{\pi_{{Nestor},{Nestor}}}\frac{y_{Nestor}^{2}}{\pi_{Nestor}^{2}}+2\frac{\Delta_{{Nestor},{Jhon}}}{\pi_{{Nestor},{Jhon}}}\frac{y_{Nestor}}{\pi_{Nestor}}\frac{y_{Jhon}}{\pi_{Jhon}}+\frac{\Delta_{{Jhon},{Jhon}}}{\pi_{{Jhon},{Jhon}}}\frac{y_{Jhon}^{2}}{\pi_{Jhon}^{2}} \end{align} \]

Vtypi <- delta22/pikl["Nestor","Nestor"]*(y2/pik[2])**2+2*delta25/pikl["Nestor","Jhon"]*(y2/pik[2])*(y5/pik[5])+delta55/pikl["Jhon","Jhon"]*(y5/pik[5])**2
Vtypi
## [1] -17253500

8.2.2.8 \(s=\left\{Nayibe,Raul\right\}\)

\[ \Delta_{{Nayibe},{Nayibe}}=\pi_{{Nayibe},{Nayibe}}-\pi_{{Nayibe}}\pi_{{Nayibe}} \]

delta33 <- pikl["Nayibe","Nayibe"]-pikl["Nayibe","Nayibe"]*pikl["Nayibe","Nayibe"]
delta33
## [1] 0.2496

\[ \Delta_{{Nayibe},{Raul}}=\pi_{{Nayibe},{Raul}}-\pi_{{Nayibe}}\pi_{{Raul}} \]

delta34 <- pikl["Nayibe","Raul"]-pikl["Nayibe","Nayibe"]*pikl["Raul","Raul"]
delta34
## [1] -0.0984

\[ \Delta_{{Raul},{Nayibe}}=\pi_{{Raul},{Nayibe}}-\pi_{{Raul}}\pi_{{Nayibe}} \]

delta43 <- pikl["Raul","Nayibe"]-pikl["Raul","Raul"]*pikl["Nayibe","Nayibe"]
delta43
## [1] -0.0984

\[ \Delta_{{Raul},{Raul}}=\pi_{{Raul},{Raul}}-\pi_{{Raul}}\pi_{{Raul}} \]

delta44 <- pikl["Raul","Raul"]-pikl["Raul","Raul"]*pikl["Raul","Raul"]
delta44
## [1] 0.2211

\[ \frac{\Delta_{{Nayibe},{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}}=\frac{\pi_{{Nayibe},{Nayibe}}-\pi_{{Nayibe}}\pi_{{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}} \]

delta33/pikl["Nayibe","Nayibe"]
## [1] 0.52

\[ \frac{\Delta_{{Nayibe},{Raul}}}{\pi_{{Nayibe},{Raul}}}=\frac{\pi_{{Nayibe},{Raul}}-\pi_{{Nayibe}}\pi_{{Raul}}}{\pi_{{Nayibe},{Raul}}} \]

delta34/pikl["Nayibe","Raul"]
## [1] -1.64

\[ \frac{\Delta_{{Raul},{Nayibe}}}{\pi_{{Raul},{Nayibe}}}=\frac{\pi_{{Raul},{Nayibe}}-\pi_{{Raul}}\pi_{{Nayibe}}}{\pi_{{Raul},{Nayibe}}} \]

delta43/pikl["Raul","Nayibe"]
## [1] -1.64

\[ \frac{\Delta_{{Raul},{Raul}}}{\pi_{{Raul},{Raul}}}=\frac{\pi_{{Raul},{Raul}}-\pi_{{Raul}}\pi_{{Raul}}}{\pi_{{Raul},{Raul}}} \]

delta44/pikl["Raul","Raul"]
## [1] 0.67

\[y_{Nayibe}\]

y3 <- y[3]
y3
## [1] 5454

\[y_{Raul}\]

y4 <- y[4]
y4
## [1] 646

\[\breve{y}_{Nayibe}=\frac{y_{Nayibe}}{\pi_{Nayibe}}\]

y3/pik[3]
## [1] 11362.5

\[\breve{y}_{Raul}=\frac{y_{Raul}}{\pi_{Raul}}\]

y4/pik[4]
## [1] 1957.576

\[ \begin{align} \widehat{V}[\widehat{t}_{y,\pi}]&=\frac{\Delta_{{Nayibe},{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}}\frac{y_{Nayibe}^{2}}{\pi_{Nayibe}^{2}}+2\frac{\Delta_{{Nayibe},{Raul}}}{\pi_{{Nayibe},{Raul}}}\frac{y_{Nayibe}}{\pi_{Nayibe}}\frac{y_{Raul}}{\pi_{Raul}}+\frac{\Delta_{{Raul},{Raul}}}{\pi_{{Raul},{Raul}}}\frac{y_{Raul}^{2}}{\pi_{Raul}^{2}} \end{align} \]

Vtypi <- delta33/pikl["Nayibe","Nayibe"]*(y3/pik[3])**2+2*delta34/pikl["Nayibe","Raul"]*(y3/pik[3])*(y4/pik[4])+delta44/pikl["Raul","Raul"]*(y4/pik[4])**2
Vtypi
## [1] -3254051

8.2.2.9 \(s=\left\{Nayibe,Jhon\right\}\)

\[ \Delta_{{Nayibe},{Nayibe}}=\pi_{{Nayibe},{Nayibe}}-\pi_{{Nayibe}}\pi_{{Nayibe}} \]

delta33 <- pikl["Nayibe","Nayibe"]-pikl["Nayibe","Nayibe"]*pikl["Nayibe","Nayibe"]
delta33
## [1] 0.2496

\[ \Delta_{{Nayibe},{Jhon}}=\pi_{{Nayibe},{Jhon}}-\pi_{{Nayibe}}\pi_{{Jhon}} \]

delta35 <- pikl["Nayibe","Jhon"]-pikl["Nayibe","Nayibe"]*pikl["Jhon","Jhon"]
delta35
## [1] -0.0596

\[ \Delta_{{Jhon},{Nayibe}}=\pi_{{Jhon},{Nayibe}}-\pi_{{Jhon}}\pi_{{Nayibe}} \]

delta53 <- pikl["Jhon","Nayibe"]-pikl["Jhon","Jhon"]*pikl["Nayibe","Nayibe"]
delta53
## [1] -0.0596

\[ \Delta_{{Jhon},{Jhon}}=\pi_{{Jhon},{Jhon}}-\pi_{{Jhon}}\pi_{{Jhon}} \]

delta55 <- pikl["Jhon","Jhon"]-pikl["Jhon","Jhon"]*pikl["Jhon","Jhon"]
delta55
## [1] 0.1971

\[ \frac{\Delta_{{Nayibe},{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}}=\frac{\pi_{{Nayibe},{Nayibe}}-\pi_{{Nayibe}}\pi_{{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}} \]

delta33/pikl["Nayibe","Nayibe"]
## [1] 0.52

\[ \frac{\Delta_{{Nayibe},{Jhon}}}{\pi_{{Nayibe},{Jhon}}}=\frac{\pi_{{Nayibe},{Jhon}}-\pi_{{Nayibe}}\pi_{{Jhon}}}{\pi_{{Nayibe},{Jhon}}} \]

delta35/pikl["Nayibe","Jhon"]
## [1] -0.8514286

\[ \frac{\Delta_{{Jhon},{Nayibe}}}{\pi_{{Jhon},{Nayibe}}}=\frac{\pi_{{Jhon},{Nayibe}}-\pi_{{Jhon}}\pi_{{Nayibe}}}{\pi_{{Jhon},{Nayibe}}} \]

delta53/pikl["Jhon","Nayibe"]
## [1] -0.8514286

\[ \frac{\Delta_{{Jhon},{Jhon}}}{\pi_{{Jhon},{Jhon}}}=\frac{\pi_{{Jhon},{Jhon}}-\pi_{{Jhon}}\pi_{{Jhon}}}{\pi_{{Jhon},{Jhon}}} \]

delta55/pikl["Jhon","Jhon"]
## [1] 0.73

\[y_{Nayibe}\]

y3 <- y[3]
y3
## [1] 5454

\[y_{Jhon}\]

y5 <- y[5]
y5
## [1] 656

\[\breve{y}_{Nayibe}=\frac{y_{Nayibe}}{\pi_{Nayibe}}\]

y3/pik[3]
## [1] 11362.5

\[\breve{y}_{Jhon}=\frac{y_{Jhon}}{\pi_{Jhon}}\]

y5/pik[5]
## [1] 2429.63

\[ \begin{align} \widehat{V}[\widehat{t}_{y,\pi}]&=\frac{\Delta_{{Nayibe},{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}}\frac{y_{Nayibe}^{2}}{\pi_{Nayibe}^{2}}+2\frac{\Delta_{{Nayibe},{Jhon}}}{\pi_{{Nayibe},{Jhon}}}\frac{y_{Nayibe}}{\pi_{Nayibe}}\frac{y_{Jhon}}{\pi_{Jhon}}+\frac{\Delta_{{Jhon},{Jhon}}}{\pi_{{Jhon},{Jhon}}}\frac{y_{Jhon}^{2}}{\pi_{Jhon}^{2}} \end{align} \]

Vtypi <- delta33/pikl["Nayibe","Nayibe"]*(y3/pik[3])**2+2*delta35/pikl["Nayibe","Jhon"]*(y3/pik[3])*(y5/pik[5])+delta55/pikl["Jhon","Jhon"]*(y5/pik[5])**2
Vtypi
## [1] 24434385

8.2.2.10 \(s=\left\{Raul,Jhon\right\}\)

\[ \Delta_{{Raul},{Raul}}=\pi_{{Raul},{Raul}}-\pi_{{Raul}}\pi_{{Raul}} \]

delta44 <- pikl["Raul","Raul"]-pikl["Raul","Raul"]*pikl["Raul","Raul"]
delta44
## [1] 0.2211

\[ \Delta_{{Raul},{Jhon}}=\pi_{{Raul},{Jhon}}-\pi_{{Raul}}\pi_{{Jhon}} \]

delta45 <- pikl["Raul","Jhon"]-pikl["Raul","Raul"]*pikl["Jhon","Jhon"]
delta45
## [1] -0.0091

\[ \Delta_{{Jhon},{Raul}}=\pi_{{Jhon},{Raul}}-\pi_{{Jhon}}\pi_{{Raul}} \]

delta54 <- pikl["Jhon","Raul"]-pikl["Jhon","Jhon"]*pikl["Raul","Raul"]
delta54
## [1] -0.0091

\[ \Delta_{{Jhon},{Jhon}}=\pi_{{Jhon},{Jhon}}-\pi_{{Jhon}}\pi_{{Jhon}} \]

delta55 <- pikl["Jhon","Jhon"]-pikl["Jhon","Jhon"]*pikl["Jhon","Jhon"]
delta55
## [1] 0.1971

\[ \frac{\Delta_{{Raul},{Raul}}}{\pi_{{Raul},{Raul}}}=\frac{\pi_{{Raul},{Raul}}-\pi_{{Raul}}\pi_{{Raul}}}{\pi_{{Raul},{Raul}}} \]

delta44/pikl["Raul","Raul"]
## [1] 0.67

\[ \frac{\Delta_{{Raul},{Jhon}}}{\pi_{{Raul},{Jhon}}}=\frac{\pi_{{Raul},{Jhon}}-\pi_{{Raul}}\pi_{{Jhon}}}{\pi_{{Raul},{Jhon}}} \]

delta45/pikl["Raul","Jhon"]
## [1] -0.11375

\[ \frac{\Delta_{{Jhon},{Raul}}}{\pi_{{Jhon},{Raul}}}=\frac{\pi_{{Jhon},{Raul}}-\pi_{{Jhon}}\pi_{{Raul}}}{\pi_{{Jhon},{Raul}}} \]

delta54/pikl["Jhon","Raul"]
## [1] -0.11375

\[ \frac{\Delta_{{Jhon},{Jhon}}}{\pi_{{Jhon},{Jhon}}}=\frac{\pi_{{Jhon},{Jhon}}-\pi_{{Jhon}}\pi_{{Jhon}}}{\pi_{{Jhon},{Jhon}}} \]

delta55/pikl["Jhon","Jhon"]
## [1] 0.73

\[y_{Raul}\]

y4 <- y[4]
y4
## [1] 646

\[y_{Jhon}\]

y5 <- y[5]
y5
## [1] 656

\[\breve{y}_{Raul}=\frac{y_{Raul}}{\pi_{Raul}}\]

y4/pik[4]
## [1] 1957.576

\[\breve{y}_{Jhon}=\frac{y_{Jhon}}{\pi_{Jhon}}\]

y5/pik[5]
## [1] 2429.63

\[ \begin{align} \widehat{V}[\widehat{t}_{y,\pi}]&=\frac{\Delta_{{Raul},{Raul}}}{\pi_{{Raul},{Raul}}}\frac{y_{Raul}^{2}}{\pi_{Raul}^{2}}+2\frac{\Delta_{{Raul},{Jhon}}}{\pi_{{Raul},{Jhon}}}\frac{y_{Raul}}{\pi_{Raul}}\frac{y_{Jhon}}{\pi_{Jhon}}+\frac{\Delta_{{Jhon},{Jhon}}}{\pi_{{Jhon},{Jhon}}}\frac{y_{Jhon}^{2}}{\pi_{Jhon}^{2}} \end{align} \]

Vtypi <- delta44/pikl["Raul","Raul"]*(y4/pik[4])**2+2*delta45/pikl["Raul","Jhon"]*(y4/pik[4])*(y5/pik[5])+delta55/pikl["Jhon","Jhon"]*(y5/pik[5])**2
Vtypi
## [1] 5794740

8.2.3 \(cve\left(\widehat{t}_{y,\pi}\right)=\frac{\sqrt{\widehat{V}[\widehat{t}_{y,\pi}]}}{\widehat{t}_{y,\pi}}\)

8.2.3.1 \(s=\left\{Santiago,Nestor\right\}\)

\[ \begin{align} cve\left(\widehat{t}_{y,\pi}\right)&=\frac{\sqrt{\frac{\Delta_{{Santiago},{Santiago}}}{\pi_{{Santiago},{Santiago}}}\frac{y_{Santiago}^{2}}{\pi_{Santiago}^{2}}+2\frac{\Delta_{{Santiago},{Nestor}}}{\pi_{{Santiago},{Nestor}}}\frac{y_{Santiago}}{\pi_{Santiago}}\frac{y_{Nestor}}{\pi_{Nestor}}+\frac{\Delta_{{Nestor},{Nestor}}}{\pi_{{Nestor},{Nestor}}}\frac{y_{Nestor}^{2}}{\pi_{Nestor}^{2}}}}{\frac{y_{Santiago}}{\pi_{Santiago}}+\frac{y_{Nestor}}{\pi_{Nestor}}} \end{align} \]

cvetypi <- sqrt(delta11/pikl["Santiago","Santiago"]*(y1/pik[1])**2+2*delta12/pikl["Santiago","Nestor"]*(y1/pik[1])*(y2/pik[2])+delta55/pikl["Nestor","Nestor"]*(y2/pik[2])**2)/(y[1]/pik[1]+y[2]/pik[2])
cvetypi
## [1] 0.7026973

8.2.3.2 \(s=\left\{Santiago,Nayibe\right\}\)

\[ \begin{align} cve\left(\widehat{t}_{y,\pi}\right)&=\frac{\sqrt{\frac{\Delta_{{Santiago},{Santiago}}}{\pi_{{Santiago},{Santiago}}}\frac{y_{Santiago}^{2}}{\pi_{Santiago}^{2}}+2\frac{\Delta_{{Santiago},{Nayibe}}}{\pi_{{Santiago},{Nayibe}}}\frac{y_{Santiago}}{\pi_{Santiago}}\frac{y_{Nayibe}}{\pi_{Nayibe}}+\frac{\Delta_{{Nayibe},{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}}\frac{y_{Nayibe}^{2}}{\pi_{Nayibe}^{2}}}}{\frac{y_{Santiago}}{\pi_{Santiago}}+\frac{y_{Nayibe}}{\pi_{Nayibe}}} \end{align} \]

cvetypi <- sqrt(delta11/pikl["Santiago","Santiago"]*(y1/pik[1])**2+2*delta13/pikl["Santiago","Nayibe"]*(y1/pik[1])*(y3/pik[3])+delta33/pikl["Nayibe","Nayibe"]*(y3/pik[3])**2)/(y[1]/pik[1]+y[3]/pik[3])
cvetypi
## [1] 0.7150009

8.2.3.3 \(s=\left\{Santiago,Raul\right\}\)

\[ \begin{align} cve\left(\widehat{t}_{y,\pi}\right)&=\frac{\sqrt{\frac{\Delta_{{Santiago},{Santiago}}}{\pi_{{Santiago},{Santiago}}}\frac{y_{Santiago}^{2}}{\pi_{Santiago}^{2}}+2\frac{\Delta_{{Santiago},{Nestor}}}{\pi_{{Santiago},{Nestor}}}\frac{y_{Santiago}}{\pi_{Santiago}}\frac{y_{Nestor}}{\pi_{Nestor}}+\frac{\Delta_{{Nestor},{Nestor}}}{\pi_{{Nestor},{Nestor}}}\frac{y_{Nestor}^{2}}{\pi_{Nestor}^{2}}}}{\frac{y_{Santiago}}{\pi_{Santiago}}+\frac{y_{Nestor}}{\pi_{Nestor}}} \end{align} \]

cvetypi <- sqrt(delta11/pikl["Santiago","Santiago"]*(y1/pik[1])**2+2*delta14/pikl["Santiago","Raul"]*(y1/pik[1])*(y4/pik[4])+delta44/pikl["Raul","Raul"]*(y4/pik[4])**2)/(y[1]/pik[1]+y[4]/pik[4])
cvetypi
## [1] 0.7870014

8.2.3.4 \(s=\left\{Santiago,Jhon\right\}\)

\[ \begin{align} cve\left(\widehat{t}_{y,\pi}\right)&=\frac{\sqrt{\frac{\Delta_{{Santiago},{Santiago}}}{\pi_{{Santiago},{Santiago}}}\frac{y_{Santiago}^{2}}{\pi_{Santiago}^{2}}+2\frac{\Delta_{{Santiago},{Jhon}}}{\pi_{{Santiago},{Jhon}}}\frac{y_{Santiago}}{\pi_{Santiago}}\frac{y_{Jhon}}{\pi_{Jhon}}+\frac{\Delta_{{Jhon},{Jhon}}}{\pi_{{Jhon},{Jhon}}}\frac{y_{Jhon}^{2}}{\pi_{Jhon}^{2}}}}{\frac{y_{Santiago}}{\pi_{Santiago}}+\frac{y_{Jhon}}{\pi_{Jhon}}} \end{align} \]

cvetypi <- sqrt(delta11/pikl["Santiago","Santiago"]*(y1/pik[1])**2+2*delta15/pikl["Santiago","Jhon"]*(y1/pik[1])*(y5/pik[5])+delta55/pikl["Raul","Raul"]*(y5/pik[5])**2)/(y[1]/pik[1]+y[5]/pik[5])
cvetypi
## [1] 0.739374

8.2.3.5 \(s=\left\{Nestor,Nayibe\right\}\)

\[ \begin{align} cve\left(\widehat{t}_{y,\pi}\right)&=\frac{\sqrt{\frac{\Delta_{{Nestor},{Nestor}}}{\pi_{{Nestor},{Nestor}}}\frac{y_{Nestor}^{2}}{\pi_{Nestor}^{2}}+2\frac{\Delta_{{Nestor},{Nayibe}}}{\pi_{{Nestor},{Nayibe}}}\frac{y_{Nestor}}{\pi_{Nestor}}\frac{y_{Nayibe}}{\pi_{Nayibe}}+\frac{\Delta_{{Nayibe},{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}}\frac{y_{Nayibe}^{2}}{\pi_{Nayibe}^{2}}}}{\frac{y_{Nestor}}{\pi_{Nestor}}+\frac{y_{Nayibe}}{\pi_{Nayibe}}} \end{align} \]

cvetypi <- sqrt(delta22/pikl["Nestor","Nestor"]*(y2/pik[2])**2+2*delta23/pikl["Nestor","Nayibe"]*(y2/pik[2])*(y3/pik[3])+delta33/pikl["Nayibe","Nayibe"]*(y3/pik[3])**2)/(y[2]/pik[2]+y[3]/pik[3])
cvetypi
## [1] 0.6398839

8.2.3.6 \(s=\left\{Nestor,Raul\right\}\)

\[ \begin{align} cve\left(\widehat{t}_{y,\pi}\right)&=\frac{\sqrt{\frac{\Delta_{{Nestor},{Nestor}}}{\pi_{{Nestor},{Nestor}}}\frac{y_{Nestor}^{2}}{\pi_{Nestor}^{2}}+2\frac{\Delta_{{Nestor},{Raul}}}{\pi_{{Nestor},{Raul}}}\frac{y_{Nestor}}{\pi_{Nestor}}\frac{y_{Raul}}{\pi_{Raul}}+\frac{\Delta_{{Raul},{Raul}}}{\pi_{{Raul},{Raul}}}\frac{y_{Raul}^{2}}{\pi_{Raul}^{2}}}}{\frac{y_{Nestor}}{\pi_{Nestor}}+\frac{y_{Raul}}{\pi_{Raul}}} \end{align} \]

cvetypi <- sqrt(delta22/pikl["Nestor","Nestor"]*(y2/pik[2])**2+2*delta24/pikl["Nestor","Raul"]*(y2/pik[2])*(y4/pik[4])+delta44/pikl["Raul","Raul"]*(y4/pik[4])**2)/(y[2]/pik[2]+y[4]/pik[4])
## Warning in sqrt(delta22/pikl["Nestor", "Nestor"] * (y2/pik[2])^2 + 2 * delta24/
## pikl["Nestor", : Se han producido NaNs
cvetypi
## [1] NaN

8.2.3.7 \(s=\left\{Nestor,Jhon\right\}\)

\[ \begin{align} cve\left(\widehat{t}_{y,\pi}\right)&=\frac{\sqrt{\frac{\Delta_{{Nestor},{Nestor}}}{\pi_{{Nestor},{Nestor}}}\frac{y_{Nestor}^{2}}{\pi_{Nestor}^{2}}+2\frac{\Delta_{{Nestor},{Jhon}}}{\pi_{{Nestor},{Jhon}}}\frac{y_{Nestor}}{\pi_{Nestor}}\frac{y_{Jhon}}{\pi_{Jhon}}+\frac{\Delta_{{Jhon},{Jhon}}}{\pi_{{Jhon},{Jhon}}}\frac{y_{Jhon}^{2}}{\pi_{Jhon}^{2}}}}{\frac{y_{Nestor}}{\pi_{Nestor}}+\frac{y_{Jhon}}{\pi_{Jhon}}} \end{align} \]

cvetypi <- sqrt(delta22/pikl["Nestor","Nestor"]*(y2/pik[2])**2+2*delta25/pikl["Nestor","Jhon"]*(y2/pik[2])*(y5/pik[5])+delta44/pikl["Jhon","Jhon"]*(y5/pik[5])**2)/(y[2]/pik[2]+y[5]/pik[5])
## Warning in sqrt(delta22/pikl["Nestor", "Nestor"] * (y2/pik[2])^2 + 2 * delta25/
## pikl["Nestor", : Se han producido NaNs
cvetypi
## [1] NaN

8.2.3.8 \(s=\left\{Nayibe,Raul\right\}\)

\[ \begin{align} cve\left(\widehat{t}_{y,\pi}\right)&=\frac{\sqrt{\frac{\Delta_{{Nayibe},{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}}\frac{y_{Nayibe}^{2}}{\pi_{Nayibe}^{2}}+2\frac{\Delta_{{Nayibe},{Raul}}}{\pi_{{Nayibe},{Raul}}}\frac{y_{Nayibe}}{\pi_{Nayibe}}\frac{y_{Raul}}{\pi_{Raul}}+\frac{\Delta_{{Raul},{Raul}}}{\pi_{{Raul},{Raul}}}\frac{y_{Raul}^{2}}{\pi_{Raul}^{2}}}}{\frac{y_{Nayibe}}{\pi_{Nayibe}}+\frac{y_{Raul}}{\pi_{Raul}}} \end{align} \]

cvetypi <- sqrt(delta33/pikl["Nayibe","Nayibe"]*(y3/pik[3])**2+2*delta34/pikl["Nayibe","Raul"]*(y3/pik[3])*(y4/pik[4])+delta44/pikl["Raul","Raul"]*(y4/pik[4])**2)/(y[3]/pik[3]+y[4]/pik[4])
## Warning in sqrt(delta33/pikl["Nayibe", "Nayibe"] * (y3/pik[3])^2 + 2 * delta34/
## pikl["Nayibe", : Se han producido NaNs
cvetypi
## [1] NaN

8.2.3.9 \(s=\left\{Nayibe,Jhon\right\}\)

\[ \begin{align} cve\left(\widehat{t}_{y,\pi}\right)&=\frac{\sqrt{\frac{\Delta_{{Nayibe},{Nayibe}}}{\pi_{{Nayibe},{Nayibe}}}\frac{y_{Nayibe}^{2}}{\pi_{Nayibe}^{2}}+2\frac{\Delta_{{Nayibe},{Jhon}}}{\pi_{{Nayibe},{Jhon}}}\frac{y_{Nayibe}}{\pi_{Nayibe}}\frac{y_{Jhon}}{\pi_{Jhon}}+\frac{\Delta_{{Jhon},{Jhon}}}{\pi_{{Jhon},{Jhon}}}\frac{y_{Jhon}^{2}}{\pi_{Jhon}^{2}}}}{\frac{y_{Nayibe}}{\pi_{Nayibe}}+\frac{y_{Jhon}}{\pi_{Jhon}}} \end{align} \]

cvetypi <- sqrt(delta33/pikl["Nayibe","Nayibe"]*(y3/pik[3])**2+2*delta35/pikl["Nayibe","Jhon"]*(y3/pik[3])*(y5/pik[5])+delta55/pikl["Jhon","Jhon"]*(y5/pik[5])**2)/(y[3]/pik[3]+y[5]/pik[5])
cvetypi
## [1] 0.3584011

8.2.3.10 \(s=\left\{Raul,Jhon\right\}\)

\[ \begin{align} cve\left(\widehat{t}_{y,\pi}\right)&=\frac{\sqrt{\frac{\Delta_{{Raul},{Raul}}}{\pi_{{Raul},{Raul}}}\frac{y_{Raul}^{2}}{\pi_{Raul}^{2}}+2\frac{\Delta_{{Raul},{Jhon}}}{\pi_{{Raul},{Jhon}}}\frac{y_{Raul}}{\pi_{Raul}}\frac{y_{Jhon}}{\pi_{Jhon}}+\frac{\Delta_{{Jhon},{Jhon}}}{\pi_{{Jhon},{Jhon}}}\frac{y_{Jhon}^{2}}{\pi_{Jhon}^{2}}}}{\frac{y_{Raul}}{\pi_{Raul}}+\frac{y_{Jhon}}{\pi_{Jhon}}} \end{align} \]

cvetypi <- sqrt(delta44/pikl["Raul","Raul"]*(y3/pik[3])**2+2*delta45/pikl["Raul","Jhon"]*(y4/pik[4])*(y5/pik[5])+delta55/pikl["Jhon","Jhon"]*(y5/pik[5])**2)/(y[4]/pik[4]+y[5]/pik[5])
cvetypi
## [1] 2.159123

8.2.4 \(ci_{1-\alpha}\left({\widehat{t}_{y,\pi}}\right)=\widehat{t}_{y,\pi}{\pm}{Z}_{1-\frac{\alpha}{2}}\sqrt{\widehat{V}[\widehat{t}_{y,\pi}]}\)

8.2.4.1 \(s=\left\{Santiago,Nestor\right\}\)

\[ \begin{align} ci_{1-\alpha}\left({\widehat{t}_{y,\pi}}\right)&=\frac{y_{Santiago}}{\pi_{Santiago}}+\frac{y_{Nestor}}{\pi_{Nestor}}{\pm}{Z}_{1-\frac{\alpha}{2}}\sqrt{\frac{\Delta_{{Santiago},{Santiago}}}{\pi_{{Santiago},{Santiago}}}\frac{y_{Santiago}^{2}}{\pi_{Santiago}^{2}}+2\frac{\Delta_{{Santiago},{Nestor}}}{\pi_{{Santiago},{Nestor}}}\frac{y_{Santiago}}{\pi_{Santiago}}\frac{y_{Nestor}}{\pi_{Nestor}}+\frac{\Delta_{{Nestor},{Nestor}}}{\pi_{{Nestor},{Nestor}}}\frac{y_{Nestor}^{2}}{\pi_{Nestor}^{2}}} \end{align} \]

cvetypi <- (y[1]/pik[1]+y[2]/pik[2])+c(qnorm(0.025)*sqrt(delta11/pikl["Santiago","Santiago"]*(y1/pik[1])**2+2*delta12/pikl["Santiago","Nestor"]*(y1/pik[1])*(y2/pik[2])+delta55/pikl["Nestor","Nestor"]*(y2/pik[2])**2),qnorm(0.975)*sqrt(delta11/pikl["Santiago","Santiago"]*(y1/pik[1])**2+2*delta12/pikl["Santiago","Nestor"]*(y1/pik[1])*(y2/pik[2])+delta55/pikl["Nestor","Nestor"]*(y2/pik[2])**2))
cvetypi
## [1] -511.2544 3221.5992

8.3 Muestras representativas

8.4 Estrategias representativas

9 Muestras con probabilidades simples

9.1 Diseño de muestreo Bernoulli

\[ \mathcal{p}(s)= \begin{cases} {\pi}^{n{(s)}}\left({1}-{\pi}\right)^{N-n{(s)}}&\text{ si }s\text{ tiene tamaño igual a }{n{(s)}}\\ {0}&\text{ en cualquier otro caso} \end{cases} \]

9.1.1 Algoritmo de selección

  1. \({0}<{\pi}<{1}\)

  2. \(\forall_{k{\in}U}{\varepsilon}_{k}{\sim}U{\left[0,1\right]}\)

  3. \({\varepsilon}_{k}<{\pi}{\implies}k{\in}s\)

\[\forall_{k{\in}U}\mathcal{P}\left({\varepsilon}_{k}<{\pi}\right)={\pi}{\implies}I_k(S){\sim}Bernoulli(\pi)\]

\[Q_r=\{s{\in}Q\mid\#(s)=r\}\]

\[ \begin{align} \#\left(Q_r\right)&=\binom{N}{r}\\ &=\frac{N!}{(N-r)!r!} \end{align} \]

\[Q=\{s{\in}Q\mid\#(s)=0,\ldots,r\}\]

\[ \begin{align} \#\left(Q\right)&={\sum}_{r=0}^{N}\binom{N}{r}\\ &={\sum}_{r=0}^{N}\binom{N}{r}{1}^{N}\\ &={\sum}_{r=0}^{N}\binom{N}{r}{1}^{N-r+r}\\ &={\sum}_{r=0}^{N}\binom{N}{r}{1}^{r}{1}^{N-r}\\ &={(1+1)}^{N}\\ &={2}^{N} \end{align} \]

\[ \begin{align} \mathcal{P}\left[n(s)=r\right]&={\sum}_{s{\in}Qr}p(s)\\ &=\binom{N}{r}{\pi}^{r}\left({1}-{\pi}\right)^{N-r} \end{align} \]

\[{\forall}_{r=1,\ldots,N}{Qr}{\subset}{Q}\]

\[E\left[n{\left(S\right)}\right]=N{\pi}\]

\[V\left[n{\left(S\right)}\right]=N{\pi}{\left(1-{\pi}\right)}\]

\[ \begin{align} {\sum}_{s{\in}Q}\mathcal{p}\left(s\right)&={\sum}_{s{\in}Q\&\#{(s)}={0}}\mathcal{p}\left(s\right)+{\sum}_{s{\in}Q\&\#{(s)}={1}}\mathcal{p}\left(s\right)+\cdots+{\sum}_{s{\in}Q\&\#{(s)}={N}}\mathcal{p}\left(s\right)\\ &=\binom{N}{0}{\pi}^{0}\left({1}-{\pi}\right)^{N-0}+\binom{N}{1}{\pi}^{1}\left({1}-{\pi}\right)^{N-1}+\cdots+\binom{N}{N}{\pi}^{N}\left({1}-{\pi}\right)^{N-N}\\ &={\sum}_{r=0}^{N}\binom{N}{r}{\pi}^{r}\left({1}-{\pi}\right)^{N-r}\\ &=\left[{\pi}+\left({1}-{\pi}\right)\right]^{N}\\ &={1}^{N}\\ &={1} \end{align} \] \[ \begin{align} \pi_k&={\sum}_{s{\in}Q}I_k\left({s}\right)\mathcal{p}\left({s}\right)\\ &=0\mathcal{p}{(s_0)}+\binom{1}{1}\binom{N-1}{0}\mathcal{p}{(s_1)}+\cdots+\binom{1}{1}\binom{N-1}{N-1}\mathcal{p}{(s_N)}\\ &=\binom{N-1}{0}\mathcal{p}{(s_1)}+\cdots+\binom{N-1}{N-1}\mathcal{p}{(s_N)}\\ &={\sum}_{r=0}^{N-1}\binom{N-1}{r}\mathcal{p}{(s_r)}\\ &={\sum}_{r=0}^{N-1}\binom{N-1}{r}{\pi}^{r+1}({1-{\pi}})^{N-(r+1)}\\ &={\sum}_{r=0}^{N-1}\binom{N-1}{r}{\pi}^{r+1}({1-{\pi}})^{N-r-1}\\ &=\pi{\sum}_{r=0}^{N-1}\binom{N-1}{r}{\pi}^{r}({1-{\pi}})^{N-r}\\ &=\pi\left[{\pi+(1-\pi)}\right]^{N-1}\\ &=\pi\left[{\pi+1-\pi}\right]^{N-1}\\ &=\pi\left[{1}\right]^{N-1}\\ &=\pi \end{align} \]

\[ \begin{align} \mathcal{P}(k{\in}S\text{ & }l{\in}S)&=\mathcal{P}(I_k=1)\mathcal{P}(I_l=1)\\ &={\pi}{\cdot}{\pi}\\ &={\pi}^{2} \end{align} \]

9.1.2 Estimador de Horvitz - Thompson

\[ \begin{align} \widehat{t}_{y,\pi}&={\sum}_{s}\frac{y_k}{\pi}\\ &=\frac{1}{\pi}{\sum}_{s}y_k \end{align} \]

\[ \begin{align} V[\widehat{t}_{y,\pi}]&={{\sum}{\sum}}_{U}{\Delta}_{kl}\frac{y_k}{\pi_k}\frac{y_l}{\pi_l} \end{align} \]

\[ \begin{align} {\Delta}_{kl}&= \begin{cases} {\pi}_{kl}-{\pi}_{k}{\pi}_{l}&\text{ para }k{\neq}l\\ {\pi}_{k}-{\pi}_{k}^{2}&\text{ para }k{=}l \end{cases}\\ &= \begin{cases} {\pi}{\pi}-{\pi}^{2}&\text{ para }k{\neq}l\\ {\pi}-{\pi}^{2}&\text{ para }k{=}l \end{cases}\\ &= \begin{cases} {\pi}^{2}-{\pi}^{2}&\text{ para }k{\neq}l\\ {\pi}\left(1-{\pi}\right)&\text{ para }k{=}l \end{cases}\\ &= \begin{cases} {0}&\text{ para }k{\neq}l\\ {\pi}\left(1-{\pi}\right)&\text{ para }k{=}l \end{cases} \end{align} \]

\[ \begin{align} V_{BER}[\widehat{t}_{y,\pi}]&={\sum}_{U}{{\pi}\left(1-{\pi}\right)}\frac{y_k}{\pi}\frac{y_k}{\pi}\\ &={\sum}_{U}{{\pi}\left(1-{\pi}\right)}\frac{y_k^2}{{\pi}^{2}}\\ &={\sum}_{U}\frac{{\pi}\left(1-{\pi}\right)}{{\pi}^{2}}{y}_{k}^{2}\\ &={\sum}_{U}\frac{1-{\pi}}{\pi}{y}_{k}^{2}\\ &={\sum}_{U}\left(\frac{1}{\pi}-{1}\right){y}_{k}^{2}\\ &=\left(\frac{1}{\pi}-{1}\right){\sum}_{U}{y}_{k}^{2} \end{align} \]

\[ \begin{align} \widehat{V}_{BER}[\widehat{t}_{y,\pi}]&={\sum}_{s}\frac{{\pi}\left(1-{\pi}\right)}{\pi}\frac{y_k}{\pi}\frac{y_k}{\pi}\\ &={\sum}_{s}\frac{{\pi}\left(1-{\pi}\right)}{\pi}\frac{y_k^2}{{\pi}^{2}}\\ &={\sum}_{s}\frac{{\pi}\left(1-{\pi}\right)}{{\pi}^{3}}{y}_{k}^{2}\\ &={\sum}_{s}\frac{1-{\pi}}{{\pi}^{2}}{y}_{k}^{2}\\ &={\sum}_{s}\frac{1}{\pi}\left(\frac{1}{\pi}-{1}\right){y}_{k}^{2}\\ &=\frac{1}{\pi}\left(\frac{1}{\pi}-{1}\right){\sum}_{s}{y}_{k}^{2} \end{align} \]

\[ \begin{align} \widehat{t}_{y,\pi}(s=U)&={\sum}_{s=U}\frac{y_k}{\pi}\\ &=\frac{1}{\pi}{\sum}_{s=U}y_k\\ &=\frac{{t}_{y}}{\pi}\\ &\neq{t}_{y} \end{align} \]

\[ \begin{align} \widehat{t}_{y,alt}&=N\tilde{y}_{s}\\ &=N\frac{{\sum}_{s}\frac{y_k}{\pi}}{{\sum}_{s}\frac{1}{\pi}}\\ &=N\frac{\widehat{t}_{y\pi}}{\widehat{N}}\\ &=N\frac{\widehat{t}_{y\pi}}{n{(s)}}\\ &=N\tilde{y}_{s}\\ \end{align} \]

attach(Lucy)
N <- dim(Lucy)[1];N
## [1] 2396
pik <- 400/N;pik
## [1] 0.1669449
seleccion <- S.BE(N,pik)
muestra <- Lucy[seleccion,]
attach(muestra);muestra
##          ID Ubication  Level Zone Income Employees Taxes SPAM
## 5     AB005      c1k5  Small    A    391        91   7.0  yes
## 8     AB008      c1k8  Small    A    473        57  10.0  yes
## 13    AB013     c1k13  Small    A    402        19   7.0  yes
## 14    AB014     c1k14  Small    A    330        23   4.0  yes
## 19    AB019     c1k19  Small    A    342        60   5.0  yes
## 29    AB029     c1k29  Small    A    310        94   4.0  yes
## 31    AB031     c1k31  Small    A    378        94   6.0  yes
## 32    AB032     c1k32  Small    A    380        18   6.0  yes
## 48    AB048     c1k48  Small    A    422       101   8.0  yes
## 56    AB059     c1k56  Small    A    350        68   5.0  yes
## 58    AB061     c1k58  Small    A    363        73   6.0   no
## 63    AB066     c1k63  Small    A    340        28   5.0  yes
## 65    AB068     c1k65  Small    A    360        61   5.0   no
## 69    AB072     c1k69  Small    A    390        95   7.0  yes
## 73    AB078     c1k73  Small    A    330        79   4.0  yes
## 74    AB079     c1k74  Small    A    401        39   7.0   no
## 90    AB106     c1k90  Small    A    450        87   9.0  yes
## 96    AB116     c1k96  Small    A    480        53  10.0   no
## 101  AB1219      c2k2  Small    B    437        41   8.0  yes
## 123  AB1333     c2k24  Small    B    312        82   4.0   no
## 128  AB1338     c2k29  Small    B    282        69   3.0  yes
## 136  AB1345     c2k37  Small    B    330        47   4.0  yes
## 142  AB1350     c2k43  Small    B    280        69   3.0   no
## 145  AB1353     c2k46  Small    B    240        83   2.0  yes
## 146  AB1354     c2k47  Small    B    310        42   4.0   no
## 148  AB1356     c2k49  Small    B    315        75   4.0  yes
## 152   AB136     c2k53  Small    B     75        21   0.5  yes
## 159  AB1366     c2k60  Small    B    230        10   2.0  yes
## 160  AB1367     c2k61  Small    B    200        49   1.0  yes
## 166  AB1372     c2k67  Small    B    318        51   4.0  yes
## 192  AB1396     c2k93  Small    B    325        43   4.0  yes
## 195  AB1399     c2k96  Small    B    230        23   2.0  yes
## 200  AB1403      c3k2  Small    B    310        54   4.0  yes
## 205  AB1408      c3k7  Small    B    263        56   3.0  yes
## 206  AB1409      c3k8  Small    B    261        56   2.0   no
## 209  AB1411     c3k11  Small    B    300        70   3.0   no
## 211  AB1413     c3k13  Small    B    199        49   1.0   no
## 220  AB1421     c3k22  Small    B    370        30   6.0   no
## 221  AB1422     c3k23  Small    B    295        57   3.0   no
## 226  AB1427     c3k28  Small    B    300        57   3.0  yes
## 233  AB1433     c3k35  Small    B    211        26   1.0  yes
## 244  AB1443     c3k46  Small    B    310        78   4.0  yes
## 248  AB1447     c3k50  Small    B    340        24   5.0  yes
## 252  AB1450     c3k54  Small    B    334        80   5.0   no
## 253  AB1451     c3k55  Small    B    232        47   2.0   no
## 255  AB1453     c3k57  Small    B    290        57   3.0  yes
## 262   AB146     c3k64  Small    B     82        13   0.5   no
## 263  AB1460     c3k65  Small    B    300        78   3.0  yes
## 282  AB1478     c3k84  Small    B    267        88   3.0   no
## 286  AB1481     c3k88  Small    B    220        86   2.0   no
## 294  AB1489     c3k96  Small    B    333        80   5.0   no
## 325  AB1517     c4k28  Small    B    208        22   1.0   no
## 328   AB152     c4k31  Small    B    193        81   1.0   no
## 341  AB1531     c4k44  Small    B    295        49   3.0  yes
## 343  AB1533     c4k46  Small    B    344        24   5.0  yes
## 348  AB1538     c4k51  Small    B    280        13   3.0  yes
## 354  AB1543     c4k57  Small    B    318        71   4.0  yes
## 355  AB1544     c4k58  Small    B    245        63   2.0  yes
## 360  AB1549     c4k63  Small    B    218        54   2.0   no
## 364  AB1552     c4k67  Small    B    227         6   2.0  yes
## 370  AB1558     c4k73  Small    B    206        10   1.0  yes
## 378  AB1565     c4k81  Small    B    206        46   1.0   no
## 383   AB157     c4k86  Small    B    185        52   1.0  yes
## 385  AB1571     c4k88  Small    B    290        45   3.0  yes
## 392  AB1578     c4k95  Small    B    315        31   4.0   no
## 393  AB1579     c4k96  Small    B    238        71   2.0  yes
## 394   AB158     c4k97  Small    B     76        85   0.5  yes
## 395  AB1580     c4k98  Small    B    299        85   3.0   no
## 401  AB1586      c5k5  Small    B    261        40   2.0   no
## 410  AB1594     c5k14  Small    B    264        44   3.0   no
## 412  AB1596     c5k16  Small    B    243        35   2.0   no
## 415  AB1599     c5k19  Small    B    268        44   3.0   no
## 425  AB1608     c5k29  Small    B    303        94   4.0  yes
## 426  AB1609     c5k30  Small    B    260        32   2.0  yes
## 429  AB1611     c5k33  Small    B    213        38   1.0   no
## 440  AB1621     c5k44  Small    B    276        57   3.0   no
## 452  AB1632     c5k56  Small    B    281        85   3.0   no
## 456  AB1636     c5k60  Small    B    251        23   2.0   no
## 458  AB1638     c5k62  Small    B    264        40   3.0   no
## 462  AB1641     c5k66  Small    B    217        58   2.0  yes
## 481  AB1659     c5k85  Small    B    278        53   3.0  yes
## 484  AB1661     c5k88  Small    B    217         6   2.0  yes
## 486  AB1663     c5k90  Small    B    292        57   3.0   no
## 487  AB1664     c5k91  Small    B    273        56   3.0  yes
## 495  AB1671     c5k99  Small    B    231        23   2.0  yes
## 508  AB1683     c6k13  Small    B    332        92   4.0   no
## 511  AB1686     c6k16  Small    B    269        36   3.0  yes
## 512  AB1687     c6k17  Small    B    315        63   4.0  yes
## 516  AB1690     c6k21  Small    B    180        64   1.0   no
## 518  AB1692     c6k23  Small    B    130        14   0.5  yes
## 519  AB1693     c6k24  Small    B    169        84   1.0  yes
## 530  AB1703     c6k35  Small    B    230        75   2.0   no
## 535  AB1708     c6k40  Small    B    154         7   1.0  yes
## 539  AB1711     c6k44  Small    B    180        12   1.0  yes
## 542  AB1714     c6k47  Small    B    130        50   0.5   no
## 550  AB1721     c6k55  Small    B    142        67   0.5   no
## 553  AB1724     c6k58  Small    B    195        45   1.0   no
## 557  AB1728     c6k62  Small    B    145        23   0.5  yes
## 560  AB1730     c6k65  Small    B    200        65   1.0   no
## 568  AB1738     c6k73  Small    B      1        13   0.5   no
## 578  AB1747     c6k83  Small    B    150        35   1.0  yes
## 588  AB1756     c6k93  Small    B    141        27   0.5  yes
## 598  AB1765      c7k4  Small    B    226        78   2.0   no
## 600  AB1767      c7k6  Small    B    175        44   1.0  yes
## 608  AB1774     c7k14  Small    B    188        81   1.0  yes
## 619  AB1784     c7k25  Small    B    182        76   1.0  yes
## 627  AB1791     c7k33  Small    B     97        21   0.5  yes
## 628  AB1792     c7k34  Small    B     96        17   0.5  yes
## 635  AB1799     c7k41  Small    B    130        38   0.5  yes
## 638  AB1801     c7k44  Small    B    130        30   0.5  yes
## 656  AB1818     c7k62  Small    B    151         7   1.0  yes
## 658   AB182     c7k64  Small    B     87         5   0.5  yes
## 666  AB1827     c7k72  Small    B    160        56   1.0  yes
## 681  AB1840     c7k87  Small    B    185        64   1.0  yes
## 691   AB185     c7k97  Small    C     68        73   0.5  yes
## 694  AB1852      c8k1  Small    C    166        40   1.0  yes
## 695  AB1853      c8k2  Small    C    190        21   1.0  yes
## 697  AB1855      c8k4  Small    C    131        74   0.5  yes
## 716  AB1872     c8k23  Small    C    136        23   0.5   no
## 717  AB1873     c8k24  Small    C    171        60   1.0  yes
## 726  AB1881     c8k33  Small    C    450        54   9.0   no
## 736  AB1890     c8k43  Small    C    450        55   9.0   no
## 749  AB1902     c8k56  Small    C    480        93  10.5   no
## 752  AB1906     c8k59  Small    C    460        43   9.0   no
## 775  AB1929     c8k82  Small    C    410        16   7.0  yes
## 782  AB1936     c8k89  Small    C    310        18   4.0   no
## 797  AB1951      c9k5  Small    C    480        33  10.0  yes
## 804  AB1958     c9k12  Small    C    490        94  10.5   no
## 806  AB1960     c9k14  Small    C    312        74   4.0  yes
## 808  AB1962     c9k16  Small    C    379        86   6.0  yes
## 813  AB1967     c9k21  Small    C    487        25  10.5   no
## 819  AB1972     c9k27  Small    C    400        31   7.0  yes
## 821  AB1974     c9k29  Small    C    410        28   7.0  yes
## 822  AB1975     c9k30  Small    C    420        36   8.0  yes
## 828  AB1980     c9k36  Small    C    363        45   5.0  yes
## 831  AB1983     c9k39  Small    C    440        94   8.0  yes
## 839  AB1991     c9k47  Small    C    390        31   7.0   no
## 843  AB1995     c9k51  Small    C    407        64   7.0   no
## 864   AB202     c9k72  Small    C    129        46   0.5  yes
## 867  AB2023     c9k75  Small    C    469        20  10.0   no
## 868  AB2024     c9k76  Small    C    390        23   6.0  yes
## 870  AB2026     c9k78  Small    C    460        39   9.0  yes
## 888  AB2045     c9k96  Small    C    440        34   8.0  yes
## 892  AB2050     c10k1  Small    C    425        37   8.0   no
## 897  AB2058     c10k6  Small    C    480        93  10.0   no
## 899   AB206     c10k8  Small    C    110        62   0.5   no
## 901  AB2062    c10k10  Small    C    333        76   5.0   no
## 903  AB2064    c10k12  Small    C    420        76   8.0  yes
## 906  AB2068    c10k15  Small    C    360        49   5.0  yes
## 916  AB2077    c10k25  Small    C    385        38   6.0  yes
## 921  AB2082    c10k30  Small    C    480        41  10.0  yes
## 926   AB209    c10k35  Small    C     96        49   0.5   no
## 932  AB2097    c10k41  Small    C    470        36  10.0   no
## 933  AB2098    c10k42  Small    C    494       102  10.5   no
## 935   AB210    c10k44  Small    C    117        46   0.5   no
## 942  AB2107    c10k51  Small    C    469        40  10.0   no
## 949  AB2116    c10k58  Small    C    457        95   9.0   no
## 951  AB2118    c10k60  Small    C    480        85  10.0   no
## 956  AB2122    c10k65  Small    C    420        28   7.0   no
## 961  AB2129    c10k70  Small    C    390        43   6.0   no
## 962   AB213    c10k71  Small    C    186        80   1.0   no
## 964  AB2131    c10k73  Small    C    334        76   5.0  yes
## 965  AB2132    c10k74  Small    C    380        22   6.0   no
## 979  AB2147    c10k88  Small    C    487       105  10.5  yes
## 987  AB2155    c10k96  Small    C    480        41  10.0   no
## 998  AB2165     c11k8  Small    C    340        68   5.0  yes
## 1002 AB2169    c11k12  Small    C    260        68   2.0   no
## 1009 AB2175    c11k19  Small    C    420        40   7.0   no
## 1010 AB2178    c11k20  Small    C    494        38  10.5   no
## 1013 AB2182    c11k23  Small    C    370        46   6.0  yes
## 1015 AB2184    c11k25  Small    C    480        53  10.0   no
## 1016 AB2186    c11k26  Small    C    345        40   5.0  yes
## 1026 AB2198    c11k36  Small    C    366        69   6.0   no
## 1028  AB220    c11k38  Small    C    182        24   1.0  yes
## 1031 AB2202    c11k41  Small    C    378        70   6.0  yes
## 1049 AB2220    c11k59  Small    C    402        39   7.0  yes
## 1065 AB2239    c11k75  Small    C    368        17   6.0   no
## 1070 AB2243    c11k80  Small    C    491        42  10.5  yes
## 1071 AB2244    c11k81  Small    C    491        94  10.5   no
## 1073 AB2246    c11k83  Small    C    460        76   9.0  yes
## 1075 AB2248    c11k85  Small    C    411        52   7.0  yes
## 1076 AB2249    c11k86  Small    C    373        50   6.0   no
## 1079 AB2252    c11k89  Small    C    341        24   5.0  yes
## 1080 AB2254    c11k90  Small    C    470        40  10.0   no
## 1088 AB2262    c11k98  Small    C    460        55   9.0  yes
## 1090 AB2265     c12k1  Small    C    477        61  10.0  yes
## 1094  AB227     c12k5  Small    C    122        54   0.5  yes
## 1097 AB2273     c12k8  Small    C    357        21   5.0   no
## 1101 AB2277    c12k12  Small    C    370        33   6.0  yes
## 1109 AB2285    c12k20  Small    C    428        57   8.0   no
## 1111 AB2287    c12k22  Small    C    499        90  10.5  yes
## 1119 AB2294    c12k30  Small    C    460        27   9.0   no
## 1124 AB2299    c12k35  Small    C    324        31   4.0   no
## 1125  AB230    c12k36  Small    C    158        15   1.0  yes
## 1133  AB231    c12k44  Small    C     42        57   0.5   no
## 1136 AB2312    c12k47  Small    C    424        61   8.0  yes
## 1138 AB2314    c12k49  Small    C    451        19   9.0   no
## 1140 AB2316    c12k51  Small    C    392        47   7.0  yes
## 1143 AB2319    c12k54  Small    C    419       100   7.0  yes
## 1151 AB2326    c12k62  Small    C    424        45   8.0   no
## 1153 AB2329    c12k64  Small    C    427        85   8.0   no
## 1160 AB2336    c12k71  Small    C    386        47   6.0  yes
## 1166 AB2343    c12k77  Small    C    455        67   9.0   no
## 1167 AB2344    c12k78  Small    C    388        95   6.0  yes
## 1179 AB2356    c12k90  Small    C    436        29   8.0   no
## 1183  AB236    c12k94  Small    C     92        81   0.5  yes
## 1188 AB2364    c12k99  Small    C    405        76   7.0   no
## 1195 AB2370     c13k7  Small    C    340        28   5.0  yes
## 1197 AB2372     c13k9  Small    C    467        84  10.0   no
## 1200 AB2375    c13k12  Small    C    489       101  10.5  yes
## 1206 AB2384    c13k18  Small    C    361        65   5.0  yes
## 1207 AB2385    c13k19  Small    C    375        46   6.0  yes
## 1212  AB239    c13k24  Small    C    198        57   1.0   no
## 1239  AB260    c13k51  Small    C    111         6   0.5  yes
## 1243  AB264    c13k55  Small    C     23        77   0.5   no
## 1244  AB265    c13k56  Small    C     67        45   0.5  yes
## 1248  AB269    c13k60  Small    C    120        10   0.5  yes
## 1252  AB273    c13k64  Small    C    183        84   1.0  yes
## 1253  AB274    c13k65  Small    C    117        62   0.5  yes
## 1255  AB276    c13k67  Small    C    119        38   0.5  yes
## 1259  AB280    c13k71  Small    C    142        75   0.5  yes
## 1261  AB282    c13k73  Small    C     52        13   0.5   no
## 1275  AB296    c13k87  Small    C    173        68   1.0   no
## 1284  AB305    c13k96  Small    C    184        12   1.0   no
## 1285  AB306    c13k97  Small    C    148        79   0.5   no
## 1287  AB308    c13k99  Small    C    120        46   0.5  yes
## 1289  AB310     c14k2  Small    C    120        10   0.5  yes
## 1294  AB315     c14k7  Small    C    174        12   1.0   no
## 1295  AB316     c14k8  Small    C     52        69   0.5   no
## 1302  AB323    c14k15  Small    C    151        75   1.0   no
## 1310  AB331    c14k23  Small    C    169        28   1.0  yes
## 1312  AB333    c14k25  Small    C    134        59   0.5  yes
## 1316  AB337    c14k29  Small    C    131        74   0.5   no
## 1320  AB341    c14k33  Small    C    151        59   1.0   no
## 1329  AB350    c14k42  Small    C    139        79   0.5  yes
## 1337  AB358    c14k50  Small    C    144        27   0.5  yes
## 1338  AB359    c14k51  Small    C    154        39   1.0  yes
## 1353  AB374    c14k66  Small    C    104        53   0.5   no
## 1358  AB379    c14k71  Small    C    120        42   0.5   no
## 1359  AB380    c14k72  Small    C    131        78   0.5   no
## 1362  AB383    c14k75  Small    C    144        11   0.5   no
## 1364  AB385    c14k77  Small    C    214        38   1.0   no
## 1365  AB386    c14k78  Small    C     48        49   0.5   no
## 1369  AB390    c14k82  Small    C    114        26   0.5   no
## 1382  AB403    c14k95  Small    C    169        48   1.0  yes
## 1386  AB407    c14k99  Small    C    159        60   1.0   no
## 1387  AB408     c15k1  Small    C    119        66   0.5  yes
## 1390  AB411     c15k4  Small    C    168        32   1.0  yes
## 1391  AB412     c15k5  Small    C     76        85   0.5  yes
## 1393  AB414     c15k7  Small    C    113        62   0.5   no
## 1394  AB415     c15k8  Small    C    118        34   0.5  yes
## 1405  AB426    c15k19  Small    C    321        55   4.0  yes
## 1417  AB438    c15k31  Small    C    253        40   2.0   no
## 1418  AB439    c15k32  Small    C    267        16   3.0  yes
## 1419  AB440    c15k33  Small    C    284        41   3.0   no
## 1425  AB446    c15k39  Small    C    257        52   2.0  yes
## 1426  AB447    c15k40  Small    C    250        91   2.0  yes
## 1436  AB457    c15k50  Small    C    260        80   2.0  yes
## 1452  AB473    c15k66  Small    C    247        91   2.0   no
## 1455  AB476    c15k69  Small    C    323        63   4.0   no
## 1459  AB480    c15k73  Small    C    320        71   4.0  yes
## 1467  AB488    c15k81  Small    C    195        61   1.0   no
## 1470  AB491    c15k84  Small    C    219        10   2.0  yes
## 1471  AB492    c15k85  Small    C    246        35   2.0   no
## 1473  AB494    c15k87  Small    C    292        17   3.0   no
## 1479  AB500    c15k93  Small    C    278        17   3.0   no
## 1480  AB501    c15k94  Small    C    275        44   3.0   no
## 1485  AB506    c15k99  Small    C    258        52   2.0  yes
## 1488  AB509     c16k3  Small    C    226        38   2.0  yes
## 1490  AB511     c16k5  Small    C    236        79   2.0  yes
## 1493  AB514     c16k8  Small    C    213        58   1.0   no
## 1504  AB525    c16k19  Small    C    274        76   3.0  yes
## 1506  AB527    c16k21  Small    C    179        40   1.0  yes
## 1518  AB539    c16k33  Small    C    201        81   1.0  yes
## 1519  AB540    c16k34  Small    C    283        65   3.0   no
## 1520  AB541    c16k35  Small    C    227        34   2.0  yes
## 1525  AB546    c16k40  Small    C    209        38   1.0  yes
## 1526  AB547    c16k41  Small    C    202        45   1.0  yes
## 1531  AB552    c16k46  Small    C    243        47   2.0   no
## 1537  AB558    c16k52  Small    C    220        18   2.0  yes
## 1548  AB569    c16k63  Small    C    247        15   2.0  yes
## 1549  AB591    c16k64  Small    C    460        83   9.0   no
## 1556  AB641    c16k71  Small    D    430        37   8.0  yes
## 1557  AB649    c16k72  Small    D    470        24  10.0   no
## 1563  AB729    c16k78  Small    D    495        90  10.5   no
## 1565  AB753    c16k80  Small    D    496        30  10.5  yes
## 1568  AB800    c16k83  Small    D    492        86  10.5  yes
## 1573  AB852    c16k88  Small    E    480        89  10.0  yes
## 1578  AB052    c16k93 Medium    A    510        35  12.0  yes
## 1583  AB091    c16k98 Medium    A    550        75  14.0   no
## 1588 AB1000     c17k4 Medium    A    610        65  18.0  yes
## 1591 AB1003     c17k7 Medium    A    759       112  29.0   no
## 1599 AB1012    c17k15 Medium    A    680       124  23.0   no
## 1607  AB102    c17k23 Medium    A    550        67  14.0  yes
## 1611 AB1023    c17k27 Medium    A    750        99  28.0  yes
## 1612 AB1024    c17k28 Medium    A    925       107  42.0   no
## 1617 AB1031    c17k33 Medium    A    900        97  40.0  yes
## 1623 AB1037    c17k39 Medium    A    986        96  46.0  yes
## 1629 AB1048    c17k45 Medium    A    621        63  19.0  yes
## 1632 AB1050    c17k48 Medium    A    550        75  14.0  yes
## 1654 AB1071    c17k70 Medium    A    980        75  46.0  yes
## 1657 AB1075    c17k73 Medium    A    563        64  15.0   no
## 1659 AB1077    c17k75 Medium    A    611       102  19.0  yes
## 1663 AB1080    c17k79 Medium    A    670        75  23.0  yes
## 1667 AB1085    c17k83 Medium    A    585        59  16.0   no
## 1676 AB1095    c17k92 Medium    A    986       124  46.0  yes
## 1677 AB1097    c17k93 Medium    A    599        36  17.0  yes
## 1678 AB1099    c17k94 Medium    A    580        97  16.0  yes
## 1686 AB1106     c18k3 Medium    A    710        91  25.0  yes
## 1698 AB1120    c18k15 Medium    A    680        52  23.0  yes
## 1705 AB1133    c18k22 Medium    A    570        65  15.0  yes
## 1722 AB1150    c18k39 Medium    A    512        92  12.0   no
## 1725 AB1155    c18k42 Medium    A    610        57  18.0   no
## 1737 AB1167    c18k54 Medium    A    850       125  36.0  yes
## 1738 AB1168    c18k55 Medium    A    610        69  18.0   no
## 1739 AB1169    c18k56 Medium    A    985        79  46.0  yes
## 1740 AB1170    c18k57 Medium    A    720        92  26.0  yes
## 1742 AB1173    c18k59 Medium    A    550        35  14.0   no
## 1749 AB1180    c18k66 Medium    A    721        85  27.0  yes
## 1750 AB1181    c18k67 Medium    A    810       120  32.0   no
## 1751 AB1182    c18k68 Medium    A    840        76  35.0  yes
## 1760 AB1191    c18k77 Medium    B    520        49  12.0   no
## 1761 AB1192    c18k78 Medium    B    552        95  14.0  yes
## 1772 AB1205    c18k89 Medium    B    675       100  23.0   no
## 1786 AB1228     c19k4 Medium    B    823        75  34.0  yes
## 1787 AB1230     c19k5 Medium    B    600        56  17.0   no
## 1788 AB1233     c19k6 Medium    B    600        84  17.0   no
## 1789 AB1234     c19k7 Medium    B    704        47  25.0  yes
## 1790 AB1235     c19k8 Medium    B    530        97  13.0   no
## 1796 AB1243    c19k14 Medium    B    540        74  13.0  yes
## 1798 AB1245    c19k16 Medium    B    720       117  27.0   no
## 1814 AB1263    c19k32 Medium    B    610        46  18.0   no
## 1818 AB1267    c19k36 Medium    B    940       119  43.0  yes
## 1819 AB1268    c19k37 Medium    B    580        58  16.0  yes
## 1828 AB1277    c19k46 Medium    B    821        71  34.0  yes
## 1829 AB1278    c19k47 Medium    B    804       103  32.0   no
## 1835 AB1285    c19k53 Medium    B    669        79  22.0  yes
## 1836 AB1286    c19k54 Medium    B    890        60  39.0  yes
## 1842 AB1292    c19k60 Medium    B    675        88  23.0   no
## 1843 AB1294    c19k61 Medium    B    605        81  18.0  yes
## 1845 AB1296    c19k63 Medium    B    674        47  23.0  yes
## 1852 AB1303    c19k70 Medium    B    503        91  12.0  yes
## 1865 AB1319    c19k83 Medium    B    540        74  13.0   no
## 1869 AB1323    c19k87 Medium    B    600        96  18.0   no
## 1872 AB1326    c19k90 Medium    B    741        98  27.0  yes
## 1873 AB1327    c19k91 Medium    B    500        42  11.0  yes
## 1885 AB1987     c20k4 Medium    C    525        65  13.0  yes
## 1895 AB2042    c20k14 Medium    C    510        80  12.0  yes
## 1901 AB2061    c20k20 Medium    C    510        84  12.0   no
## 1909 AB2106    c20k28 Medium    C    500        55  11.0  yes
## 1917 AB2154    c20k36 Medium    C    504        87  12.0  yes
## 1924 AB2192    c20k43 Medium    C    530        41  13.0   no
## 1931 AB2238    c20k50 Medium    C    540        66  13.0   no
## 1934 AB2256    c20k53 Medium    C    578       105  16.0  yes
## 1936 AB2267    c20k55 Medium    C    503        27  12.0  yes
## 1937 AB2272    c20k56 Medium    C    571        65  15.0  yes
## 1946 AB2352    c20k65 Medium    C    522        61  13.0  yes
## 1947 AB2376    c20k66 Medium    C    579       105  16.0  yes
## 1961  AB579    c20k80 Medium    C    700        97  24.0  yes
## 1970  AB588    c20k89 Medium    C    650        41  21.0  yes
## 1972  AB592    c20k91 Medium    C    610        97  18.0   no
## 1976  AB596    c20k95 Medium    C    570        77  15.0   no
## 1977  AB597    c20k96 Medium    C    570        73  15.0  yes
## 1978  AB598    c20k97 Medium    C    630       111  20.0  yes
## 1980  AB601    c20k99 Medium    C    830       135  34.0   no
## 1981  AB602     c22k1 Medium    C    840        89  35.0  yes
## 1983  AB605     c22k3 Medium    C    619        62  19.0  yes
## 1984  AB606     c22k4 Medium    C    500        39  12.0  yes
## 1992  AB615    c22k12 Medium    D    920       142  41.0  yes
## 2001  AB625    c22k21 Medium    D    630        80  20.0  yes
## 2024  AB654    c22k44 Medium    D    597       108  17.0   no
## 2027  AB657    c22k47 Medium    D    660        74  22.0  yes
## 2035  AB666    c22k55 Medium    D    720        92  26.0  yes
## 2038  AB671    c22k58 Medium    D    511        68  12.0  yes
## 2041  AB674    c22k61 Medium    D    590        99  16.0   no
## 2055  AB690    c22k75 Medium    D    750        95  28.0  yes
## 2072  AB708    c22k92 Medium    D    630        87  20.0  yes
## 2077  AB713    c22k97 Medium    D    590        55  16.0  yes
## 2079  AB715    c22k99 Medium    D    710        87  25.0   no
## 2082  AB718     c23k3 Medium    D    650        89  21.0  yes
## 2085  AB721     c23k6 Medium    D    740        94  27.0  yes
## 2090  AB728    c23k11 Medium    D    550        95  14.0  yes
## 2093  AB733    c23k14 Medium    D    680        84  23.0   no
## 2095  AB735    c23k16 Medium    D    570        45  15.0   no
## 2096  AB736    c23k17 Medium    D    610        85  18.0  yes
## 2097  AB737    c23k18 Medium    D    830       123  34.0   no
## 2105  AB755    c23k26 Medium    D    500        71  11.0   no
## 2112  AB762    c23k33 Medium    D    760        56  29.0  yes
## 2133  AB786    c23k54 Medium    D    780       121  30.0  yes
## 2148  AB804    c23k69 Medium    D    870       123  38.0  yes
## 2158  AB815    c23k79 Medium    D    582        98  16.0  yes
## 2182  AB841     c24k4 Medium    E    665        42  22.0   no
## 2195  AB855    c24k17 Medium    E    830        64  35.0  yes
## 2200  AB860    c24k22 Medium    E    887        72  39.0   no
## 2204  AB867    c24k26 Medium    E    546        34  14.0  yes
## 2209  AB872    c24k31 Medium    E    670       103  23.0   no
## 2212  AB875    c24k34 Medium    E    850       141  36.0  yes
## 2218  AB883    c24k40 Medium    E    550        75  14.0  yes
## 2225  AB890    c24k47 Medium    E    999       114  48.0  yes
## 2233  AB901    c24k55 Medium    E    868        62  37.0  yes
## 2235  AB903    c24k57 Medium    E    850       114  36.0  yes
## 2242  AB915    c24k64 Medium    E    830        63  34.0  yes
## 2273  AB948    c24k95 Medium    E    705        99  25.0   no
## 2276  AB951    c24k98 Medium    E    924        66  42.0   no
## 2278  AB954     c25k1 Medium    E    970        83  46.0  yes
## 2283  AB963     c25k6 Medium    E    590        79  16.0  yes
## 2284  AB964     c25k7 Medium    E    540        66  13.0  yes
## 2286  AB966     c25k9 Medium    E    548        46  14.0  yes
## 2290  AB970    c25k13 Medium    E    809       123  32.0   no
## 2297  AB977    c25k20 Medium    E    890        88  39.0  yes
## 2298  AB978    c25k21 Medium    E    801        99  32.0   no
## 2304  AB990    c25k27 Medium    E    571        77  15.0  yes
## 2316 AB1008    c25k39    Big    A   1390       171  77.0  yes
## 2317 AB1026    c25k40    Big    A   1044        78  52.0  yes
## 2322 AB1040    c25k45    Big    A   1130        82  61.0  yes
## 2332 AB1117    c25k55    Big    A   1315       170  70.0  yes
## 2346 AB1209    c25k69    Big    B   1060        90  53.0   no
## 2349 AB1217    c25k72    Big    B   1101       117  58.0  yes
## 2352 AB1232    c25k75    Big    B   1490       201 105.0  yes
## 2357  AB590    c25k80    Big    C   1360       134  76.0  yes
## 2359  AB637    c25k82    Big    D   1405       111  83.0  yes
## 2361  AB725    c25k84    Big    D   1005        83  49.0  yes
## 2362  AB727    c25k85    Big    D   1450       162  94.0  yes
## 2365  AB744    c25k88    Big    D   1370       182  77.0   no
## 2368  AB747    c25k91    Big    D   1280       145  65.0  yes
## 2377  AB878     c26k1    Big    E   1008        76  50.0   no
## 2384  AB908     c26k8    Big    E   1305       150  70.0  yes
## 2385  AB912     c26k9    Big    E   1088       133  55.0   no
## 2389  AB956    c26k13    Big    E   1040        78  51.0  yes
## 2393  AB985    c26k17    Big    E   1077        91  54.0   no
## 2396  AB988    c26k20    Big    E   1860       253 176.0  yes
a.estimar <- data.frame(Income, Employees, Taxes);E.BE(a.estimar,pik)
##                         N       Income    Employees        Taxes
## Estimation     2581.69000 1.133613e+06 1.641919e+05 32223.205000
## Standard Error  113.50169 5.920796e+04 8.132540e+03  2458.408173
## CVE               4.39641 5.222941e+00 4.953071e+00     7.629310
## DEFF                  Inf 3.423078e+00 4.702865e+00     1.493683

9.2 Muestreo aleatorio simple sin reemplazo

\[ \mathcal{p}(s)= \begin{cases} \frac{1}{\binom{N}{n}}&\text{ si }s\text{ tiene tamaño igual a }{n{(s)}=n}\\ {0}&\text{ en cualquier otro caso} \end{cases} \]

9.2.1 Algoritmos de selección

9.2.1.1 Coordinado negativo

  1. \(\forall_{k{\in}U}{\xi}_{k}{\sim}U{\left(0,1\right)}\)

  2. \({\xi}_{(k)}{\leq}{n}{\implies}k{\in}s\)

9.2.1.2 Selección y rechazo

  1. \(\forall_{k{\in}U}{\xi}_{k}{\sim}U{\left(0,1\right)}\)

  2. \({c}_{k}=\frac{{n}-{n}_{k}}{N-k+1}\)

  3. \({\xi}_{(k)}{\leq}{{c}_{k}}{\implies}k{\in}s\)

\[ \begin{align} \#\left(Q\right)&=\binom{N}{n} \end{align} \]

\[ \begin{align} {\sum}_{s{\in}Q}p(s)&={\sum}_{s{\in}Q}\frac{1}{\binom{N}{n}}\\ &={\sum}_{i=1}^{\binom{N}{n}}\frac{1}{\binom{N}{n}}\\ &=\binom{N}{n}\frac{1}{\binom{N}{n}}\\ &=1 \end{align} \]

\[E\left[n{\left(S\right)}\right]=N{\pi}\]

\[V\left[n{\left(S\right)}\right]=N{\pi}{\left(1-{\pi}\right)}\]

\[ \begin{align} \pi_k&={\sum}_{s{\in}Q}I_k\left({s}\right)\mathcal{p}\left({s}\right)\\ &=\frac{\binom{1}{1}\binom{N-1}{n-1}}{\binom{N}{n}}\\ &=\frac{n}{N} \end{align} \]

\[ \begin{align} \pi_{kl}&=\mathcal{P}(k{\in}S\text{ & }l{\in}S)\\ &=\mathcal{P}(I_k(S)=1{\mid}I_l(S)=1)\mathcal{P}(I_l(S)=1)\\ &=\frac{n-1}{N-1}\frac{n}{N}\\ &=\frac{(n-1)n}{(N-1)N} \end{align} \]

\[ \begin{align} \mathcal{P}(s{=}S\text{ & }n(S){=}n)&=\frac{\mathcal{P}(s{=}S\text{ & }n(S){=}n)}{\mathcal{P}(n(S){=}n)}\\ &=\frac{{\pi}^{n}\left(1-{\pi}\right)^{N-n}}{\binom{N}{n}{\pi}^{n}\left(1-{\pi}\right)^{N-n}}\\ &=\frac{1}{\binom{N}{n}} \end{align} \]

9.2.2 Estimador de Horvitz - Thompson

\[ \begin{align} \widehat{t}_{y,\pi}&={\sum}_{s}\frac{y_k}{\pi_k}\\ &=\frac{1}{\pi_k}{\sum}_{s}y_k\\ &=\frac{1}{\frac{n}{N}}{\sum}_{s}y_k\\ &=\frac{N}{n}{\sum}_{s}y_k \end{align} \]

\[ \begin{align} V[\widehat{t}_{y,\pi}]&={{\sum}{\sum}}_{U}{\Delta}_{kl}\frac{y_k}{\pi_k}\frac{y_l}{\pi_l} \end{align} \]

\[ \begin{align} {\Delta}_{kl}&= \begin{cases} {\pi}_{kl}-{\pi}_{k}{\pi}_{l}&\text{ para }k{\neq}l\\ {\pi}_{k}\left(1-{\pi}_{k}\right)&\text{ para }k{=}l \end{cases}\\ &= \begin{cases} \frac{(n-1)n}{(N-1)N}-\frac{n}{N}\frac{n}{N}&\text{ para }k{\neq}l\\ \frac{n}{N}\left(1-\frac{n}{N}\right)&\text{ para }k{=}l \end{cases}\\ &= \begin{cases} \left[\frac{n-1}{N-1}-\frac{n}{N}\right]\frac{n}{N}&\text{ para }k{\neq}l\\ \frac{n}{N}\left(\frac{N}{N}-\frac{n}{N}\right)&\text{ para }k{=}l \end{cases}\\ &= \begin{cases} \left[\frac{N(n-1)-n(N-1)}{N(N-1)}\right]\frac{n}{N}&\text{ para }k{\neq}l\\ \frac{n}{N}\left(\frac{N-n}{N}\right)&\text{ para }k{=}l \end{cases}\\ &= \begin{cases} \left[\frac{Nn-N-nN+n)}{N(N-1)}\right]\frac{n}{N}&\text{ para }k{\neq}l\\ \frac{n}{N^2}\left(N-n\right)&\text{ para }k{=}l \end{cases}\\ &= \begin{cases} \left[\frac{n-N}{N(N-1)}\right]\frac{n}{N}&\text{ para }k{\neq}l\\ \frac{n}{N^2}\left(N-n\right)&\text{ para }k{=}l \end{cases}\\ &= \begin{cases} -\frac{n}{N^2}\left[\frac{N-n}{N-1}\right]&\text{ para }k{\neq}l\\ \frac{n}{N^2}\left(N-n\right)&\text{ para }k{=}l \end{cases} \end{align} \]

\[ \begin{align} V_{MAS}[\widehat{t}_{y,\pi}]&=V_{MAS}\left[\frac{N}{n}{\sum}_{s}y_k\right]\\ &=\frac{N^2}{n^2}V_{MAS}\left[{\sum}_{U}I_k(s)y_k\right]\\ &=\frac{N^2}{n^2}V_{MAS}\left[{\sum\sum}_{U}I_k(s)y_k\right]\\ &=\frac{N^2}{n^2}{\sum\sum}_{U}C_{MAS}\left[I_k(s)y_k,I_l(s)y_l\right]\\ &=\frac{N^2}{n^2}\left\{{\sum}_{k=l}V_{MAS}\left[I_k(s)y_k\right]+{\sum\sum}_{k{\neq}l}C_{MAS}\left[I_k(s)y_k,I_l(s)y_l\right]\right\}\\ &=\frac{N^2}{n^2}\left\{{\sum}_{k=l}V_{MAS}\left[I_k(s)\right]y_k^2+{\sum\sum}_{k{\neq}l}C_{MAS}\left[I_k(s),I_l(s)\right]y_ky_l\right\}\\ &=\frac{N^2}{n^2}\left\{{\sum}_{k=l}\frac{n}{N^2}\left(N-n\right)y_k^2-{\sum\sum}_{k{\neq}l}\frac{n}{N^2}\left[\frac{N-n}{N-1}\right]y_ky_l\right\}\\ &=\frac{N^2}{n^2}\left\{\frac{n}{N^2}\left(N-n\right){\sum}_{k=l}y_k^2-\frac{n}{N^2}\left[\frac{N-n}{N-1}\right]{\sum\sum}_{k{\neq}l}y_ky_l\right\}\\ &=\frac{N^2}{n^2}\frac{n}{N^2}\left(N-n\right)\left\{{\sum}_{k=l}y_k^2-\frac{1}{N-1}{\sum\sum}_{k{\neq}l}y_ky_l\right\}\\ &=\frac{1}{n}\left(N-n\right)\left\{{\sum}_{U}y_k^2-\frac{1}{N-1}\left[\left({{\sum}_{U}y_k}\right)^2-{\sum}_{U}y_k^2\right]\right\}\\ &=\frac{1}{n}\left(N-n\right)\frac{1}{N-1}\left\{\left(N-1\right){\sum}_{U}y_k^2-\left[\left({{\sum}_{U}y_k}\right)^2-{\sum}_{U}y_k^2\right]\right\}\\ &=\frac{1}{n}\left(N-n\right)\frac{1}{N-1}\left\{N{\sum}_{U}y_k^2-{\sum}_{k=l}y_k^2-\left({{\sum}_{U}y_k}\right)^2+{\sum}_{U}y_k^2\right\}\\ &=\frac{1}{n}\left(N-n\right)\frac{1}{N-1}\left\{N{\sum}_{U}y_k^2-\left({{\sum}_{U}y_k}\right)^2\right\}\\ &=\frac{N}{n}\left(N-n\right)\frac{1}{N-1}\left\{{\sum}_{U}y_k^2-\frac{1}{N}\left({{\sum}_{U}y_k}\right)^2\right\}\\ &=\frac{N^2}{n}\left(1-\frac{n}{N}\right)\frac{1}{N-1}\left\{{\sum}_{U}y_k^2-{N}\left[\frac{{\sum}_{U}y_k}{N}\right]^2\right\}\\ &=\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2} \end{align} \]

\[ \begin{align} \widehat{V}_{MAS}[\widehat{t}_{y,\pi}]&=\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{ys}^{2} \end{align} \]

\[ \begin{align} E\left[S_{ys}^{2}\right]&=E\left\{\frac{1}{n-1}\left[{\sum}_{s}y_k^2-{n}\bar{y}_{s}^2\right]\right\}\\ &=\frac{1}{n-1}E\left[{\sum}_{s}y_k^2-{n}\bar{y}_{s}^2\right]\\ &=\frac{1}{n-1}\left\{E\left[{\sum}_{s}y_k^2\right]-{n}E\left[\bar{y}_{s}^2\right]\right\}\\ &=\frac{1}{n-1}\left\{E\left[{\sum}_{U}I_k(s)y_k^2\right]-{n}E\left[\frac{\widehat{t}_{y,\pi}^2}{N^2}\right]\right\}\\ &=\frac{1}{n-1}\left\{{\sum}_{U}E\left[I_k(s)\right]y_k^2-\frac{n}{N^2}E\left[\widehat{t}_{y,\pi}^2\right]\right\}\\ &=\frac{1}{n-1}\left\{{\sum}_{U}\pi_ky_k^2-\frac{n}{N^2}E\left[\widehat{t}_{y,\pi}^2\right]\right\}\\ &=\frac{1}{n-1}\left\{\frac{n}{N}{\sum}_{U}y_k^2-\frac{n}{N^2}E\left[\widehat{t}_{y,\pi}^2\right]\right\}\\ &=\frac{n}{n-1}\left\{\frac{1}{N}{\sum}_{U}y_k^2-\frac{1}{N^2}\left\{V_{MAS}\left[\widehat{t}_{y,\pi}^2\right]-{t}_{y,\pi}^{2}\right\}\right\}\\ &=\frac{n}{n-1}\left\{\frac{1}{N}{\sum}_{U}y_k^2-\frac{1}{N^2}\frac{N^2}{n}\left[1-\frac{n}{N}\right]S_{yU}^{2}-\frac{1}{N^2}{t}_{y,\pi}^{2}\right\}\\ &=\frac{n}{n-1}\left\{\frac{1}{N}{\sum}_{U}y_k^2-\frac{1}{n}\left[1-\frac{n}{N}\right]S_{yU}^{2}-\frac{1}{N^2}{t}_{y,\pi}^{2}\right\}\\ &=\frac{n}{n-1}\left\{\frac{1}{N}{\sum}_{U}y_k^2-\frac{1}{N^2}{t}_{y,\pi}^{2}-\frac{1}{n}\left[\frac{N}{N}-\frac{n}{N}\right]S_{yU}^{2}\right\}\\ &=\frac{n}{n-1}\left\{\frac{1}{N}\left[{\sum}_{U}y_k^2-\frac{1}{N}{t}_{y,\pi}^{2}\right]-\frac{1}{n}\left[\frac{N-n}{N}\right]S_{yU}^{2}\right\}\\ &=\frac{n}{n-1}\left\{\frac{N-1}{N}\frac{1}{N-1}\left[{\sum}_{U}y_k^2-{N}\frac{{t}_{y,\pi}^{2}}{N^{2}}\right]-\frac{N-n}{nN}S_{yU}^{2}\right\}\\ &=\frac{n}{n-1}\left\{\frac{N-1}{N}\frac{1}{N-1}\left[{\sum}_{U}y_k^2-{N}\bar{y}_{U}^2\right]-\frac{N-n}{nN}S_{yU}^{2}\right\}\\ &=\frac{n}{n-1}\left\{\frac{N-1}{N}S_{yU}^{2}-\frac{N-n}{nN}S_{yU}^{2}\right\}\\ &=\frac{n}{n-1}\left\{\frac{nN-n}{nN}S_{yU}^{2}-\frac{N-n}{nN}S_{yU}^{2}\right\}\\ &=\frac{n}{n-1}\frac{nN-n-(N-n)}{nN}S_{yU}^{2}\\ &=\frac{n}{n-1}\frac{nN-n-N+n}{nN}S_{yU}^{2}\\ &=\frac{n}{n-1}\frac{nN-N}{nN}S_{yU}^{2}\\ &=\frac{n}{n-1}\frac{n-1}{n}S_{yU}^{2}\\ &=S_{yU}^{2} \end{align} \]

\[ \begin{align} S_{ys}^{2}&=\frac{1}{n-1}\left\{{\sum}_{s}y_k^2-{n}\left[\frac{{\sum}_{s}y_k}{n}\right]^2\right\}\\ &=\frac{1}{n-1}\left[{\sum}_{s}y_k^2-{n}\bar{y}_{s}^2\right]\\ &=\frac{1}{n-1}\left[{\sum}_{s}y_k^2-2{n}\bar{y}_{s}^2+{n}\bar{y}_{s}^2\right]\\ &=\frac{1}{n-1}\left[{\sum}_{s}y_k^2-2\bar{y}_{s}{n}\bar{y}_{s}+{n}\bar{y}_{s}^2\right]\\ &=\frac{1}{n-1}\left[{\sum}_{s}y_k^2-2\bar{y}_{s}{n}\frac{{\sum}_{s}y_k}{n}+{n}\bar{y}_{s}^2\right]\\ &=\frac{1}{n-1}\left[{\sum}_{s}y_k^2-2\bar{y}_{s}{\sum}_{s}y_k+{\sum}_{s}\bar{y}_{s}^2\right]\\ &=\frac{1}{n-1}{\sum}_{s}\left(y_k^2-2y_k\bar{y}_{s}+\bar{y}_{s}^2\right)\\ &=\frac{1}{n-1}{\sum}_{s}\left(y_k-\bar{y}_{s}\right)^2\\ \end{align} \]

\[ \begin{align} \widehat{t}_{y,\pi}(s=U)&={\sum}_{s=U}\frac{y_k}{\pi_k}\\ &=\frac{N}{N}{\sum}_{s=U}y_k\\ &={t}_{y} \end{align} \]

\[ \begin{align} \widehat{t}_{y,alt}&=N\tilde{y}_{s}\\ &=N\frac{{\sum}_{s}\frac{y_k}{{\pi}_{k}}}{{\sum}_{s}\frac{1}{{\pi}_{k}}}\\ &=N\frac{\widehat{t}_{y\pi}}{\widehat{N}}\\ &=N\frac{\widehat{t}_{y\pi}}{n{(s)}}\\ &=N\bar{y}_{s}\\ \end{align} \]

9.2.2.1 Estimador del promedio

\[ \begin{align} \widehat{\bar{y}}_{\pi}&=\frac{\widehat{t}_{y,\pi}}{N}\\ &=\frac{{\sum}_{s}\frac{y_k}{{\pi}_{k}}}{N}\\ &=\frac{\frac{N}{n}{\sum}_{s}{y_k}}{\frac{N}{1}}\\ &=\frac{{\sum}_{s}{y_k}}{n}\\ &=\bar{y}_{s}\\ \end{align} \]

\[ \begin{align} {V}_{MAS}[\widehat{\bar{y}}_{\pi}]&=\frac{N^2}{n}\left(1-\frac{n}{N}\right)\frac{1}{N^2}S_{yU}^{2}\\ &=\frac{1}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2} \end{align} \]

\[ \begin{align} \widehat{V}_{MAS}[\widehat{\bar{y}}_{\pi}]&=\frac{N^2}{n}\left(1-\frac{n}{N}\right)\frac{1}{N^2}S_{ys}^{2}\\ &=\frac{1}{n}\left(1-\frac{n}{N}\right)S_{ys}^{2} \end{align} \]

9.2.2.1.1 Factor de corrección para poblaciones finitas

\[\left(1-\frac{n}{N}\right)\stackrel{N{\rightarrow}\infty}{\implies}{1}\]

9.2.2.1.2 \(n=100\) y \(N=100000\)

\[ \begin{align} {V}_{MAS}[\widehat{\bar{y}}_{\pi}]&=\frac{1}{100}\left(1-\frac{100}{100000}\right)S_{yU}^{2}\\ &=\frac{1}{100}\left(1-\frac{100}{10^{5}}\right)S_{yU}^{2}\\ &=0.01\left(1-0.001\right)S_{yU}^{2}\\ &=0.01\left(0.999\right)S_{yU}^{2} \end{align} \]

9.2.2.1.3 \(n=100\) y \(N=100000000\)

\[ \begin{align} {V}_{MAS}[\widehat{\bar{y}}_{\pi}]&=\frac{1}{100}\left(1-\frac{100}{100000000}\right)S_{yU}^{2}\\ &=\frac{1}{100}\left(1-\frac{100}{10^{8}}\right)S_{yU}^{2}\\ &=0.01\left(1-10^{-6}\right)S_{yU}^{2}\\ &=0.01\left(0.999999\right)S_{yU}^{2} \end{align} \]

9.2.3 Tamaño de muestra

\[ \begin{align} \bar{y}{\pm}Z_{1-\frac{\alpha}{2}}\sqrt{\frac{1}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2}}&=\bar{y}{\pm}Z_{1-\frac{\alpha}{2}}\sqrt{\frac{1}{n}\left(1-\frac{n}{N}\right)}S_{yU}\\ &=\bar{y}{\pm}Z_{1-\frac{\alpha}{2}}\sqrt{\left(1-\frac{n}{N}\right)}\frac{S_{yU}}{\sqrt{n}} \end{align} \]

\[ \begin{align} \mathcal{P}{\left[|\bar{y}_{S}-\bar{y}_{U}|{\leq}c\right]}&=1-\alpha \end{align} \]

\[ \begin{align} c=Z_{1-\frac{\alpha}{2}}\sqrt{\left(1-\frac{n}{N}\right)}\frac{S_{yU}}{\sqrt{n}}&{\implies}\sqrt{n}=Z_{1-\frac{\alpha}{2}}\sqrt{\left(1-\frac{n}{N}\right)}\frac{S_{yU}}{c}\\ &{\implies}n=Z_{1-\frac{\alpha}{2}}^2\left(1-\frac{n}{N}\right)\frac{S_{yU}^2}{c^2}\\ &{\implies}n=\left(Z_{1-\frac{\alpha}{2}}^2-Z_{1-\frac{\alpha}{2}}^2\frac{n}{N}\right)\frac{S_{yU}^2}{c^2}\\ &{\implies}n=Z_{1-\frac{\alpha}{2}}^2\frac{S_{yU}^2}{c^2}-Z_{1-\frac{\alpha}{2}}^2\frac{n}{N}\frac{S_{yU}^2}{c^2}\\ &{\implies}n+Z_{1-\frac{\alpha}{2}}^2\frac{n}{N}\frac{S_{yU}^2}{c^2}=Z_{1-\frac{\alpha}{2}}^2\frac{S_{yU}^2}{c^2}\\ &{\implies}n\left(1+Z_{1-\frac{\alpha}{2}}^2\frac{1}{N}\frac{S_{yU}^2}{c^2}\right)=Z_{1-\frac{\alpha}{2}}^2\frac{S_{yU}^2}{c^2}\\ &{\implies}n=\frac{Z_{1-\frac{\alpha}{2}}^2\frac{S_{yU}^2}{c^2}}{1+Z_{1-\frac{\alpha}{2}}^2\frac{1}{N}\frac{S_{yU}^2}{c^2}}\\ \end{align} \]

\[ \begin{align} \text{argmin}_{n\in\mathbb{Z}^+}Z_{1-\frac{\alpha}{2}}\sqrt{\left(1-\frac{n}{N}\right)}\frac{S_{yU}}{\sqrt{n}}&{\implies}n{\geq}\frac{Z_{1-\frac{\alpha}{2}}^2\frac{S_{yU}^2}{c^2}}{1+Z_{1-\frac{\alpha}{2}}^2\frac{1}{N}\frac{S_{yU}^2}{c^2}}\\ \end{align} \]

\[ \begin{align} \mathcal{P}{\left[|\frac{\bar{y}_{S}-\bar{y}_{U}}{\bar{y}_{U}}|{\leq}c\right]}&=1-\alpha\\ \mathcal{P}{\left[|\bar{y}_{S}-\bar{y}_{U}|{\leq}c|\bar{y}_{U}|\right]}&= \end{align} \]

\[ \begin{align} c|\bar{y}_{U}|=Z_{1-\frac{\alpha}{2}}\sqrt{\left(1-\frac{n}{N}\right)}\frac{S_{yU}}{\sqrt{n}}&{\implies}\sqrt{n}|\bar{y}_{U}|=Z_{1-\frac{\alpha}{2}}\sqrt{\left(1-\frac{n}{N}\right)}\frac{S_{yU}}{c}\\ &{\implies}n\bar{y}_{U}^{2}=Z_{1-\frac{\alpha}{2}}^{2}\left(1-\frac{n}{N}\right)\frac{S_{yU}^{2}}{c^{2}}\\ &{\implies}n\bar{y}_{U}^{2}=\left(Z_{1-\frac{\alpha}{2}}^{2}-Z_{1-\frac{\alpha}{2}}^{2}\frac{n}{N}\right)\frac{S_{yU}^{2}}{c^{2}}\\ &{\implies}n\bar{y}_{U}^{2}=Z_{1-\frac{\alpha}{2}}^{2}\frac{S_{yU}^{2}}{c^{2}}-Z_{1-\frac{\alpha}{2}}^{2}\frac{n}{N}\frac{S_{yU}^{2}}{c^{2}}\\ &{\implies}n\bar{y}_{U}^{2}+Z_{1-\frac{\alpha}{2}}^{2}\frac{n}{N}\frac{S_{yU}^{2}}{c^{2}}=Z_{1-\frac{\alpha}{2}}^{2}\frac{S_{yU}^{2}}{c^{2}}\\ &{\implies}n\left(\bar{y}_{U}^{2}+Z_{1-\frac{\alpha}{2}}^{2}\frac{1}{N}\frac{S_{yU}^{2}}{c^{2}}\right)=Z_{1-\frac{\alpha}{2}}^{2}\frac{S_{yU}^{2}}{c^{2}}\\ &{\implies}n=\frac{Z_{1-\frac{\alpha}{2}}^{2}\frac{S_{yU}^{2}}{c^{2}}}{\bar{y}_{U}^{2}+Z_{1-\frac{\alpha}{2}}^{2}\frac{1}{N}\frac{S_{yU}^{2}}{c^{2}}}\\ &{\implies}n=\frac{Z_{1-\frac{\alpha}{2}}^{2}\frac{S_{yU}^{2}}{c^{2}}\frac{1}{\bar{y}_{U}^{2}}}{\bar{y}_{U}^{2}\frac{1}{\bar{y}_{U}^{2}}+Z_{1-\frac{\alpha}{2}}^{2}\frac{1}{N}\frac{S_{yU}^{2}}{c^{2}}\frac{1}{\bar{y}_{U}^{2}}}\\ &{\implies}n=\frac{Z_{1-\frac{\alpha}{2}}^{2}\frac{1}{c^{2}}\frac{S_{yU}^{2}}{\bar{y}_{U}^{2}}}{\frac{\bar{y}_{U}^{2}}{\bar{y}_{U}^{2}}+Z_{1-\frac{\alpha}{2}}^{2}\frac{1}{N}\frac{1}{c^{2}}\frac{S_{yU}^{2}}{\bar{y}_{U}^{2}}}\\ &{\implies}n=\frac{Z_{1-\frac{\alpha}{2}}^{2}\frac{1}{c^{2}}{CV}_{yU}^{2}}{{1}+Z_{1-\frac{\alpha}{2}}^{2}\frac{1}{N}\frac{1}{c^{2}}{CV}_{yU}^{2}}\\ &{\implies}n=\frac{Z_{1-\frac{\alpha}{2}}^{2}\frac{{CV}_{yU}^{2}}{c^{2}}}{{1}+Z_{1-\frac{\alpha}{2}}^{2}\frac{1}{N}\frac{{CV}_{yU}^{2}}{c^{2}}}\\ \end{align} \]

\[ \begin{align} \text{argmin}_{n\in\mathbb{Z}^+}Z_{1-\frac{\alpha}{2}}\sqrt{\left(1-\frac{n}{N}\right)}\frac{S_{yU}}{\sqrt{n}}&{\implies}n{\geq}\frac{Z_{1-\frac{\alpha}{2}}^{2}\frac{{CV}_{yU}^{2}}{c^{2}}}{{1}+Z_{1-\frac{\alpha}{2}}^{2}\frac{1}{N}\frac{{CV}_{yU}^{2}}{c^{2}}}\\ \end{align} \]

9.2.3.1 ¿Bajo qué condiciones?

  • Condiciones de regularidad de Noether

    • \(N_{\nu}-n_{\nu}{\rightarrow}+{\infty}\)

    • \(y_{\nu_{i}}\), \(i=1,2,\ldots,N_{\nu}\)

    • \(|y_{\nu_{i}}-\overline{y}_{\nu}|>\tau\sqrt{n_{\nu}(1-f_{\nu})}S_{\nu}\)

\[{\lim}_{\nu{\rightarrow}+{\infty}}\frac{{\sum}_{S_{\nu}}\left({y_{\nu_{i}}-\overline{y}_{\nu}}\right)^{2}}{\left(N_{\nu}-1\right)S_{\nu}^{2}}{\sim}N{(0,1)}\]

  • \(n{\rightarrow}{\infty}\text{, }N{\rightarrow}{\infty}\text{ y }N-n{\rightarrow}{\infty}{\implies}\frac{\bar{y}_{S}-\bar{y}_{U}}{\sqrt{\left(1-\frac{n}{N}\right)}\frac{S_{yU}}{\sqrt{n}}}{\sim}N{(0,1)}\)

“Por supuesto, algunas cantidades poblacionales necesarias para estimar el tamaño de la muestra no se conocen; de hecho, si se conocieran, no habría necesidad de realizar estudio alguno, porque directamente se concernirían los parametros poblacionales de interés” Andres Gutíerrez (2009)

Lohr (2000) considera los siguientes escenarios para realizar una estimación previa de los parámetros de interés

  1. Realizar una prueba piloto, unas cuantas entrevistas conforman la muestra piloto, seleccionada con el mismo diseño de muestreo genérico.

  2. Utilizar información a priorí de estudios anteriores.

  3. “Estime la varianza ajustando una distribución teórica a la característica de interés” Ospina (2001), “cuando su desconocimineto sea absoluto use una distribución uniforme” Wu (2003)

9.2.3.2 Estimación del tamaño de muestra y total

N <- dim(Lucy)[1];N
## [1] 2396
n <- 30; n
## [1] 30
seleccion <- sample(N,n)
muestra <- Lucy[seleccion,]
SyU2 <- var(muestra$Income); SyU2
## [1] 38213.93
ybar <- mean(muestra$Income); ybar
## [1] 391.0667
c <- 19; c
## [1] 19

\[ \begin{align} \text{argmin}_{n\in\mathbb{Z}^+}Z_{1-\frac{\alpha}{2}}\sqrt{\left(1-\frac{n}{N}\right)}\frac{S_{yU}}{\sqrt{n}}{\implies}n{\geq}\frac{Z_{1-\frac{\alpha}{2}}^2\frac{S_{yU}^2}{c^2}}{1+Z_{1-\frac{\alpha}{2}}^2\frac{1}{N}\frac{S_{yU}^2}{c^2}}&=\frac{1.96^2\frac{3.821393\times 10^{4}}{c^2}}{1+1.96^2\frac{1}{2396}\frac{3.821393\times 10^{4}}{c^2}}\\ &=\frac{1.96^2\frac{3.821393\times 10^{4}}{361}}{1+1.96^2\frac{1}{2396}\frac{3.821393\times 10^{4}}{361}}\\ &=\frac{3.84\frac{3.821393\times 10^{4}}{361}}{1+3.84\frac{1}{2396}\frac{3.821393\times 10^{4}}{361}}\\ &=\frac{3.84*105.8558}{1+3.84*4\times 10^{-4}*105.8558}\\ &=\frac{406.6405}{1+0.1697164}\\ &=348 \end{align} \]

9.2.3.2.1 \(n=348\)
attach(Lucy)
seleccion <- S.SI(N,n)
muestra <- Lucy[seleccion,]
attach(muestra);muestra
##          ID Ubication  Level Zone Income Employees Taxes SPAM
## 2     AB002      c1k2  Small    A    329        19   4.0  yes
## 12    AB012     c1k12  Small    A    419        20   7.0   no
## 22    AB022     c1k22  Small    A    381        42   6.0  yes
## 33    AB033     c1k33  Small    A    334        72   5.0  yes
## 58    AB061     c1k58  Small    A    363        73   6.0   no
## 72    AB077     c1k72  Small    A    363        81   5.0  yes
## 81    AB086     c1k81  Small    A    330        95   4.0   no
## 86    AB099     c1k86  Small    A    456        75   9.0  yes
## 88    AB101     c1k88  Small    A    494        34  10.5   no
## 90    AB106     c1k90  Small    A    450        87   9.0  yes
## 95   AB1151     c1k95  Small    A    490        98  10.5  yes
## 98   AB1193     c1k98  Small    B    490        38  10.5  yes
## 99   AB1194     c1k99  Small    B    480        49  10.0   no
## 105  AB1229      c2k6  Small    B    388        91   6.0   no
## 112   AB126     c2k13  Small    B     65        69   0.5  yes
## 120   AB132     c2k21  Small    B    125        34   0.5   no
## 131  AB1340     c2k32  Small    B    222        34   2.0  yes
## 132  AB1341     c2k33  Small    B    304        18   4.0   no
## 142  AB1350     c2k43  Small    B    280        69   3.0   no
## 150  AB1358     c2k51  Small    B    384        70   6.0   no
## 160  AB1367     c2k61  Small    B    200        49   1.0  yes
## 167  AB1373     c2k68  Small    B    355        33   5.0  yes
## 171  AB1377     c2k72  Small    B    280        65   3.0  yes
## 174   AB138     c2k75  Small    B     70        17   0.5   no
## 190  AB1394     c2k91  Small    B    296        69   3.0   no
## 198  AB1401     c2k99  Small    B    201        81   1.0  yes
## 220  AB1421     c3k22  Small    B    370        30   6.0   no
## 231  AB1431     c3k33  Small    B    240        79   2.0   no
## 236  AB1436     c3k38  Small    B    215        86   2.0   no
## 240   AB144     c3k42  Small    B    103        81   0.5   no
## 265  AB1462     c3k67  Small    B    330        32   4.0  yes
## 268  AB1465     c3k70  Small    B    258        84   2.0   no
## 273   AB147     c3k75  Small    B    144        63   0.5  yes
## 276  AB1472     c3k78  Small    B    373        90   6.0  yes
## 282  AB1478     c3k84  Small    B    267        88   3.0   no
## 285  AB1480     c3k87  Small    B    210        14   1.0  yes
## 291  AB1486     c3k93  Small    B    320        51   4.0   no
## 303  AB1497      c4k6  Small    B    330        27   4.0  yes
## 306   AB150      c4k9  Small    B    102        81   0.5   no
## 311  AB1504     c4k14  Small    B    316        19   4.0  yes
## 313  AB1506     c4k16  Small    B    275        68   3.0  yes
## 314  AB1507     c4k17  Small    B    230        38   2.0  yes
## 317   AB151     c4k20  Small    B    159        76   1.0  yes
## 324  AB1516     c4k27  Small    B    260        32   2.0  yes
## 327  AB1519     c4k30  Small    B    310        70   4.0  yes
## 328   AB152     c4k31  Small    B    193        81   1.0   no
## 335  AB1526     c4k38  Small    B    218        70   2.0  yes
## 337  AB1528     c4k40  Small    B    235        51   2.0   no
## 371  AB1559     c4k74  Small    B    260        76   2.0   no
## 376  AB1563     c4k79  Small    B    380        94   6.0   no
## 387  AB1573     c4k90  Small    B    248        83   2.0  yes
## 388  AB1574     c4k91  Small    B    230        86   2.0   no
## 392  AB1578     c4k95  Small    B    315        31   4.0   no
## 395  AB1580     c4k98  Small    B    299        85   3.0   no
## 398  AB1583      c5k2  Small    B    277        45   3.0  yes
## 400  AB1585      c5k4  Small    B    300        54   3.0  yes
## 411  AB1595     c5k15  Small    B    343        60   5.0   no
## 416   AB160     c5k20  Small    B    179        16   1.0   no
## 427   AB161     c5k31  Small    B    162        24   1.0  yes
## 428  AB1610     c5k32  Small    B    291        85   3.0   no
## 443  AB1624     c5k47  Small    B    291        45   3.0  yes
## 445  AB1626     c5k49  Small    B    331        16   4.0   no
## 452  AB1632     c5k56  Small    B    281        85   3.0   no
## 453  AB1633     c5k57  Small    B    338        96   5.0  yes
## 455  AB1635     c5k59  Small    B    338        52   5.0  yes
## 459  AB1639     c5k63  Small    B    331        40   4.0  yes
## 468  AB1647     c5k72  Small    B    354        49   5.0   no
## 474  AB1652     c5k78  Small    B    369        97   6.0  yes
## 478  AB1656     c5k82  Small    B    233        35   2.0   no
## 485  AB1662     c5k89  Small    B    243        27   2.0  yes
## 488  AB1665     c5k92  Small    B    265        48   3.0   no
## 491  AB1668     c5k95  Small    B    336        80   5.0  yes
## 503  AB1679      c6k8  Small    B    250        59   2.0  yes
## 509  AB1684     c6k14  Small    B    340        44   5.0   no
## 510  AB1685     c6k15  Small    B    235        15   2.0   no
## 531  AB1704     c6k36  Small    B    189        25   1.0  yes
## 538  AB1710     c6k43  Small    B      1        45   0.5  yes
## 539  AB1711     c6k44  Small    B    180        12   1.0  yes
## 540  AB1712     c6k45  Small    B    172        48   1.0  yes
## 544  AB1716     c6k49  Small    B    125        74   0.5   no
## 548   AB172     c6k53  Small    B     80        77   0.5  yes
## 558  AB1729     c6k63  Small    B    106        53   0.5  yes
## 564  AB1734     c6k69  Small    B    137        23   0.5   no
## 572  AB1741     c6k77  Small    B    143         7   0.5  yes
## 581   AB175     c6k86  Small    B     71        69   0.5   no
## 583  AB1751     c6k88  Small    B    170        36   1.0  yes
## 590  AB1758     c6k95  Small    B    152        43   1.0   no
## 597  AB1764      c7k3  Small    B    189        53   1.0   no
## 598  AB1765      c7k4  Small    B    226        78   2.0   no
## 616  AB1781     c7k22  Small    B    188        77   1.0  yes
## 624  AB1789     c7k30  Small    B    207        30   1.0   no
## 635  AB1799     c7k41  Small    B    130        38   0.5  yes
## 645  AB1808     c7k51  Small    B    104        41   0.5   no
## 665  AB1826     c7k71  Small    B    180        68   1.0  yes
## 667  AB1828     c7k73  Small    B     94        41   0.5   no
## 681  AB1840     c7k87  Small    B    185        64   1.0  yes
## 688  AB1847     c7k94  Small    B    181         8   1.0  yes
## 689  AB1848     c7k95  Small    B    179        24   1.0  yes
## 691   AB185     c7k97  Small    C     68        73   0.5  yes
## 696  AB1854      c8k3  Small    C    211        82   1.0  yes
## 707  AB1864     c8k14  Small    C    189         9   1.0  yes
## 710  AB1867     c8k17  Small    C    197        33   1.0  yes
## 711  AB1868     c8k18  Small    C    183        12   1.0   no
## 715  AB1871     c8k22  Small    C    160        32   1.0  yes
## 718  AB1874     c8k25  Small    C    182        40   1.0  yes
## 724   AB188     c8k31  Small    C    117        82   0.5  yes
## 738  AB1892     c8k45  Small    C    490        30  10.5  yes
## 741  AB1895     c8k48  Small    C    350        48   5.0  yes
## 742  AB1896     c8k49  Small    C    319        67   4.0  yes
## 744  AB1898     c8k51  Small    C    370        98   6.0  yes
## 750  AB1903     c8k57  Small    C    420        32   8.0   no
## 752  AB1906     c8k59  Small    C    460        43   9.0   no
## 764  AB1918     c8k71  Small    C    390        39   7.0  yes
## 766   AB192     c8k73  Small    C    198        13   1.0   no
## 792  AB1947     c8k99  Small    C    385        54   6.0   no
## 801  AB1955      c9k9  Small    C    440        82   8.0   no
## 802  AB1956     c9k10  Small    C    470        76  10.0  yes
## 806  AB1960     c9k14  Small    C    312        74   4.0  yes
## 807  AB1961     c9k15  Small    C    430        21   8.0   no
## 809  AB1963     c9k17  Small    C    400        95   7.0   no
## 821  AB1974     c9k29  Small    C    410        28   7.0  yes
## 825  AB1978     c9k33  Small    C    471       101  10.0   no
## 830  AB1982     c9k38  Small    C    440        74   8.0  yes
## 831  AB1983     c9k39  Small    C    440        94   8.0  yes
## 832  AB1984     c9k40  Small    C    480        25  10.0  yes
## 838  AB1990     c9k46  Small    C    378        62   6.0  yes
## 840  AB1992     c9k48  Small    C    430        37   8.0   no
## 844  AB1996     c9k52  Small    C    400        23   7.0   no
## 846  AB1998     c9k54  Small    C    380        18   6.0   no
## 856  AB2008     c9k64  Small    C    434        45   8.0  yes
## 861  AB2016     c9k69  Small    C    436        97   8.0  yes
## 877  AB2034     c9k85  Small    C    434        53   8.0  yes
## 881  AB2038     c9k89  Small    C    460        99   9.0  yes
## 888  AB2045     c9k96  Small    C    440        34   8.0  yes
## 903  AB2064    c10k12  Small    C    420        76   8.0  yes
## 934  AB2099    c10k43  Small    C    463        28   9.0  yes
## 942  AB2107    c10k51  Small    C    469        40  10.0   no
## 949  AB2116    c10k58  Small    C    457        95   9.0   no
## 951  AB2118    c10k60  Small    C    480        85  10.0   no
## 956  AB2122    c10k65  Small    C    420        28   7.0   no
## 963  AB2130    c10k72  Small    C    460        67   9.0   no
## 964  AB2131    c10k73  Small    C    334        76   5.0  yes
## 965  AB2132    c10k74  Small    C    380        22   6.0   no
## 966  AB2133    c10k75  Small    C    370        66   6.0   no
## 967  AB2134    c10k76  Small    C    360        29   5.0  yes
## 968  AB2135    c10k77  Small    C    450        90   9.0  yes
## 977  AB2145    c10k86  Small    C    480        81  10.0  yes
## 982   AB215    c10k91  Small    C    180        36   1.0  yes
## 985  AB2152    c10k94  Small    C    452        63   9.0   no
## 1010 AB2178    c11k20  Small    C    494        38  10.5   no
## 1018 AB2188    c11k28  Small    C    386        23   6.0  yes
## 1023 AB2194    c11k33  Small    C    479        69  10.0   no
## 1024 AB2195    c11k34  Small    C    445        38   9.0  yes
## 1026 AB2198    c11k36  Small    C    366        69   6.0   no
## 1028  AB220    c11k38  Small    C    182        24   1.0  yes
## 1032 AB2203    c11k42  Small    C    421        85   8.0  yes
## 1035 AB2207    c11k45  Small    C    350        24   5.0   no
## 1042 AB2213    c11k52  Small    C    400        47   7.0  yes
## 1047 AB2219    c11k57  Small    C    350        25   5.0  yes
## 1057 AB2230    c11k67  Small    C    343        80   5.0   no
## 1064 AB2237    c11k74  Small    C    487        53  10.5   no
## 1066  AB224    c11k76  Small    C    143        43   0.5  yes
## 1079 AB2252    c11k89  Small    C    341        24   5.0  yes
## 1080 AB2254    c11k90  Small    C    470        40  10.0   no
## 1084 AB2259    c11k94  Small    C    463        24  10.0  yes
## 1086 AB2260    c11k96  Small    C    443        30   8.0   no
## 1105 AB2280    c12k16  Small    C    430        61   8.0  yes
## 1110 AB2286    c12k21  Small    C    400        19   7.0   no
## 1127 AB2301    c12k38  Small    C    457        67   9.0   no
## 1129 AB2303    c12k40  Small    C    468        32  10.0  yes
## 1132 AB2309    c12k43  Small    C    495        38  10.5   no
## 1136 AB2312    c12k47  Small    C    424        61   8.0  yes
## 1146 AB2321    c12k57  Small    C    454        51   9.0  yes
## 1148 AB2323    c12k59  Small    C    464        32  10.0  yes
## 1149 AB2324    c12k60  Small    C    356        61   5.0  yes
## 1162 AB2339    c12k73  Small    C    425        21   8.0  yes
## 1173  AB235    c12k84  Small    C     65        37   0.5  yes
## 1176 AB2353    c12k87  Small    C    484        25  10.5   no
## 1181 AB2358    c12k92  Small    C    348        56   5.0  yes
## 1194  AB237     c13k6  Small    C    166        64   1.0   no
## 1200 AB2375    c13k12  Small    C    489       101  10.5  yes
## 1206 AB2384    c13k18  Small    C    361        65   5.0  yes
## 1229  AB250    c13k41  Small    C     98         9   0.5   no
## 1242  AB263    c13k54  Small    C    177        48   1.0   no
## 1252  AB273    c13k64  Small    C    183        84   1.0  yes
## 1253  AB274    c13k65  Small    C    117        62   0.5  yes
## 1255  AB276    c13k67  Small    C    119        38   0.5  yes
## 1256  AB277    c13k68  Small    C    130        46   0.5  yes
## 1272  AB293    c13k84  Small    C     77        69   0.5   no
## 1273  AB294    c13k85  Small    C    103        25   0.5   no
## 1287  AB308    c13k99  Small    C    120        46   0.5  yes
## 1290  AB311     c14k3  Small    C    122        42   0.5  yes
## 1300  AB321    c14k13  Small    C    133        35   0.5  yes
## 1302  AB323    c14k15  Small    C    151        75   1.0   no
## 1311  AB332    c14k24  Small    C    172        24   1.0  yes
## 1315  AB336    c14k28  Small    C    131        22   0.5   no
## 1316  AB337    c14k29  Small    C    131        74   0.5   no
## 1317  AB338    c14k30  Small    C    127        46   0.5  yes
## 1318  AB339    c14k31  Small    C    122        30   0.5  yes
## 1320  AB341    c14k33  Small    C    151        59   1.0   no
## 1325  AB346    c14k38  Small    C    117        62   0.5  yes
## 1330  AB351    c14k43  Small    C    135        75   0.5  yes
## 1335  AB356    c14k48  Small    C    209        90   1.0   no
## 1336  AB357    c14k49  Small    C    200        45   1.0   no
## 1352  AB373    c14k65  Small    C     99        21   0.5  yes
## 1355  AB376    c14k68  Small    C    109        42   0.5  yes
## 1356  AB377    c14k69  Small    C    121        50   0.5  yes
## 1367  AB388    c14k80  Small    C     96        29   0.5  yes
## 1371  AB392    c14k84  Small    C    124        62   0.5  yes
## 1385  AB406    c14k98  Small    C    119        54   0.5   no
## 1388  AB409     c15k2  Small    C    131        18   0.5  yes
## 1389  AB410     c15k3  Small    C    165        76   1.0  yes
## 1390  AB411     c15k4  Small    C    168        32   1.0  yes
## 1406  AB427    c15k20  Small    C    206        66   1.0  yes
## 1431  AB452    c15k45  Small    C    186        60   1.0  yes
## 1436  AB457    c15k50  Small    C    260        80   2.0  yes
## 1444  AB465    c15k58  Small    C    233        67   2.0  yes
## 1453  AB474    c15k67  Small    C    251        51   2.0  yes
## 1467  AB488    c15k81  Small    C    195        61   1.0   no
## 1474  AB495    c15k88  Small    C    324        75   4.0  yes
## 1478  AB499    c15k92  Small    C    367        85   6.0  yes
## 1479  AB500    c15k93  Small    C    278        17   3.0   no
## 1481  AB502    c15k95  Small    C    268        52   3.0   no
## 1485  AB506    c15k99  Small    C    258        52   2.0  yes
## 1489  AB510     c16k4  Small    C    213        50   1.0  yes
## 1490  AB511     c16k5  Small    C    236        79   2.0  yes
## 1492  AB513     c16k7  Small    C    188        29   1.0  yes
## 1498  AB519    c16k13  Small    C    280        21   3.0  yes
## 1521  AB542    c16k36  Small    C    364        97   6.0   no
## 1527  AB548    c16k42  Small    C    283        77   3.0   no
## 1534  AB555    c16k49  Small    C    279        85   3.0  yes
## 1539  AB560    c16k54  Small    C    243        75   2.0  yes
## 1543  AB564    c16k58  Small    C    302        30   4.0   no
## 1544  AB565    c16k59  Small    C    262        16   2.0  yes
## 1545  AB566    c16k60  Small    C    200        69   1.0  yes
## 1557  AB649    c16k72  Small    D    470        24  10.0   no
## 1558  AB661    c16k73  Small    D    460        96   9.0   no
## 1571  AB827    c16k86  Small    D    470        84  10.0  yes
## 1575  AB958    c16k90  Small    E    490        38  10.5  yes
## 1590 AB1002     c17k6 Medium    A    743       127  27.0   no
## 1592 AB1004     c17k8 Medium    A    844       141  35.0   no
## 1603 AB1016    c17k19 Medium    A    935       119  42.0   no
## 1616 AB1030    c17k32 Medium    A    710        92  26.0  yes
## 1620 AB1034    c17k36 Medium    A    790        54  31.0  yes
## 1628 AB1047    c17k44 Medium    A    601        32  18.0   no
## 1632 AB1050    c17k48 Medium    A    550        75  14.0  yes
## 1633 AB1051    c17k49 Medium    A    675        48  23.0   no
## 1634 AB1052    c17k50 Medium    A    730       117  27.0   no
## 1640 AB1058    c17k56 Medium    A    630        95  19.0  yes
## 1645 AB1063    c17k61 Medium    A    680        96  23.0  yes
## 1652  AB107    c17k68 Medium    A    560        72  15.0  yes
## 1664 AB1081    c17k80 Medium    A    814       106  33.0   no
## 1676 AB1095    c17k92 Medium    A    986       124  46.0  yes
## 1678 AB1099    c17k94 Medium    A    580        97  16.0  yes
## 1685 AB1105     c18k2 Medium    A    680        80  23.0  yes
## 1727 AB1157    c18k44 Medium    A    794        67  31.0   no
## 1732 AB1162    c18k49 Medium    A    660        74  22.0  yes
## 1736 AB1166    c18k53 Medium    A    880        60  38.0  yes
## 1747 AB1178    c18k64 Medium    A    668        63  22.0  yes
## 1751 AB1182    c18k68 Medium    A    840        76  35.0  yes
## 1756 AB1188    c18k73 Medium    A    621        59  19.0  yes
## 1785 AB1227     c19k3 Medium    B    590        79  16.0  yes
## 1788 AB1233     c19k6 Medium    B    600        84  17.0   no
## 1789 AB1234     c19k7 Medium    B    704        47  25.0  yes
## 1795 AB1242    c19k13 Medium    B    520        85  12.0  yes
## 1797 AB1244    c19k15 Medium    B    590        47  17.0  yes
## 1801 AB1248    c19k19 Medium    B    519        92  12.0  yes
## 1808 AB1257    c19k26 Medium    B    750        88  28.0  yes
## 1809 AB1258    c19k27 Medium    B    545        42  14.0   no
## 1817 AB1266    c19k35 Medium    B    671       111  23.0   no
## 1829 AB1278    c19k47 Medium    B    804       103  32.0   no
## 1831 AB1280    c19k49 Medium    B    963       106  45.0  yes
## 1836 AB1286    c19k54 Medium    B    890        60  39.0  yes
## 1854 AB1306    c19k72 Medium    B    570       101  15.0  yes
## 1860 AB1313    c19k78 Medium    B    697        65  24.0  yes
## 1862 AB1315    c19k80 Medium    B    915       129  41.0  yes
## 1866 AB1320    c19k84 Medium    B    721        65  27.0  yes
## 1884 AB1959     c20k3 Medium    C    540        38  13.0   no
## 1896 AB2046    c20k15 Medium    C    530        69  13.0   no
## 1913 AB2125    c20k32 Medium    C    505        79  12.0   no
## 1920 AB2179    c20k39 Medium    C    579        49  16.0  yes
## 1924 AB2192    c20k43 Medium    C    530        41  13.0   no
## 1925 AB2197    c20k44 Medium    C    550        47  14.0   no
## 1935 AB2263    c20k54 Medium    C    523        89  13.0  yes
## 1945 AB2340    c20k64 Medium    C    604        81  18.0  yes
## 1952  AB570    c20k71 Medium    C    530        49  13.0   no
## 1959  AB577    c20k78 Medium    C    620        42  19.0  yes
## 1961  AB579    c20k80 Medium    C    700        97  24.0  yes
## 1965  AB583    c20k84 Medium    C    665        58  22.0   no
## 1978  AB598    c20k97 Medium    C    630       111  20.0  yes
## 1983  AB605     c22k3 Medium    C    619        62  19.0  yes
## 2002  AB626    c22k22 Medium    D    580       109  16.0   no
## 2008  AB632    c22k28 Medium    D    710       103  25.0   no
## 2012  AB638    c22k32 Medium    D    570        41  15.0  yes
## 2013  AB642    c22k33 Medium    D    570        37  15.0  yes
## 2014  AB643    c22k34 Medium    D    540       106  13.0   no
## 2021  AB651    c22k41 Medium    D    580        46  16.0   no
## 2023  AB653    c22k43 Medium    D    530        73  13.0  yes
## 2040  AB673    c22k60 Medium    D    630        59  20.0  yes
## 2043  AB676    c22k63 Medium    D    520       101  12.0  yes
## 2048  AB683    c22k68 Medium    D    656        90  22.0   no
## 2050  AB685    c22k70 Medium    D    676        72  23.0   no
## 2070  AB706    c22k90 Medium    D    540        90  13.0  yes
## 2079  AB715    c22k99 Medium    D    710        87  25.0   no
## 2085  AB721     c23k6 Medium    D    740        94  27.0  yes
## 2087  AB723     c23k8 Medium    D    900        97  40.0  yes
## 2092  AB732    c23k13 Medium    D    570        73  15.0   no
## 2093  AB733    c23k14 Medium    D    680        84  23.0   no
## 2098  AB738    c23k19 Medium    D    760       124  29.0  yes
## 2105  AB755    c23k26 Medium    D    500        71  11.0   no
## 2126  AB779    c23k47 Medium    D    580        50  16.0  yes
## 2131  AB784    c23k52 Medium    D    700        70  24.0  yes
## 2160  AB817    c23k81 Medium    D    612        58  19.0  yes
## 2171  AB829    c23k92 Medium    D    595        87  17.0  yes
## 2184  AB843     c24k6 Medium    E    710        91  25.0   no
## 2187  AB846     c24k9 Medium    E    750        51  28.0   no
## 2201  AB861    c24k23 Medium    E    870       135  38.0  yes
## 2204  AB867    c24k26 Medium    E    546        34  14.0  yes
## 2211  AB874    c24k33 Medium    E    700       122  24.0   no
## 2214  AB877    c24k36 Medium    E    879       103  38.0  yes
## 2219  AB884    c24k41 Medium    E    540        82  13.0  yes
## 2227  AB895    c24k49 Medium    E    594        99  17.0  yes
## 2228  AB896    c24k50 Medium    E    620        98  19.0  yes
## 2229  AB897    c24k51 Medium    E    720       100  26.0  yes
## 2234  AB902    c24k56 Medium    E    630        91  20.0  yes
## 2240  AB913    c24k62 Medium    E    727        73  27.0  yes
## 2254  AB928    c24k76 Medium    E    841       137  35.0   no
## 2262  AB937    c24k84 Medium    E    519        92  12.0  yes
## 2264  AB939    c24k86 Medium    E    634        36  20.0   no
## 2269  AB944    c24k91 Medium    E    670        95  23.0  yes
## 2285  AB965     c25k8 Medium    E    601        65  18.0   no
## 2293  AB973    c25k16 Medium    E    620        86  19.0  yes
## 2296  AB976    c25k19 Medium    E    910       109  41.0  yes
## 2302  AB982    c25k25 Medium    E    864       138  37.0   no
## 2321 AB1039    c25k44    Big    A   1016        96  50.0   no
## 2324 AB1042    c25k47    Big    A   1100       161  57.0  yes
## 2327 AB1093    c25k50    Big    A   1063       146  54.0  yes
## 2343 AB1187    c25k66    Big    A   1459       176  99.0   no
## 2349 AB1217    c25k72    Big    B   1101       117  58.0  yes
## 2352 AB1232    c25k75    Big    B   1490       201 105.0  yes
## 2358  AB636    c25k81    Big    D   1024       149  50.0  yes
## 2359  AB637    c25k82    Big    D   1405       111  83.0  yes
## 2363  AB741    c25k86    Big    D   1093       119  56.0   no
## 2365  AB744    c25k88    Big    D   1370       182  77.0   no
## 2367  AB746    c25k90    Big    D   1090       105  55.0  yes
## 2368  AB747    c25k91    Big    D   1280       145  65.0  yes
## 2379  AB892     c26k3    Big    E   1084        92  54.0  yes
## 2381  AB904     c26k5    Big    E   1035        86  51.0  yes
a.estimar <- data.frame(Income, Employees, Taxes);E.SI(N,n,a.estimar)
##                   N       Income    Employees        Taxes
## Estimation     2396 1.025082e+06 1.538741e+05 27739.896552
## Standard Error    0 3.116160e+04 3.830948e+03  1800.464032
## CVE               0 3.039914e+00 2.489663e+00     6.490522
## DEFF            NaN 1.000000e+00 1.000000e+00     1.000000
teorica <- rgamma(N,shape=2.7,scale=180)
CVyU <- sd(teorica)/mean(teorica); CVyU
## [1] 0.6080588
plot(density(teorica), main="Histograma de los ingresos", xlab="Ingresos", ylab="frecuencia")
hist(Lucy$Income, col=rainbow(7), freq=F, add=T)

c <- 0.038; c
## [1] 0.038

\[ \begin{align} \text{argmin}_{n\in\mathbb{Z}^+}Z_{1-\frac{\alpha}{2}}\sqrt{\left(1-\frac{n}{N}\right)}\frac{S_{yU}}{\sqrt{n}}{\implies}n{\geq}\frac{Z_{1-\frac{\alpha}{2}}^2\frac{S_{yU}^2}{c^2}}{1+Z_{1-\frac{\alpha}{2}}^2\frac{1}{N}\frac{S_{yU}^2}{c^2}}&=\frac{1.96^2\frac{0.37}{c^2}}{1+1.96^2\frac{1}{2396}\frac{0.37}{c^2}}\\ &=\frac{1.96^2\frac{0.37}{0.001444}}{1+1.96^2\frac{1}{2396}\frac{0.37}{0.001444}}\\ &=\frac{3.84\frac{0.37}{0.001444}}{1+3.84\frac{1}{2396}\frac{0.37}{0.001444}}\\ &=\frac{3.84*256.0496}{1+3.84*4\times 10^{-4}*256.0496}\\ &=\frac{983.6038}{1+0.4105191}\\ &=697 \end{align} \]

9.2.3.2.2 \(n=697\)
attach(Lucy)
seleccion <- S.SI(N,n)
muestra <- Lucy[seleccion,]
attach(muestra);muestra
##          ID Ubication  Level Zone Income Employees Taxes SPAM
## 2     AB002      c1k2  Small    A    329        19   4.0  yes
## 8     AB008      c1k8  Small    A    473        57  10.0  yes
## 10    AB010     c1k10  Small    A    361        25   5.0   no
## 12    AB012     c1k12  Small    A    419        20   7.0   no
## 14    AB014     c1k14  Small    A    330        23   4.0  yes
## 21    AB021     c1k21  Small    A    425        49   8.0  yes
## 25    AB025     c1k25  Small    A    365        49   6.0  yes
## 27    AB027     c1k27  Small    A    400        95   7.0  yes
## 30    AB030     c1k30  Small    A    354        33   5.0  yes
## 32    AB032     c1k32  Small    A    380        18   6.0  yes
## 33    AB033     c1k33  Small    A    334        72   5.0  yes
## 40    AB040     c1k40  Small    A    491        86  10.5  yes
## 42    AB042     c1k42  Small    A    444        34   8.0  yes
## 44    AB044     c1k44  Small    A    337        44   5.0   no
## 48    AB048     c1k48  Small    A    422       101   8.0  yes
## 53    AB055     c1k53  Small    A    348        20   5.0  yes
## 58    AB061     c1k58  Small    A    363        73   6.0   no
## 64    AB067     c1k64  Small    A    475        57  10.0   no
## 65    AB068     c1k65  Small    A    360        61   5.0   no
## 66    AB069     c1k66  Small    A    392        75   7.0   no
## 68    AB071     c1k68  Small    A    360        29   5.0  yes
## 69    AB072     c1k69  Small    A    390        95   7.0  yes
## 73    AB078     c1k73  Small    A    330        79   4.0  yes
## 81    AB086     c1k81  Small    A    330        95   4.0   no
## 87    AB100     c1k87  Small    A    490        62  10.5  yes
## 88    AB101     c1k88  Small    A    494        34  10.5   no
## 91   AB1098     c1k91  Small    A    285        65   3.0   no
## 93    AB113     c1k93  Small    A    441        66   8.0   no
## 95   AB1151     c1k95  Small    A    490        98  10.5  yes
## 97    AB117     c1k97  Small    A    378        30   6.0   no
## 102   AB122      c2k3  Small    B     66        69   0.5  yes
## 110   AB125     c2k11  Small    B    211        26   1.0  yes
## 117   AB130     c2k18  Small    B    160        56   1.0  yes
## 119   AB131     c2k20  Small    B     84        81   0.5  yes
## 120   AB132     c2k21  Small    B    125        34   0.5   no
## 121   AB133     c2k22  Small    B     28        73   0.5  yes
## 123  AB1333     c2k24  Small    B    312        82   4.0   no
## 124  AB1334     c2k25  Small    B    230        42   2.0  yes
## 125  AB1335     c2k26  Small    B    290        29   3.0  yes
## 126  AB1336     c2k27  Small    B    231        79   2.0   no
## 129  AB1339     c2k30  Small    B    320        71   4.0  yes
## 130   AB134     c2k31  Small    B    202        37   1.0  yes
## 131  AB1340     c2k32  Small    B    222        34   2.0  yes
## 144  AB1352     c2k45  Small    B    273        16   3.0  yes
## 145  AB1353     c2k46  Small    B    240        83   2.0  yes
## 147  AB1355     c2k48  Small    B    266        16   3.0   no
## 156  AB1363     c2k57  Small    B    320        11   4.0   no
## 159  AB1366     c2k60  Small    B    230        10   2.0  yes
## 163   AB137     c2k64  Small    B    109        50   0.5  yes
## 164  AB1370     c2k65  Small    B    310        58   4.0  yes
## 166  AB1372     c2k67  Small    B    318        51   4.0  yes
## 167  AB1373     c2k68  Small    B    355        33   5.0  yes
## 168  AB1374     c2k69  Small    B    314        78   4.0  yes
## 169  AB1375     c2k70  Small    B    265        48   3.0  yes
## 171  AB1377     c2k72  Small    B    280        65   3.0  yes
## 180  AB1385     c2k81  Small    B    340        60   5.0  yes
## 182  AB1387     c2k83  Small    B    260        88   2.0  yes
## 189  AB1393     c2k90  Small    B    260        32   2.0  yes
## 190  AB1394     c2k91  Small    B    296        69   3.0   no
## 193  AB1397     c2k94  Small    B    350        48   5.0  yes
## 194  AB1398     c2k95  Small    B    330        39   4.0  yes
## 195  AB1399     c2k96  Small    B    230        23   2.0  yes
## 198  AB1401     c2k99  Small    B    201        81   1.0  yes
## 199  AB1402      c3k1  Small    B    280        61   3.0  yes
## 210  AB1412     c3k12  Small    B    314        58   4.0  yes
## 213  AB1415     c3k15  Small    B    240        87   2.0  yes
## 214  AB1416     c3k16  Small    B    300        18   3.0  yes
## 220  AB1421     c3k22  Small    B    370        30   6.0   no
## 225  AB1426     c3k27  Small    B    330        67   4.0  yes
## 228  AB1429     c3k30  Small    B    370        58   6.0   no
## 232  AB1432     c3k34  Small    B    240        87   2.0  yes
## 233  AB1433     c3k35  Small    B    211        26   1.0  yes
## 234  AB1434     c3k36  Small    B    257        44   2.0  yes
## 239  AB1439     c3k41  Small    B    297        57   3.0   no
## 240   AB144     c3k42  Small    B    103        81   0.5   no
## 242  AB1441     c3k44  Small    B    351        29   5.0  yes
## 245  AB1444     c3k47  Small    B    390        19   7.0  yes
## 246  AB1445     c3k48  Small    B    312        86   4.0  yes
## 249  AB1448     c3k51  Small    B    301        14   4.0  yes
## 251   AB145     c3k53  Small    B     62        57   0.5   no
## 258  AB1456     c3k60  Small    B    225        34   2.0   no
## 265  AB1462     c3k67  Small    B    330        32   4.0  yes
## 275  AB1471     c3k77  Small    B    281        25   3.0  yes
## 279  AB1475     c3k81  Small    B    210        10   1.0  yes
## 280  AB1476     c3k82  Small    B    260        84   2.0  yes
## 281  AB1477     c3k83  Small    B    307        26   4.0  yes
## 284   AB148     c3k86  Small    B     91        29   0.5   no
## 287  AB1482     c3k89  Small    B    250        51   2.0   no
## 292  AB1487     c3k94  Small    B    280        21   3.0  yes
## 293  AB1488     c3k95  Small    B    209        30   1.0  yes
## 295   AB149     c3k97  Small    B    118        70   0.5   no
## 303  AB1497      c4k6  Small    B    330        27   4.0  yes
## 304  AB1498      c4k7  Small    B    360        53   5.0  yes
## 312  AB1505     c4k15  Small    B    345        12   5.0  yes
## 319  AB1511     c4k22  Small    B    360        37   5.0   no
## 322  AB1514     c4k25  Small    B    232        55   2.0   no
## 323  AB1515     c4k26  Small    B    241        87   2.0  yes
## 326  AB1518     c4k29  Small    B    375        34   6.0  yes
## 328   AB152     c4k31  Small    B    193        81   1.0   no
## 332  AB1523     c4k35  Small    B    316        31   4.0  yes
## 339   AB153     c4k42  Small    B    166        36   1.0  yes
## 341  AB1531     c4k44  Small    B    295        49   3.0  yes
## 343  AB1533     c4k46  Small    B    344        24   5.0  yes
## 344  AB1534     c4k47  Small    B    234        71   2.0   no
## 346  AB1536     c4k49  Small    B    249        19   2.0  yes
## 348  AB1538     c4k51  Small    B    280        13   3.0  yes
## 351  AB1540     c4k54  Small    B    300        82   3.0   no
## 352  AB1541     c4k55  Small    B    310        54   4.0  yes
## 354  AB1543     c4k57  Small    B    318        71   4.0  yes
## 358  AB1547     c4k61  Small    B    258        68   2.0  yes
## 360  AB1549     c4k63  Small    B    218        54   2.0   no
## 362  AB1550     c4k65  Small    B    270        60   3.0  yes
## 363  AB1551     c4k66  Small    B    286        89   3.0   no
## 367  AB1555     c4k70  Small    B    268        80   3.0   no
## 369  AB1557     c4k72  Small    B    290        89   3.0  yes
## 375  AB1562     c4k78  Small    B    296        45   3.0  yes
## 380  AB1567     c4k83  Small    B    270        48   3.0   no
## 383   AB157     c4k86  Small    B    185        52   1.0  yes
## 386  AB1572     c4k89  Small    B    270        76   3.0   no
## 391  AB1577     c4k94  Small    B    313        46   4.0  yes
## 394   AB158     c4k97  Small    B     76        85   0.5  yes
## 395  AB1580     c4k98  Small    B    299        85   3.0   no
## 401  AB1586      c5k5  Small    B    261        40   2.0   no
## 405   AB159      c5k9  Small    B     65        73   0.5  yes
## 406  AB1590     c5k10  Small    B    304        26   4.0  yes
## 409  AB1593     c5k13  Small    B    293        81   3.0  yes
## 414  AB1598     c5k18  Small    B    292        89   3.0   no
## 420  AB1603     c5k24  Small    B    226        30   2.0  yes
## 421  AB1604     c5k25  Small    B    315        27   4.0  yes
## 423  AB1606     c5k27  Small    B    279        57   3.0  yes
## 424  AB1607     c5k28  Small    B    304        66   4.0  yes
## 429  AB1611     c5k33  Small    B    213        38   1.0   no
## 430  AB1612     c5k34  Small    B    230        14   2.0   no
## 431  AB1613     c5k35  Small    B    319        83   4.0   no
## 435  AB1617     c5k39  Small    B    302        22   4.0  yes
## 442  AB1623     c5k46  Small    B    341        52   5.0  yes
## 445  AB1626     c5k49  Small    B    331        16   4.0   no
## 450  AB1630     c5k54  Small    B    236        31   2.0  yes
## 451  AB1631     c5k55  Small    B    226        18   2.0   no
## 461  AB1640     c5k65  Small    B    280        41   3.0  yes
## 464  AB1643     c5k68  Small    B    233        55   2.0   no
## 467  AB1646     c5k71  Small    B    334        76   5.0   no
## 470  AB1649     c5k74  Small    B    234        11   2.0  yes
## 471   AB165     c5k75  Small    B    149        19   0.5  yes
## 472  AB1650     c5k76  Small    B    236        59   2.0  yes
## 473  AB1651     c5k77  Small    B    182        28   1.0  yes
## 477  AB1655     c5k81  Small    B    305        86   4.0  yes
## 479  AB1657     c5k83  Small    B    251        12   2.0  yes
## 480  AB1658     c5k84  Small    B    280        25   3.0  yes
## 481  AB1659     c5k85  Small    B    278        53   3.0  yes
## 485  AB1662     c5k89  Small    B    243        27   2.0  yes
## 486  AB1663     c5k90  Small    B    292        57   3.0   no
## 490  AB1667     c5k94  Small    B    299        89   3.0   no
## 491  AB1668     c5k95  Small    B    336        80   5.0  yes
## 500  AB1676      c6k5  Small    B    296        45   3.0  yes
## 502  AB1678      c6k7  Small    B    235        27   2.0  yes
## 503  AB1679      c6k8  Small    B    250        59   2.0  yes
## 504   AB168      c6k9  Small    B     87         9   0.5  yes
## 505  AB1680     c6k10  Small    B    235        91   2.0  yes
## 509  AB1684     c6k14  Small    B    340        44   5.0   no
## 511  AB1686     c6k16  Small    B    269        36   3.0  yes
## 512  AB1687     c6k17  Small    B    315        63   4.0  yes
## 520  AB1694     c6k25  Small    B    170        52   1.0   no
## 527  AB1700     c6k32  Small    B    217        78   2.0  yes
## 533  AB1706     c6k38  Small    B    123        34   0.5  yes
## 540  AB1712     c6k45  Small    B    172        48   1.0  yes
## 553  AB1724     c6k58  Small    B    195        45   1.0   no
## 554  AB1725     c6k59  Small    B    130        74   0.5   no
## 555  AB1726     c6k60  Small    B     80        69   0.5   no
## 560  AB1730     c6k65  Small    B    200        65   1.0   no
## 576  AB1745     c6k81  Small    B    110        30   0.5   no
## 580  AB1749     c6k85  Small    B    179        48   1.0  yes
## 582  AB1750     c6k87  Small    B    164        72   1.0  yes
## 587  AB1755     c6k92  Small    B    135        47   0.5   no
## 591  AB1759     c6k96  Small    B    195        85   1.0   no
## 595  AB1762      c7k1  Small    B    188        85   1.0   no
## 597  AB1764      c7k3  Small    B    189        53   1.0   no
## 599  AB1766      c7k5  Small    B    155        75   1.0  yes
## 601  AB1768      c7k7  Small    B    190        25   1.0  yes
## 607  AB1773     c7k13  Small    B    188        73   1.0   no
## 615  AB1780     c7k21  Small    B    158        23   1.0   no
## 623  AB1788     c7k29  Small    B    126        58   0.5  yes
## 627  AB1791     c7k33  Small    B     97        21   0.5  yes
## 631  AB1795     c7k37  Small    B    131        46   0.5   no
## 634  AB1798     c7k40  Small    B     97        45   0.5  yes
## 639  AB1802     c7k45  Small    B    131        82   0.5   no
## 640  AB1803     c7k46  Small    B    141        63   0.5   no
## 648  AB1810     c7k54  Small    B    156        23   1.0  yes
## 656  AB1818     c7k62  Small    B    151         7   1.0  yes
## 658   AB182     c7k64  Small    B     87         5   0.5  yes
## 660  AB1821     c7k66  Small    B     80        41   0.5  yes
## 663  AB1824     c7k69  Small    B    209        74   1.0   no
## 664  AB1825     c7k70  Small    B    181        64   1.0  yes
## 668  AB1829     c7k74  Small    B    111        34   0.5  yes
## 670  AB1830     c7k76  Small    B    117        38   0.5   no
## 673  AB1833     c7k79  Small    B    152        83   1.0  yes
## 674  AB1834     c7k80  Small    B    131        22   0.5   no
## 681  AB1840     c7k87  Small    B    185        64   1.0  yes
## 686  AB1845     c7k92  Small    B    134         7   0.5   no
## 689  AB1848     c7k95  Small    B    179        24   1.0  yes
## 694  AB1852      c8k1  Small    C    166        40   1.0  yes
## 695  AB1853      c8k2  Small    C    190        21   1.0  yes
## 697  AB1855      c8k4  Small    C    131        74   0.5  yes
## 700  AB1858      c8k7  Small    C    176        20   1.0   no
## 702   AB186      c8k9  Small    C     67        77   0.5   no
## 711  AB1868     c8k18  Small    C    183        12   1.0   no
## 713   AB187     c8k20  Small    C     98        65   0.5  yes
## 717  AB1873     c8k24  Small    C    171        60   1.0  yes
## 720  AB1876     c8k27  Small    C    135        51   0.5  yes
## 724   AB188     c8k31  Small    C    117        82   0.5  yes
## 725  AB1880     c8k32  Small    C    319        15   4.0  yes
## 726  AB1881     c8k33  Small    C    450        54   9.0   no
## 734  AB1889     c8k41  Small    C    394        79   7.0  yes
## 739  AB1893     c8k46  Small    C    391        71   7.0  yes
## 742  AB1896     c8k49  Small    C    319        67   4.0  yes
## 747  AB1900     c8k54  Small    C    430        17   8.0  yes
## 751  AB1904     c8k58  Small    C    450        50   9.0  yes
## 753  AB1907     c8k60  Small    C    470        52  10.0   no
## 755   AB191     c8k62  Small    C     76        37   0.5  yes
## 758  AB1912     c8k65  Small    C    477        33  10.0  yes
## 759  AB1913     c8k66  Small    C    368        77   6.0  yes
## 764  AB1918     c8k71  Small    C    390        39   7.0  yes
## 766   AB192     c8k73  Small    C    198        13   1.0   no
## 767  AB1920     c8k74  Small    C    440        58   8.0  yes
## 768  AB1921     c8k75  Small    C    420        88   7.0   no
## 770  AB1923     c8k77  Small    C    450        58   9.0  yes
## 777  AB1930     c8k84  Small    C    380        34   6.0  yes
## 779  AB1932     c8k86  Small    C    420        92   7.0  yes
## 789  AB1944     c8k96  Small    C    380        38   6.0  yes
## 795   AB195      c9k3  Small    C    198        49   1.0  yes
## 797  AB1951      c9k5  Small    C    480        33  10.0  yes
## 801  AB1955      c9k9  Small    C    440        82   8.0   no
## 807  AB1961     c9k15  Small    C    430        21   8.0   no
## 809  AB1963     c9k17  Small    C    400        95   7.0   no
## 815  AB1969     c9k23  Small    C    389        83   6.0  yes
## 817  AB1970     c9k25  Small    C    356        65   5.0   no
## 819  AB1972     c9k27  Small    C    400        31   7.0  yes
## 824  AB1977     c9k32  Small    C    390        31   6.0   no
## 825  AB1978     c9k33  Small    C    471       101  10.0   no
## 827   AB198     c9k35  Small    C    119        38   0.5  yes
## 828  AB1980     c9k36  Small    C    363        45   5.0  yes
## 830  AB1982     c9k38  Small    C    440        74   8.0  yes
## 837   AB199     c9k45  Small    C    137        35   0.5  yes
## 845  AB1997     c9k53  Small    C    400        95   7.0  yes
## 848   AB200     c9k56  Small    C    155        11   1.0   no
## 851  AB2002     c9k59  Small    C    432        37   8.0  yes
## 852  AB2003     c9k60  Small    C    480        93  10.0   no
## 857  AB2009     c9k65  Small    C    491        74  10.5  yes
## 858   AB201     c9k66  Small    C    150         7   1.0  yes
## 859  AB2010     c9k67  Small    C    451        79   9.0  yes
## 861  AB2016     c9k69  Small    C    436        97   8.0  yes
## 862  AB2017     c9k70  Small    C    363        97   5.0   no
## 865  AB2021     c9k73  Small    C    324        23   4.0   no
## 866  AB2022     c9k74  Small    C    370        54   6.0   no
## 870  AB2026     c9k78  Small    C    460        39   9.0  yes
## 873   AB203     c9k81  Small    C    102        29   0.5  yes
## 877  AB2034     c9k85  Small    C    434        53   8.0  yes
## 878  AB2035     c9k86  Small    C    458        47   9.0  yes
## 879  AB2036     c9k87  Small    C    490        54  10.5  yes
## 883   AB204     c9k91  Small    C     91        65   0.5  yes
## 886  AB2043     c9k94  Small    C    400        79   7.0  yes
## 887  AB2044     c9k95  Small    C    404        87   7.0  yes
## 890  AB2049     c9k98  Small    C    480        85  10.0  yes
## 898  AB2059     c10k7  Small    C    417        20   7.0   no
## 899   AB206     c10k8  Small    C    110        62   0.5   no
## 901  AB2062    c10k10  Small    C    333        76   5.0   no
## 902  AB2063    c10k11  Small    C    380        74   6.0   no
## 908   AB207    c10k17  Small    C    171        12   1.0  yes
## 910  AB2071    c10k19  Small    C    375        30   6.0   no
## 918   AB208    c10k27  Small    C    120        70   0.5  yes
## 921  AB2082    c10k30  Small    C    480        41  10.0  yes
## 926   AB209    c10k35  Small    C     96        49   0.5   no
## 927  AB2090    c10k36  Small    C    480        45  10.0  yes
## 931  AB2095    c10k40  Small    C    361        33   5.0  yes
## 936  AB2100    c10k45  Small    C    400        91   7.0   no
## 937  AB2101    c10k46  Small    C    400        39   7.0  yes
## 939  AB2103    c10k48  Small    C    308        82   4.0   no
## 941  AB2105    c10k50  Small    C    416        92   7.0   no
## 943  AB2108    c10k52  Small    C    410        48   7.0   no
## 946  AB2111    c10k55  Small    C    480        77  10.0   no
## 951  AB2118    c10k60  Small    C    480        85  10.0   no
## 952  AB2119    c10k61  Small    C    480        37  10.0  yes
## 953   AB212    c10k62  Small    C    185        44   1.0   no
## 954  AB2120    c10k63  Small    C    350        20   5.0  yes
## 955  AB2121    c10k64  Small    C    450        26   9.0  yes
## 963  AB2130    c10k72  Small    C    460        67   9.0   no
## 966  AB2133    c10k75  Small    C    370        66   6.0   no
## 967  AB2134    c10k76  Small    C    360        29   5.0  yes
## 968  AB2135    c10k77  Small    C    450        90   9.0  yes
## 974  AB2142    c10k83  Small    C    390        19   7.0  yes
## 978  AB2146    c10k87  Small    C    476        81  10.0  yes
## 981  AB2149    c10k90  Small    C    410        60   7.0   no
## 987  AB2155    c10k96  Small    C    480        41  10.0   no
## 989  AB2157    c10k98  Small    C    485        61  10.5  yes
## 999  AB2166     c11k9  Small    C    392        75   7.0  yes
## 1003  AB217    c11k13  Small    C     64        69   0.5  yes
## 1012 AB2181    c11k22  Small    C    347        60   5.0  yes
## 1013 AB2182    c11k23  Small    C    370        46   6.0  yes
## 1016 AB2186    c11k26  Small    C    345        40   5.0  yes
## 1019 AB2189    c11k29  Small    C    410        60   7.0   no
## 1023 AB2194    c11k33  Small    C    479        69  10.0   no
## 1024 AB2195    c11k34  Small    C    445        38   9.0  yes
## 1032 AB2203    c11k42  Small    C    421        85   8.0  yes
## 1042 AB2213    c11k52  Small    C    400        47   7.0  yes
## 1043 AB2215    c11k53  Small    C    466        32  10.0  yes
## 1046 AB2218    c11k56  Small    C    365        85   6.0   no
## 1047 AB2219    c11k57  Small    C    350        25   5.0  yes
## 1049 AB2220    c11k59  Small    C    402        39   7.0  yes
## 1051 AB2223    c11k61  Small    C    360        17   5.0   no
## 1052 AB2224    c11k62  Small    C    361        33   5.0  yes
## 1053 AB2225    c11k63  Small    C    350        36   5.0  yes
## 1057 AB2230    c11k67  Small    C    343        80   5.0   no
## 1064 AB2237    c11k74  Small    C    487        53  10.5   no
## 1069 AB2242    c11k79  Small    C    418        44   7.0   no
## 1071 AB2244    c11k81  Small    C    491        94  10.5   no
## 1074 AB2247    c11k84  Small    C    320        35   4.0  yes
## 1083 AB2258    c11k93  Small    C    394        87   7.0  yes
## 1084 AB2259    c11k94  Small    C    463        24  10.0  yes
## 1086 AB2260    c11k96  Small    C    443        30   8.0   no
## 1087 AB2261    c11k97  Small    C    440        70   8.0   no
## 1098 AB2274     c12k9  Small    C    443        74   8.0   no
## 1100 AB2276    c12k11  Small    C    410        88   7.0  yes
## 1101 AB2277    c12k12  Small    C    370        33   6.0  yes
## 1105 AB2280    c12k16  Small    C    430        61   8.0  yes
## 1113 AB2289    c12k24  Small    C    440        82   8.0  yes
## 1116 AB2291    c12k27  Small    C    410        52   7.0   no
## 1118 AB2293    c12k29  Small    C    450        79   9.0  yes
## 1119 AB2294    c12k30  Small    C    460        27   9.0   no
## 1121 AB2296    c12k32  Small    C    461        44   9.0   no
## 1125  AB230    c12k36  Small    C    158        15   1.0  yes
## 1130 AB2304    c12k41  Small    C    360        73   5.0  yes
## 1134 AB2310    c12k45  Small    C    324        31   4.0   no
## 1135 AB2311    c12k46  Small    C    393        67   7.0  yes
## 1136 AB2312    c12k47  Small    C    424        61   8.0  yes
## 1140 AB2316    c12k51  Small    C    392        47   7.0  yes
## 1141 AB2317    c12k52  Small    C    433        97   8.0  yes
## 1143 AB2319    c12k54  Small    C    419       100   7.0  yes
## 1144  AB232    c12k55  Small    C     87         9   0.5  yes
## 1150 AB2325    c12k61  Small    C    404        79   7.0  yes
## 1153 AB2329    c12k64  Small    C    427        85   8.0   no
## 1154  AB233    c12k65  Small    C    111        14   0.5   no
## 1158 AB2333    c12k69  Small    C    364        57   6.0  yes
## 1159 AB2335    c12k70  Small    C    380        50   6.0   no
## 1164 AB2341    c12k75  Small    C    431        33   8.0  yes
## 1172 AB2349    c12k83  Small    C    374        34   6.0  yes
## 1173  AB235    c12k84  Small    C     65        37   0.5  yes
## 1186 AB2362    c12k97  Small    C    382        66   6.0  yes
## 1187 AB2363    c12k98  Small    C    449        58   9.0  yes
## 1192 AB2368     c13k4  Small    C    438        61   8.0  yes
## 1193 AB2369     c13k5  Small    C    460        51   9.0  yes
## 1199 AB2374    c13k11  Small    C    359        41   5.0  yes
## 1201 AB2377    c13k13  Small    C    365        81   6.0  yes
## 1207 AB2385    c13k19  Small    C    375        46   6.0  yes
## 1209 AB2387    c13k21  Small    C    405        52   7.0   no
## 1214 AB2391    c13k26  Small    C    369        29   6.0   no
## 1215 AB2392    c13k27  Small    C    329        31   4.0   no
## 1219  AB240    c13k31  Small    C     98        29   0.5  yes
## 1220  AB241    c13k32  Small    C     80        65   0.5  yes
## 1223  AB244    c13k35  Small    C    121        30   0.5   no
## 1235  AB256    c13k47  Small    C     85        25   0.5   no
## 1246  AB267    c13k58  Small    C    121        42   0.5  yes
## 1247  AB268    c13k59  Small    C    116        78   0.5   no
## 1251  AB272    c13k63  Small    C    112        70   0.5  yes
## 1255  AB276    c13k67  Small    C    119        38   0.5  yes
## 1256  AB277    c13k68  Small    C    130        46   0.5  yes
## 1258  AB279    c13k70  Small    C    152        23   1.0   no
## 1261  AB282    c13k73  Small    C     52        13   0.5   no
## 1265  AB286    c13k77  Small    C    143        83   0.5  yes
## 1268  AB289    c13k80  Small    C    156        27   1.0  yes
## 1269  AB290    c13k81  Small    C    144        47   0.5   no
## 1270  AB291    c13k82  Small    C    168        16   1.0  yes
## 1281  AB302    c13k93  Small    C    204        53   1.0  yes
## 1285  AB306    c13k97  Small    C    148        79   0.5   no
## 1290  AB311     c14k3  Small    C    122        42   0.5  yes
## 1309  AB330    c14k22  Small    C    138         7   0.5  yes
## 1311  AB332    c14k24  Small    C    172        24   1.0  yes
## 1313  AB334    c14k26  Small    C    162        36   1.0   no
## 1316  AB337    c14k29  Small    C    131        74   0.5   no
## 1325  AB346    c14k38  Small    C    117        62   0.5  yes
## 1326  AB347    c14k39  Small    C    136        27   0.5  yes
## 1329  AB350    c14k42  Small    C    139        79   0.5  yes
## 1333  AB354    c14k46  Small    C    174        32   1.0  yes
## 1336  AB357    c14k49  Small    C    200        45   1.0   no
## 1341  AB362    c14k54  Small    C    191        45   1.0  yes
## 1342  AB363    c14k55  Small    C    177        56   1.0   no
## 1349  AB370    c14k62  Small    C    185         8   1.0  yes
## 1350  AB371    c14k63  Small    C    120        10   0.5   no
## 1352  AB373    c14k65  Small    C     99        21   0.5  yes
## 1354  AB375    c14k67  Small    C    111         6   0.5  yes
## 1355  AB376    c14k68  Small    C    109        42   0.5  yes
## 1357  AB378    c14k70  Small    C     97         5   0.5   no
## 1360  AB381    c14k73  Small    C    117        66   0.5   no
## 1362  AB383    c14k75  Small    C    144        11   0.5   no
## 1363  AB384    c14k76  Small    C    188        44   1.0  yes
## 1364  AB385    c14k77  Small    C    214        38   1.0   no
## 1367  AB388    c14k80  Small    C     96        29   0.5  yes
## 1368  AB389    c14k81  Small    C    120         6   0.5   no
## 1369  AB390    c14k82  Small    C    114        26   0.5   no
## 1371  AB392    c14k84  Small    C    124        62   0.5  yes
## 1373  AB394    c14k86  Small    C    132        82   0.5  yes
## 1378  AB399    c14k91  Small    C    169        68   1.0   no
## 1380  AB401    c14k93  Small    C    188        73   1.0  yes
## 1382  AB403    c14k95  Small    C    169        48   1.0  yes
## 1396  AB417    c15k10  Small    C    149        27   0.5  yes
## 1403  AB424    c15k17  Small    C    230        39   2.0  yes
## 1408  AB429    c15k22  Small    C    270        60   3.0   no
## 1412  AB433    c15k26  Small    C    232        87   2.0   no
## 1421  AB442    c15k35  Small    C    321        27   4.0  yes
## 1422  AB443    c15k36  Small    C    249        67   2.0   no
## 1426  AB447    c15k40  Small    C    250        91   2.0  yes
## 1428  AB449    c15k42  Small    C    197        41   1.0   no
## 1429  AB450    c15k43  Small    C    292        29   3.0  yes
## 1430  AB451    c15k44  Small    C    286        13   3.0  yes
## 1432  AB453    c15k46  Small    C    262        56   2.0  yes
## 1438  AB459    c15k52  Small    C    365        29   6.0  yes
## 1440  AB461    c15k54  Small    C    292        13   3.0  yes
## 1441  AB462    c15k55  Small    C    316        43   4.0   no
## 1443  AB464    c15k57  Small    C    252        28   2.0  yes
## 1444  AB465    c15k58  Small    C    233        67   2.0  yes
## 1447  AB468    c15k61  Small    C    272        40   3.0   no
## 1451  AB472    c15k65  Small    C    221        66   2.0  yes
## 1452  AB473    c15k66  Small    C    247        91   2.0   no
## 1453  AB474    c15k67  Small    C    251        51   2.0  yes
## 1459  AB480    c15k73  Small    C    320        71   4.0  yes
## 1461  AB482    c15k75  Small    C    251        11   2.0  yes
## 1464  AB485    c15k78  Small    C    237        23   2.0  yes
## 1472  AB493    c15k86  Small    C    290        41   3.0   no
## 1473  AB494    c15k87  Small    C    292        17   3.0   no
## 1474  AB495    c15k88  Small    C    324        75   4.0  yes
## 1477  AB498    c15k91  Small    C    343        84   5.0  yes
## 1480  AB501    c15k94  Small    C    275        44   3.0   no
## 1483  AB504    c15k97  Small    C    305        38   4.0   no
## 1487  AB508     c16k2  Small    C    383        26   6.0   no
## 1488  AB509     c16k3  Small    C    226        38   2.0  yes
## 1491  AB512     c16k6  Small    C    250        75   2.0  yes
## 1494  AB515     c16k9  Small    C    274        44   3.0   no
## 1498  AB519    c16k13  Small    C    280        21   3.0  yes
## 1501  AB522    c16k16  Small    C    248        83   2.0  yes
## 1505  AB526    c16k20  Small    C    263        24   3.0  yes
## 1509  AB530    c16k24  Small    C    328        15   4.0   no
## 1515  AB536    c16k30  Small    C    190        65   1.0   no
## 1516  AB537    c16k31  Small    C    242        23   2.0   no
## 1517  AB538    c16k32  Small    C    218        22   2.0   no
## 1523  AB544    c16k38  Small    C    341        16   5.0  yes
## 1526  AB547    c16k41  Small    C    202        45   1.0  yes
## 1528  AB549    c16k43  Small    C    234        11   2.0  yes
## 1530  AB551    c16k45  Small    C    212        10   1.0   no
## 1532  AB553    c16k47  Small    C    308        14   4.0   no
## 1534  AB555    c16k49  Small    C    279        85   3.0  yes
## 1540  AB561    c16k55  Small    C    191        45   1.0  yes
## 1544  AB565    c16k59  Small    C    262        16   2.0  yes
## 1549  AB591    c16k64  Small    C    460        83   9.0   no
## 1550  AB599    c16k65  Small    C    490        26  10.5   no
## 1551  AB604    c16k66  Small    C    494        26  10.5   no
## 1554  AB639    c16k69  Small    D    470        24  10.0   no
## 1557  AB649    c16k72  Small    D    470        24  10.0   no
## 1558  AB661    c16k73  Small    D    460        96   9.0   no
## 1561  AB679    c16k76  Small    D    490        50  10.5  yes
## 1562  AB703    c16k77  Small    D    470        68  10.0  yes
## 1570  AB811    c16k85  Small    D    480        73  10.0  yes
## 1571  AB827    c16k86  Small    D    470        84  10.0  yes
## 1587  AB096     c17k3 Medium    A    741        90  27.0  yes
## 1591 AB1003     c17k7 Medium    A    759       112  29.0   no
## 1602 AB1015    c17k18 Medium    A    834       140  35.0  yes
## 1604 AB1017    c17k20 Medium    A    553        92  14.0  yes
## 1605 AB1018    c17k21 Medium    A    570        57  15.0   no
## 1606 AB1019    c17k22 Medium    A    694        53  24.0   no
## 1607  AB102    c17k23 Medium    A    550        67  14.0  yes
## 1608 AB1020    c17k24 Medium    A    730       126  27.0   no
## 1615  AB103    c17k31 Medium    A    662        50  22.0  yes
## 1620 AB1034    c17k36 Medium    A    790        54  31.0  yes
## 1628 AB1047    c17k44 Medium    A    601        32  18.0   no
## 1630 AB1049    c17k46 Medium    A    672        39  23.0  yes
## 1634 AB1052    c17k50 Medium    A    730       117  27.0   no
## 1638 AB1056    c17k54 Medium    A    647        93  21.0  yes
## 1642 AB1060    c17k58 Medium    A    705       107  25.0  yes
## 1643 AB1061    c17k59 Medium    A    574        73  15.0   no
## 1644 AB1062    c17k60 Medium    A    664       110  22.0   no
## 1647 AB1065    c17k63 Medium    A    704        55  25.0   no
## 1648 AB1066    c17k64 Medium    A    850       102  36.0  yes
## 1650 AB1068    c17k66 Medium    A    872        87  38.0   no
## 1651 AB1069    c17k67 Medium    A    937       127  43.0  yes
## 1652  AB107    c17k68 Medium    A    560        72  15.0  yes
## 1654 AB1071    c17k70 Medium    A    980        75  46.0  yes
## 1655 AB1073    c17k71 Medium    A    899        93  40.0  yes
## 1656 AB1074    c17k72 Medium    A    534        37  13.0  yes
## 1657 AB1075    c17k73 Medium    A    563        64  15.0   no
## 1658 AB1076    c17k74 Medium    A    590        47  17.0  yes
## 1662  AB108    c17k78 Medium    A    635        40  20.0   no
## 1667 AB1085    c17k83 Medium    A    585        59  16.0   no
## 1668 AB1086    c17k84 Medium    A    589        91  16.0  yes
## 1671 AB1089    c17k87 Medium    A    740       126  27.0  yes
## 1674 AB1091    c17k90 Medium    A    704       103  25.0   no
## 1678 AB1099    c17k94 Medium    A    580        97  16.0  yes
## 1680 AB1100    c17k96 Medium    A    560        52  15.0   no
## 1681 AB1101    c17k97 Medium    A    610        53  18.0   no
## 1682 AB1102    c17k98 Medium    A    580        62  16.0   no
## 1685 AB1105     c18k2 Medium    A    680        80  23.0  yes
## 1686 AB1106     c18k3 Medium    A    710        91  25.0  yes
## 1687 AB1107     c18k4 Medium    A    837       124  35.0   no
## 1697  AB112    c18k14 Medium    A    780        81  30.0   no
## 1701 AB1127    c18k18 Medium    A    712        56  26.0   no
## 1702 AB1128    c18k19 Medium    A    660        54  22.0   no
## 1704 AB1131    c18k21 Medium    A    627        71  19.0  yes
## 1705 AB1133    c18k22 Medium    A    570        65  15.0  yes
## 1707 AB1136    c18k24 Medium    A    700        51  25.0  yes
## 1709 AB1138    c18k26 Medium    A    637       104  20.0   no
## 1720 AB1149    c18k37 Medium    A    540        38  13.0   no
## 1723 AB1152    c18k40 Medium    A    560        60  15.0   no
## 1724 AB1154    c18k41 Medium    A    525        57  13.0   no
## 1730 AB1160    c18k47 Medium    A    850       113  36.0   no
## 1734 AB1164    c18k51 Medium    A    753        56  29.0  yes
## 1735 AB1165    c18k52 Medium    A    760        68  29.0   no
## 1738 AB1168    c18k55 Medium    A    610        69  18.0   no
## 1747 AB1178    c18k64 Medium    A    668        63  22.0  yes
## 1757 AB1189    c18k74 Medium    B    542        86  14.0   no
## 1764 AB1197    c18k81 Medium    B    730        81  27.0   no
## 1771 AB1204    c18k88 Medium    B    820        58  33.0  yes
## 1773 AB1207    c18k90 Medium    B    920       118  41.0  yes
## 1779 AB1216    c18k96 Medium    B    632       112  20.0   no
## 1781 AB1221    c18k98 Medium    B    500        75  11.0  yes
## 1783 AB1223     c19k1 Medium    B    637       108  20.0   no
## 1784 AB1225     c19k2 Medium    B    560        44  15.0  yes
## 1787 AB1230     c19k5 Medium    B    600        56  17.0   no
## 1789 AB1234     c19k7 Medium    B    704        47  25.0  yes
## 1790 AB1235     c19k8 Medium    B    530        97  13.0   no
## 1791 AB1236     c19k9 Medium    B    530        37  13.0   no
## 1797 AB1244    c19k15 Medium    B    590        47  17.0  yes
## 1798 AB1245    c19k16 Medium    B    720       117  27.0   no
## 1807 AB1256    c19k25 Medium    B    618        70  19.0  yes
## 1816 AB1265    c19k34 Medium    B    589       107  16.0  yes
## 1817 AB1266    c19k35 Medium    B    671       111  23.0   no
## 1818 AB1267    c19k36 Medium    B    940       119  43.0  yes
## 1827 AB1276    c19k45 Medium    B    551        87  14.0  yes
## 1830 AB1279    c19k48 Medium    B    567        72  15.0  yes
## 1831 AB1280    c19k49 Medium    B    963       106  45.0  yes
## 1835 AB1285    c19k53 Medium    B    669        79  22.0  yes
## 1838 AB1288    c19k56 Medium    B    650        85  21.0  yes
## 1843 AB1294    c19k61 Medium    B    605        81  18.0  yes
## 1845 AB1296    c19k63 Medium    B    674        47  23.0  yes
## 1846 AB1297    c19k64 Medium    B    570        37  15.0  yes
## 1849 AB1300    c19k67 Medium    B    896       117  40.0  yes
## 1850 AB1301    c19k68 Medium    B    620        67  19.0  yes
## 1851 AB1302    c19k69 Medium    B    944       131  43.0   no
## 1852 AB1303    c19k70 Medium    B    503        91  12.0  yes
## 1855 AB1307    c19k73 Medium    B    755       124  29.0   no
## 1858 AB1311    c19k76 Medium    B    623        87  19.0  yes
## 1860 AB1313    c19k78 Medium    B    697        65  24.0  yes
## 1864 AB1318    c19k82 Medium    B    511       104  12.0  yes
## 1865 AB1319    c19k83 Medium    B    540        74  13.0   no
## 1867 AB1321    c19k85 Medium    B    619        94  19.0  yes
## 1876 AB1330    c19k94 Medium    B    672        59  23.0  yes
## 1878 AB1905    c19k96 Medium    C    500        59  12.0   no
## 1883 AB1942     c20k2 Medium    C    560        84  14.0  yes
## 1885 AB1987     c20k4 Medium    C    525        65  13.0  yes
## 1889 AB2014     c20k8 Medium    C    530        25  13.0  yes
## 1890 AB2015     c20k9 Medium    C    520        64  12.0   no
## 1891 AB2019    c20k10 Medium    C    530        89  13.0  yes
## 1895 AB2042    c20k14 Medium    C    510        80  12.0  yes
## 1901 AB2061    c20k20 Medium    C    510        84  12.0   no
## 1913 AB2125    c20k32 Medium    C    505        79  12.0   no
## 1914 AB2127    c20k33 Medium    C    500        75  12.0   no
## 1917 AB2154    c20k36 Medium    C    504        87  12.0  yes
## 1920 AB2179    c20k39 Medium    C    579        49  16.0  yes
## 1922 AB2185    c20k41 Medium    C    500        83  11.0  yes
## 1924 AB2192    c20k43 Medium    C    530        41  13.0   no
## 1930 AB2228    c20k49 Medium    C    502       103  12.0  yes
## 1932 AB2251    c20k51 Medium    C    505        51  12.0  yes
## 1937 AB2272    c20k56 Medium    C    571        65  15.0  yes
## 1940 AB2307    c20k59 Medium    C    578        33  16.0  yes
## 1941 AB2308    c20k60 Medium    C    577       101  16.0  yes
## 1943 AB2334    c20k62 Medium    C    550        47  14.0  yes
## 1949 AB2379    c20k68 Medium    C    591        39  17.0  yes
## 1952  AB570    c20k71 Medium    C    530        49  13.0   no
## 1960  AB578    c20k79 Medium    C    600       112  18.0  yes
## 1967  AB585    c20k86 Medium    C    620        79  19.0   no
## 1968  AB586    c20k87 Medium    C    620        99  19.0   no
## 1971  AB589    c20k90 Medium    C    580        70  16.0  yes
## 1972  AB592    c20k91 Medium    C    610        97  18.0   no
## 1976  AB596    c20k95 Medium    C    570        77  15.0   no
## 1979  AB600    c20k98 Medium    C    620        47  19.0   no
## 1981  AB602     c22k1 Medium    C    840        89  35.0  yes
## 1983  AB605     c22k3 Medium    C    619        62  19.0  yes
## 1984  AB606     c22k4 Medium    C    500        39  12.0  yes
## 1989  AB612     c22k9 Medium    D    640        61  21.0   no
## 1992  AB615    c22k12 Medium    D    920       142  41.0  yes
## 1998  AB621    c22k18 Medium    D    590        55  16.0  yes
## 2002  AB626    c22k22 Medium    D    580       109  16.0   no
## 2004  AB628    c22k24 Medium    D    650        93  21.0  yes
## 2005  AB629    c22k25 Medium    D    650        61  21.0  yes
## 2011  AB635    c22k31 Medium    D    828        95  34.0  yes
## 2017  AB646    c22k37 Medium    D    610        69  18.0  yes
## 2019  AB648    c22k39 Medium    D    580        74  16.0   no
## 2020  AB650    c22k40 Medium    D    650       101  21.0   no
## 2026  AB656    c22k46 Medium    D    640       113  21.0   no
## 2031  AB662    c22k51 Medium    D    590       107  17.0   no
## 2033  AB664    c22k53 Medium    D    640        97  21.0   no
## 2034  AB665    c22k54 Medium    D    690       108  23.0  yes
## 2035  AB666    c22k55 Medium    D    720        92  26.0  yes
## 2038  AB671    c22k58 Medium    D    511        68  12.0  yes
## 2039  AB672    c22k59 Medium    D    500        99  11.0   no
## 2046  AB681    c22k66 Medium    D    520        93  12.0   no
## 2047  AB682    c22k67 Medium    D    650        81  22.0  yes
## 2049  AB684    c22k69 Medium    D    630        51  20.0  yes
## 2050  AB685    c22k70 Medium    D    676        72  23.0   no
## 2052  AB687    c22k72 Medium    D    650        77  21.0  yes
## 2061  AB696    c22k81 Medium    D    580        90  16.0   no
## 2064  AB699    c22k84 Medium    D    690       117  24.0  yes
## 2066  AB701    c22k86 Medium    D    630       104  20.0  yes
## 2067  AB702    c22k87 Medium    D    520        85  12.0   no
## 2068  AB704    c22k88 Medium    D    570        65  15.0   no
## 2077  AB713    c22k97 Medium    D    590        55  16.0  yes
## 2083  AB719     c23k4 Medium    D    630       103  19.0  yes
## 2084  AB720     c23k5 Medium    D    730       129  27.0  yes
## 2085  AB721     c23k6 Medium    D    740        94  27.0  yes
## 2087  AB723     c23k8 Medium    D    900        97  40.0  yes
## 2092  AB732    c23k13 Medium    D    570        73  15.0   no
## 2095  AB735    c23k16 Medium    D    570        45  15.0   no
## 2101  AB743    c23k22 Medium    D    940       103  43.0   no
## 2102  AB750    c23k23 Medium    D    521        85  13.0  yes
## 2106  AB756    c23k27 Medium    D    620       111  19.0  yes
## 2109  AB759    c23k30 Medium    D    770       121  29.0  yes
## 2110  AB760    c23k31 Medium    D    810       130  33.0   no
## 2111  AB761    c23k32 Medium    D    810        96  32.0  yes
## 2115  AB765    c23k36 Medium    D    920       130  42.0  yes
## 2116  AB769    c23k37 Medium    D    590        87  17.0   no
## 2117  AB770    c23k38 Medium    D    700       126  24.0  yes
## 2123  AB776    c23k44 Medium    D    569        60  15.0  yes
## 2130  AB783    c23k51 Medium    D    750       108  28.0  yes
## 2142  AB795    c23k63 Medium    D    628        91  19.0  yes
## 2143  AB796    c23k64 Medium    D    810        57  32.0  yes
## 2145  AB798    c23k66 Medium    D    880       120  38.0   no
## 2154  AB810    c23k75 Medium    D    520       105  12.0  yes
## 2158  AB815    c23k79 Medium    D    582        98  16.0  yes
## 2159  AB816    c23k80 Medium    D    620        54  19.0  yes
## 2169  AB826    c23k90 Medium    D    750        75  28.0   no
## 2173  AB831    c23k94 Medium    D    505        55  12.0   no
## 2177  AB836    c23k98 Medium    E    590        79  17.0   no
## 2180  AB839     c24k2 Medium    E    722        89  27.0   no
## 2182  AB841     c24k4 Medium    E    665        42  22.0   no
## 2184  AB843     c24k6 Medium    E    710        91  25.0   no
## 2190  AB849    c24k12 Medium    E    866        78  37.0  yes
## 2191  AB850    c24k13 Medium    E    564        32  15.0  yes
## 2194  AB854    c24k16 Medium    E    750        51  28.0  yes
## 2195  AB855    c24k17 Medium    E    830        64  35.0  yes
## 2197  AB857    c24k19 Medium    E    850       141  36.0  yes
## 2206  AB869    c24k28 Medium    E    650       114  22.0  yes
## 2207  AB870    c24k29 Medium    E    712        48  26.0  yes
## 2217  AB882    c24k39 Medium    E    510        99  12.0   no
## 2219  AB884    c24k41 Medium    E    540        82  13.0  yes
## 2221  AB886    c24k43 Medium    E    605        69  18.0  yes
## 2228  AB896    c24k50 Medium    E    620        98  19.0  yes
## 2239  AB911    c24k61 Medium    E    595        71  17.0  yes
## 2244  AB918    c24k66 Medium    E    783        66  31.0  yes
## 2245  AB919    c24k67 Medium    E    951        73  43.0  yes
## 2246  AB920    c24k68 Medium    E    555        56  14.0  yes
## 2250  AB924    c24k72 Medium    E    570        57  15.0   no
## 2251  AB925    c24k73 Medium    E    610        41  18.0   no
## 2252  AB926    c24k74 Medium    E    640       100  20.0  yes
## 2258  AB933    c24k80 Medium    E    550        87  14.0  yes
## 2262  AB937    c24k84 Medium    E    519        92  12.0  yes
## 2263  AB938    c24k85 Medium    E    520        52  12.0   no
## 2267  AB942    c24k89 Medium    E    610        86  18.0   no
## 2279  AB955     c25k2 Medium    E    944        64  43.0   no
## 2281  AB960     c25k4 Medium    E    591        51  17.0  yes
## 2283  AB963     c25k6 Medium    E    590        79  16.0  yes
## 2284  AB964     c25k7 Medium    E    540        66  13.0  yes
## 2286  AB966     c25k9 Medium    E    548        46  14.0  yes
## 2287  AB967    c25k10 Medium    E    652        98  22.0  yes
## 2292  AB972    c25k15 Medium    E    790        99  31.0   no
## 2293  AB973    c25k16 Medium    E    620        86  19.0  yes
## 2300  AB980    c25k23 Medium    E    780        90  30.0   no
## 2306  AB992    c25k29 Medium    E    610        93  18.0  yes
## 2309  AB995    c25k32 Medium    E    550        51  14.0   no
## 2310  AB996    c25k33 Medium    E    581       102  16.0  yes
## 2311  AB997    c25k34 Medium    E    590        75  16.0   no
## 2312  AB998    c25k35 Medium    E    655        82  22.0   no
## 2319 AB1029    c25k42    Big    A   1110        97  58.0  yes
## 2321 AB1039    c25k44    Big    A   1016        96  50.0   no
## 2324 AB1042    c25k47    Big    A   1100       161  57.0  yes
## 2327 AB1093    c25k50    Big    A   1063       146  54.0  yes
## 2328 AB1094    c25k51    Big    A   1153       144  62.0  yes
## 2336 AB1126    c25k59    Big    A   1614       159 138.0  yes
## 2338 AB1132    c25k61    Big    A   2510       258 305.0  yes
## 2341 AB1172    c25k64    Big    A   1440       133  84.0  yes
## 2345 AB1206    c25k68    Big    B   1003       115  49.0  yes
## 2347 AB1211    c25k70    Big    B   1050       142  52.0  yes
## 2354 AB1283    c25k77    Big    B   1510       163 107.0  yes
## 2357  AB590    c25k80    Big    C   1360       134  76.0  yes
## 2362  AB727    c25k85    Big    D   1450       162  94.0  yes
## 2363  AB741    c25k86    Big    D   1093       119  56.0   no
## 2365  AB744    c25k88    Big    D   1370       182  77.0   no
## 2371  AB766    c25k94    Big    D   1110        93  58.0  yes
## 2376  AB864    c25k99    Big    E   1360       126  73.0  yes
## 2387  AB932    c26k11    Big    E   1360       104  72.0  yes
## 2394  AB986    c26k18    Big    E   1297       161  67.0   no
## 2396  AB988    c26k20    Big    E   1860       253 176.0  yes
a.estimar <- data.frame(muestra$Income, muestra$Employees, muestra$Taxes);E.SI(N,n,a.estimar)
##                   N muestra.Income muestra.Employees muestra.Taxes
## Estimation     2396   1.028317e+06      1.488923e+05  28079.951220
## Standard Error    0   2.018039e+04      2.508035e+03   1458.738245
## CVE               0   1.962467e+00      1.684462e+00      5.194946
## DEFF            NaN   1.000000e+00      1.000000e+00      1.000000

9.2.4 Estimación en dominios

  • \(U_d{\subset}U\) tal que \(U{=\bigcup}_{d=1}^{D}{U_d}\)

  • Si \(k{\in}U_l\), entonces \(k{\not\in}U_d\) para \(d{\neq}l\)

  • Tamaño absoluto; \(\#(U_d)=N_d\)

  • Tamaño relativo; \(P_d=\frac{\#(U_d)}{\#(U)}=\frac{N_d}{N}\)

\[t_{y_{d}}={\sum}_{U_d}y_k\]

\[ {z}_{dk}(U_d)= \begin{cases} 1&\text{ si }k{\in}U_d\\ 0&\text{ si }k{\notin}U_d \end{cases} \]

Zd <- Domains(muestra$SPAM);Zd
##        no yes
##   [1,]  0   1
##   [2,]  0   1
##   [3,]  1   0
##   [4,]  1   0
##   [5,]  0   1
##   [6,]  0   1
##   [7,]  0   1
##   [8,]  0   1
##   [9,]  0   1
##  [10,]  0   1
##  [11,]  0   1
##  [12,]  0   1
##  [13,]  0   1
##  [14,]  1   0
##  [15,]  0   1
##  [16,]  0   1
##  [17,]  1   0
##  [18,]  1   0
##  [19,]  1   0
##  [20,]  1   0
##  [21,]  0   1
##  [22,]  0   1
##  [23,]  0   1
##  [24,]  1   0
##  [25,]  0   1
##  [26,]  1   0
##  [27,]  1   0
##  [28,]  1   0
##  [29,]  0   1
##  [30,]  1   0
##  [31,]  0   1
##  [32,]  0   1
##  [33,]  0   1
##  [34,]  0   1
##  [35,]  1   0
##  [36,]  0   1
##  [37,]  1   0
##  [38,]  0   1
##  [39,]  0   1
##  [40,]  1   0
##  [41,]  0   1
##  [42,]  0   1
##  [43,]  0   1
##  [44,]  0   1
##  [45,]  0   1
##  [46,]  1   0
##  [47,]  1   0
##  [48,]  0   1
##  [49,]  0   1
##  [50,]  0   1
##  [51,]  0   1
##  [52,]  0   1
##  [53,]  0   1
##  [54,]  0   1
##  [55,]  0   1
##  [56,]  0   1
##  [57,]  0   1
##  [58,]  0   1
##  [59,]  1   0
##  [60,]  0   1
##  [61,]  0   1
##  [62,]  0   1
##  [63,]  0   1
##  [64,]  0   1
##  [65,]  0   1
##  [66,]  0   1
##  [67,]  0   1
##  [68,]  1   0
##  [69,]  0   1
##  [70,]  1   0
##  [71,]  0   1
##  [72,]  0   1
##  [73,]  0   1
##  [74,]  1   0
##  [75,]  1   0
##  [76,]  0   1
##  [77,]  0   1
##  [78,]  0   1
##  [79,]  0   1
##  [80,]  1   0
##  [81,]  1   0
##  [82,]  0   1
##  [83,]  0   1
##  [84,]  0   1
##  [85,]  0   1
##  [86,]  0   1
##  [87,]  1   0
##  [88,]  1   0
##  [89,]  0   1
##  [90,]  0   1
##  [91,]  1   0
##  [92,]  0   1
##  [93,]  0   1
##  [94,]  0   1
##  [95,]  1   0
##  [96,]  1   0
##  [97,]  0   1
##  [98,]  0   1
##  [99,]  1   0
## [100,]  0   1
## [101,]  0   1
## [102,]  0   1
## [103,]  0   1
## [104,]  1   0
## [105,]  0   1
## [106,]  0   1
## [107,]  1   0
## [108,]  0   1
## [109,]  0   1
## [110,]  0   1
## [111,]  1   0
## [112,]  0   1
## [113,]  1   0
## [114,]  1   0
## [115,]  0   1
## [116,]  0   1
## [117,]  1   0
## [118,]  0   1
## [119,]  1   0
## [120,]  0   1
## [121,]  0   1
## [122,]  1   0
## [123,]  1   0
## [124,]  0   1
## [125,]  0   1
## [126,]  0   1
## [127,]  1   0
## [128,]  0   1
## [129,]  0   1
## [130,]  0   1
## [131,]  0   1
## [132,]  1   0
## [133,]  1   0
## [134,]  1   0
## [135,]  0   1
## [136,]  0   1
## [137,]  1   0
## [138,]  0   1
## [139,]  1   0
## [140,]  0   1
## [141,]  1   0
## [142,]  1   0
## [143,]  0   1
## [144,]  0   1
## [145,]  0   1
## [146,]  0   1
## [147,]  0   1
## [148,]  0   1
## [149,]  0   1
## [150,]  0   1
## [151,]  0   1
## [152,]  1   0
## [153,]  1   0
## [154,]  0   1
## [155,]  0   1
## [156,]  0   1
## [157,]  0   1
## [158,]  0   1
## [159,]  0   1
## [160,]  1   0
## [161,]  0   1
## [162,]  0   1
## [163,]  1   0
## [164,]  0   1
## [165,]  0   1
## [166,]  0   1
## [167,]  1   0
## [168,]  1   0
## [169,]  1   0
## [170,]  1   0
## [171,]  1   0
## [172,]  0   1
## [173,]  0   1
## [174,]  1   0
## [175,]  1   0
## [176,]  1   0
## [177,]  1   0
## [178,]  0   1
## [179,]  0   1
## [180,]  1   0
## [181,]  1   0
## [182,]  0   1
## [183,]  0   1
## [184,]  1   0
## [185,]  0   1
## [186,]  1   0
## [187,]  1   0
## [188,]  0   1
## [189,]  0   1
## [190,]  0   1
## [191,]  0   1
## [192,]  1   0
## [193,]  0   1
## [194,]  0   1
## [195,]  1   0
## [196,]  0   1
## [197,]  1   0
## [198,]  0   1
## [199,]  1   0
## [200,]  0   1
## [201,]  0   1
## [202,]  0   1
## [203,]  0   1
## [204,]  1   0
## [205,]  1   0
## [206,]  1   0
## [207,]  0   1
## [208,]  0   1
## [209,]  0   1
## [210,]  0   1
## [211,]  0   1
## [212,]  1   0
## [213,]  0   1
## [214,]  0   1
## [215,]  0   1
## [216,]  0   1
## [217,]  0   1
## [218,]  1   0
## [219,]  0   1
## [220,]  0   1
## [221,]  0   1
## [222,]  0   1
## [223,]  1   0
## [224,]  0   1
## [225,]  1   0
## [226,]  0   1
## [227,]  0   1
## [228,]  0   1
## [229,]  0   1
## [230,]  0   1
## [231,]  0   1
## [232,]  1   0
## [233,]  1   0
## [234,]  1   0
## [235,]  0   1
## [236,]  1   0
## [237,]  0   1
## [238,]  1   0
## [239,]  1   0
## [240,]  0   1
## [241,]  0   1
## [242,]  0   1
## [243,]  0   1
## [244,]  0   1
## [245,]  1   0
## [246,]  0   1
## [247,]  1   0
## [248,]  0   1
## [249,]  0   1
## [250,]  0   1
## [251,]  0   1
## [252,]  1   0
## [253,]  1   0
## [254,]  1   0
## [255,]  0   1
## [256,]  0   1
## [257,]  0   1
## [258,]  0   1
## [259,]  0   1
## [260,]  0   1
## [261,]  0   1
## [262,]  0   1
## [263,]  0   1
## [264,]  1   0
## [265,]  1   0
## [266,]  1   0
## [267,]  1   0
## [268,]  0   1
## [269,]  1   0
## [270,]  0   1
## [271,]  0   1
## [272,]  1   0
## [273,]  0   1
## [274,]  0   1
## [275,]  1   0
## [276,]  0   1
## [277,]  1   0
## [278,]  1   0
## [279,]  1   0
## [280,]  1   0
## [281,]  1   0
## [282,]  0   1
## [283,]  1   0
## [284,]  0   1
## [285,]  0   1
## [286,]  1   0
## [287,]  1   0
## [288,]  0   1
## [289,]  0   1
## [290,]  0   1
## [291,]  0   1
## [292,]  1   0
## [293,]  1   0
## [294,]  0   1
## [295,]  0   1
## [296,]  0   1
## [297,]  0   1
## [298,]  0   1
## [299,]  0   1
## [300,]  1   0
## [301,]  1   0
## [302,]  0   1
## [303,]  0   1
## [304,]  0   1
## [305,]  0   1
## [306,]  1   0
## [307,]  0   1
## [308,]  0   1
## [309,]  1   0
## [310,]  0   1
## [311,]  0   1
## [312,]  1   0
## [313,]  1   0
## [314,]  1   0
## [315,]  1   0
## [316,]  0   1
## [317,]  0   1
## [318,]  0   1
## [319,]  1   0
## [320,]  1   0
## [321,]  1   0
## [322,]  0   1
## [323,]  0   1
## [324,]  0   1
## [325,]  0   1
## [326,]  1   0
## [327,]  0   1
## [328,]  1   0
## [329,]  1   0
## [330,]  0   1
## [331,]  0   1
## [332,]  1   0
## [333,]  0   1
## [334,]  0   1
## [335,]  0   1
## [336,]  0   1
## [337,]  0   1
## [338,]  0   1
## [339,]  0   1
## [340,]  1   0
## [341,]  1   0
## [342,]  0   1
## [343,]  1   0
## [344,]  0   1
## [345,]  0   1
## [346,]  0   1
## [347,]  0   1
## [348,]  0   1
## [349,]  0   1
## [350,]  0   1
## [351,]  0   1
## [352,]  0   1
## [353,]  0   1
## [354,]  1   0
## [355,]  1   0
## [356,]  1   0
## [357,]  0   1
## [358,]  0   1
## [359,]  1   0
## [360,]  1   0
## [361,]  0   1
## [362,]  1   0
## [363,]  0   1
## [364,]  0   1
## [365,]  0   1
## [366,]  1   0
## [367,]  1   0
## [368,]  0   1
## [369,]  0   1
## [370,]  1   0
## [371,]  0   1
## [372,]  0   1
## [373,]  1   0
## [374,]  0   1
## [375,]  0   1
## [376,]  0   1
## [377,]  1   0
## [378,]  1   0
## [379,]  0   1
## [380,]  0   1
## [381,]  0   1
## [382,]  0   1
## [383,]  1   0
## [384,]  0   1
## [385,]  1   0
## [386,]  0   1
## [387,]  1   0
## [388,]  0   1
## [389,]  0   1
## [390,]  0   1
## [391,]  1   0
## [392,]  1   0
## [393,]  1   0
## [394,]  0   1
## [395,]  1   0
## [396,]  0   1
## [397,]  1   0
## [398,]  1   0
## [399,]  0   1
## [400,]  0   1
## [401,]  1   0
## [402,]  0   1
## [403,]  0   1
## [404,]  0   1
## [405,]  0   1
## [406,]  1   0
## [407,]  1   0
## [408,]  0   1
## [409,]  1   0
## [410,]  0   1
## [411,]  1   0
## [412,]  0   1
## [413,]  0   1
## [414,]  0   1
## [415,]  0   1
## [416,]  0   1
## [417,]  1   0
## [418,]  0   1
## [419,]  0   1
## [420,]  1   0
## [421,]  0   1
## [422,]  1   0
## [423,]  0   1
## [424,]  0   1
## [425,]  0   1
## [426,]  0   1
## [427,]  1   0
## [428,]  1   0
## [429,]  0   1
## [430,]  0   1
## [431,]  1   0
## [432,]  1   0
## [433,]  1   0
## [434,]  0   1
## [435,]  0   1
## [436,]  1   0
## [437,]  0   1
## [438,]  0   1
## [439,]  0   1
## [440,]  1   0
## [441,]  1   0
## [442,]  1   0
## [443,]  1   0
## [444,]  0   1
## [445,]  0   1
## [446,]  0   1
## [447,]  1   0
## [448,]  1   0
## [449,]  0   1
## [450,]  0   1
## [451,]  0   1
## [452,]  1   0
## [453,]  1   0
## [454,]  1   0
## [455,]  1   0
## [456,]  1   0
## [457,]  1   0
## [458,]  0   1
## [459,]  0   1
## [460,]  0   1
## [461,]  0   1
## [462,]  0   1
## [463,]  1   0
## [464,]  0   1
## [465,]  0   1
## [466,]  1   0
## [467,]  1   0
## [468,]  0   1
## [469,]  1   0
## [470,]  0   1
## [471,]  0   1
## [472,]  1   0
## [473,]  0   1
## [474,]  1   0
## [475,]  0   1
## [476,]  0   1
## [477,]  1   0
## [478,]  1   0
## [479,]  1   0
## [480,]  0   1
## [481,]  1   0
## [482,]  0   1
## [483,]  0   1
## [484,]  0   1
## [485,]  0   1
## [486,]  0   1
## [487,]  1   0
## [488,]  0   1
## [489,]  1   0
## [490,]  1   0
## [491,]  0   1
## [492,]  0   1
## [493,]  1   0
## [494,]  0   1
## [495,]  1   0
## [496,]  1   0
## [497,]  1   0
## [498,]  0   1
## [499,]  0   1
## [500,]  1   0
## [501,]  1   0
## [502,]  1   0
## [503,]  1   0
## [504,]  0   1
## [505,]  0   1
## [506,]  0   1
## [507,]  1   0
## [508,]  1   0
## [509,]  1   0
## [510,]  1   0
## [511,]  1   0
## [512,]  0   1
## [513,]  1   0
## [514,]  1   0
## [515,]  0   1
## [516,]  1   0
## [517,]  1   0
## [518,]  0   1
## [519,]  0   1
## [520,]  1   0
## [521,]  0   1
## [522,]  1   0
## [523,]  0   1
## [524,]  1   0
## [525,]  0   1
## [526,]  1   0
## [527,]  1   0
## [528,]  0   1
## [529,]  1   0
## [530,]  0   1
## [531,]  0   1
## [532,]  1   0
## [533,]  0   1
## [534,]  0   1
## [535,]  0   1
## [536,]  0   1
## [537,]  0   1
## [538,]  0   1
## [539,]  0   1
## [540,]  0   1
## [541,]  0   1
## [542,]  0   1
## [543,]  0   1
## [544,]  1   0
## [545,]  0   1
## [546,]  1   0
## [547,]  0   1
## [548,]  0   1
## [549,]  0   1
## [550,]  1   0
## [551,]  0   1
## [552,]  0   1
## [553,]  1   0
## [554,]  0   1
## [555,]  0   1
## [556,]  0   1
## [557,]  1   0
## [558,]  0   1
## [559,]  0   1
## [560,]  1   0
## [561,]  1   0
## [562,]  1   0
## [563,]  0   1
## [564,]  0   1
## [565,]  0   1
## [566,]  1   0
## [567,]  0   1
## [568,]  0   1
## [569,]  0   1
## [570,]  0   1
## [571,]  0   1
## [572,]  0   1
## [573,]  0   1
## [574,]  1   0
## [575,]  0   1
## [576,]  1   0
## [577,]  1   0
## [578,]  0   1
## [579,]  1   0
## [580,]  1   0
## [581,]  1   0
## [582,]  0   1
## [583,]  0   1
## [584,]  0   1
## [585,]  1   0
## [586,]  0   1
## [587,]  0   1
## [588,]  1   0
## [589,]  0   1
## [590,]  0   1
## [591,]  0   1
## [592,]  0   1
## [593,]  1   0
## [594,]  1   0
## [595,]  1   0
## [596,]  1   0
## [597,]  1   0
## [598,]  0   1
## [599,]  0   1
## [600,]  0   1
## [601,]  1   0
## [602,]  1   0
## [603,]  0   1
## [604,]  0   1
## [605,]  1   0
## [606,]  0   1
## [607,]  1   0
## [608,]  0   1
## [609,]  0   1
## [610,]  1   0
## [611,]  1   0
## [612,]  0   1
## [613,]  0   1
## [614,]  0   1
## [615,]  0   1
## [616,]  0   1
## [617,]  1   0
## [618,]  1   0
## [619,]  1   0
## [620,]  0   1
## [621,]  0   1
## [622,]  0   1
## [623,]  1   0
## [624,]  0   1
## [625,]  0   1
## [626,]  1   0
## [627,]  0   1
## [628,]  0   1
## [629,]  0   1
## [630,]  0   1
## [631,]  0   1
## [632,]  1   0
## [633,]  0   1
## [634,]  0   1
## [635,]  0   1
## [636,]  1   0
## [637,]  1   0
## [638,]  1   0
## [639,]  1   0
## [640,]  1   0
## [641,]  1   0
## [642,]  0   1
## [643,]  0   1
## [644,]  0   1
## [645,]  0   1
## [646,]  0   1
## [647,]  0   1
## [648,]  0   1
## [649,]  1   0
## [650,]  0   1
## [651,]  0   1
## [652,]  0   1
## [653,]  0   1
## [654,]  0   1
## [655,]  0   1
## [656,]  0   1
## [657,]  1   0
## [658,]  1   0
## [659,]  0   1
## [660,]  0   1
## [661,]  0   1
## [662,]  1   0
## [663,]  1   0
## [664,]  1   0
## [665,]  0   1
## [666,]  0   1
## [667,]  0   1
## [668,]  0   1
## [669,]  0   1
## [670,]  1   0
## [671,]  0   1
## [672,]  1   0
## [673,]  0   1
## [674,]  1   0
## [675,]  0   1
## [676,]  1   0
## [677,]  1   0
## [678,]  0   1
## [679,]  1   0
## [680,]  0   1
## [681,]  0   1
## [682,]  0   1
## [683,]  0   1
## [684,]  0   1
## [685,]  0   1
## [686,]  0   1
## [687,]  0   1
## [688,]  0   1
## [689,]  0   1
## [690,]  0   1
## [691,]  1   0
## [692,]  1   0
## [693,]  0   1
## [694,]  0   1
## [695,]  0   1
## [696,]  1   0
## [697,]  0   1

\[ \begin{align} t_{y_{d}}&={\sum}_{U}z_{dk}y_{k}\\ &={\sum}_{U}y_{dk} \end{align} \]

\[N_{d}={\sum}_{U}z_{dk}\]

\[ \begin{align} \bar{y}_{U_d}&=\frac{{\sum}_{U}y_{dk}}{{\sum}_{U}z_{dk}}\\ &=\frac{t_{y_{d}}}{N_{d}} \end{align} \]

\[ \begin{align} \widehat{t}_{y_{d},\pi}&=\frac{N}{n}{\sum}_{s}y_{dk}\\ &=\frac{N}{n}{\sum}_{s_d}y_{k} \end{align} \]

\[ \begin{align} V_{MAS}\left(\widehat{t}_{y_{d},\pi}\right)&=\frac{N^2}{n}\left(1-\frac{n}{N}\right){S}_{y_{d}U}^{2} \end{align} \]

\[ \begin{align} \widehat{V}_{MAS}\left(\widehat{t}_{y_{d},\pi}\right)&=\frac{N^2}{n}\left(1-\frac{n}{N}\right){S}_{y_{d}s}^{2} \end{align} \]

a.estimar <- data.frame(muestra$Income, muestra$Employees, muestra$Taxes);E.SI(N,n,Zd[,"yes"]*a.estimar)
##                   N muestra.Income muestra.Employees muestra.Taxes
## Estimation     2396   6.522345e+05      92749.606887  18734.863702
## Standard Error    0   2.355643e+04       3085.333343   1430.791569
## CVE               0   3.611651e+00          3.326519      7.637054
## DEFF            NaN   1.000000e+00          1.000000      1.000000
a.estimar <- data.frame(muestra$Income, muestra$Employees, muestra$Taxes);E.SI(N,n,Zd[,"no"]*a.estimar)
##                   N muestra.Income muestra.Employees muestra.Taxes
## Estimation     2396   3.760826e+05      56142.714491   9345.087518
## Standard Error    0   1.876602e+04       2716.870011    661.438201
## CVE               0   4.989865e+00          4.839221      7.077924
## DEFF            NaN   1.000000e+00          1.000000      1.000000

\[ \begin{align} \widehat{N}_{y_{d},\pi}&=\frac{N}{n}{\sum}_{s}z_{dk}\\ &=\frac{N}{n}{\sum}_{s_d}z_{k} \end{align} \]

\[ \begin{align} V_{MAS}\left(\widehat{N}_{y_{d},\pi}\right)&=\frac{N^2}{n}\left(1-\frac{n}{N}\right){S}_{z_{d}U}^{2} \end{align} \]

\[ \begin{align} \widehat{V}_{MAS}\left(\widehat{N}_{y_{d},\pi}\right)&=\frac{N^2}{n}\left(1-\frac{n}{N}\right){S}_{z_{d}s}^{2} \end{align} \]

a.estimar <- data.frame(muestra$Income,muestra$Employees,muestra$Taxes);E.SI(N,n,Zd[,"yes"])
##                   N           y
## Estimation     2396 1498.789096
## Standard Error    0   37.014015
## CVE               0    2.469595
## DEFF            NaN    1.000000
a.estimar <- data.frame(muestra$Income,muestra$Employees,muestra$Taxes);E.SI(N,n,Zd[,"no"])
##                   N          y
## Estimation     2396 897.210904
## Standard Error    0  37.014015
## CVE               0   4.125453
## DEFF            NaN   1.000000

\[ \begin{align} \widehat{P}_{y_{d},\pi}&=\frac{1}{N}\frac{N}{n}{\sum}_{s}z_{dk}\\ &=\frac{1}{n}{\sum}_{s_d}z_{k} \end{align} \]

\[ \begin{align} V_{MAS}\left(\widehat{P}_{y_{d},\pi}\right)&=\frac{N^2}{n}\left(1-\frac{n}{N}\right)\frac{1}{N^2}{S}_{z_{d}U}^{2}\\ &=\frac{1}{n}\left(1-\frac{n}{N}\right){S}_{z_{d}U}^{2} \end{align} \]

\[ \begin{align} \widehat{V}_{MAS}\left(\widehat{P}_{y_{d},\pi}\right)&=\frac{N^2}{n}\left(1-\frac{n}{N}\right)\frac{1}{N^2}{S}_{z_{d}s}^{2}\\ &=\frac{1}{n}\left(1-\frac{n}{N}\right){S}_{z_{d}s}^{2} \end{align} \]

a.estimar <- data.frame(muestra$Income, muestra$Employees, muestra$Taxes);E.SI(N,n,(1/N)*Zd[,"yes"])
##                   N          y
## Estimation     2396 0.62553802
## Standard Error    0 0.01544825
## CVE               0 2.46959463
## DEFF            NaN 1.00000000
a.estimar <- data.frame(muestra$Income, muestra$Employees, muestra$Taxes);E.SI(N,n,(1/N)*Zd[,"no"])
##                   N          y
## Estimation     2396 0.37446198
## Standard Error    0 0.01544825
## CVE               0 4.12545310
## DEFF            NaN 1.00000000

\[ \begin{align} \widehat{\bar{y}}_{U_{d},\pi}&=\frac{1}{N_d}\frac{N}{n}{\sum}_{s}z_{dk}\\ &=\frac{1}{n}\frac{N}{N_d}{\sum}_{s_d}z_{k} \end{align} \]

\[ \begin{align} V_{MAS}\left(\widehat{\bar{y}}_{U_{d},\pi}\right)&=\frac{N^2}{n}\left(1-\frac{n}{N}\right)\frac{1}{N_d^2}{S}_{z_{d}U}^{2}\\ &=\frac{N^2}{n}\frac{1}{N_d^2}\left(1-\frac{n}{N}\right){S}_{z_{d}U}^{2} \end{align} \]

\[ \begin{align} \widehat{V}_{MAS}\left(\widehat{\bar{y}}_{U_{d},\pi}\right)&=\frac{N^2}{n}\left(1-\frac{n}{N}\right)\frac{N^2}{N_d^2}{S}_{z_{d}s}^{2}\\ &=\frac{N^2}{n}\frac{N^2}{N_d^2}\left(1-\frac{n}{N}\right){S}_{z_{d}s}^{2} \end{align} \]

a.estimar <- data.frame(muestra$Income, muestra$Employees, muestra$Taxes);E.SI(N,n,(1/N)*Zd[,"yes"]*a.estimar)
##                   N muestra.Income muestra.Employees muestra.Taxes
## Estimation     2396     272.218077         38.710187     7.8192253
## Standard Error    0       9.831566          1.287702     0.5971584
## CVE               0       3.611651          3.326519     7.6370535
## DEFF            NaN       1.000000          1.000000     1.0000000
a.estimar <- data.frame(muestra$Income, muestra$Employees, muestra$Taxes);E.SI(N,n,(1/N)*Zd[,"no"]*a.estimar)
##                   N muestra.Income muestra.Employees muestra.Taxes
## Estimation     2396     156.962697         23.431851     3.9002869
## Standard Error    0       7.832227          1.133919     0.2760593
## CVE               0       4.989865          4.839221     7.0779241
## DEFF            NaN       1.000000          1.000000     1.0000000

9.2.5 El efecto de diseño

\[ \begin{align} {Deff}_{\mathcal{p}(\cdot)}&=\frac{{V}_{\mathcal{p}(\cdot)}\left(\widehat{T}_{y,\cdot}\right)}{{V}_{MAS}\left(\widehat{T}_{y,\pi}\right)}\\ &=\frac{{V}_{\mathcal{p}(\cdot)}\left(\widehat{T}_{y,\cdot}\right)}{\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2}} \end{align} \]

\[ \begin{align} \widehat{Deff}_{\mathcal{p}(\cdot)}&=\frac{\widehat{V}_{\mathcal{p}(\cdot)}\left(\widehat{T}_{y,\cdot}\right)}{\widehat{V}_{MAS}\left(\widehat{T}_{y,\pi}\right)}\\ &=\frac{\widehat{V}_{\mathcal{p}(\cdot)}\left(\widehat{T}_{y,\cdot}\right)}{\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{ys}^{2}} \end{align} \]

\[ \begin{align} {Deff}_{BER}&=\frac{{V}_{BER}\left(\widehat{T}_{y,\cdot}\right)}{{V}_{MAS}\left(\widehat{T}_{y,\pi}\right)}\\ &=\frac{{V}_{BER}\left(\widehat{t}_{y,\pi}\right)}{\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2}}\\ &=\frac{\left(\frac{1}{\pi}-1\right){\sum}_{U}y_k^2}{\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2}}\\ &=\frac{\left(\frac{1}{\frac{n}{N}}-1\right){\sum}_{U}y_k^2}{\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2}}\\ &=\frac{\left(\frac{N}{n}-1\right)\left[(N-1)S_{yU}^{2}+N\bar{y}_{U}^2\right]}{\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2}}\\ &=\frac{\left(\frac{N}{n}-1\right)\left[({N}S_{yU}^{2}-S_{yU}^{2}+N\bar{y}_{U}^2\right]}{\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2}}\\ &=\frac{\left(\frac{N}{n}-1\right)\left[\frac{{N}S_{yU}^{2}}{{N}S_{yU}^{2}}-\frac{S_{yU}^{2}}{{N}S_{yU}^{2}}+\frac{N\bar{y}_{U}^2}{{N}S_{yU}^{2}}\right]{N}S_{yU}^{2}}{\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2}}\\ &=\frac{\left(\frac{N}{n}-1\right)\left[1-\frac{1}{N}+\frac{1}{{CV}_{yU}^{2}}\right]\frac{N^2}{N}S_{yU}^{2}}{\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2}}\\ &=\frac{{N^2}\left(\frac{1}{n}-\frac{1}{N}\right)\left[1-\frac{1}{N}+\frac{1}{{CV}_{yU}^{2}}\right]S_{yU}^{2}}{\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2}}\\ &=\frac{\left[1-\frac{1}{N}+\frac{1}{{CV}_{yU}^{2}}\right]\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2}}{\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2}}\\ &=1-\frac{1}{N}+\frac{1}{{CV}_{yU}^{2}} \end{align} \]

CVyU2 <- sqrt(colMeans(Lucy[,c("Income","Employees","Taxes")]**2)-colMeans(Lucy[,c("Income","Employees","Taxes")])**2)/colMeans(Lucy[,c("Income","Employees","Taxes")]); CVyU2
##    Income Employees     Taxes 
## 0.6177919 0.5185117 1.4492537
Deff_BER <- 1+(1/N)+(1/(CVyU2**2)); Deff_BER
##    Income Employees     Taxes 
##  3.620504  4.719903  1.476532
n*Deff_BER
##    Income Employees     Taxes 
##  2523.491  3289.772  1029.143

9.2.6 Probabilidades de inclusión en unidades de muestreo

\[ \begin{align} {\pi}_{H}&=\mathcal{P}\left(H{\in}s\right)\\ &=1-\mathcal{P}\left(H{\not\in}s\right)\\ &=1-\frac{\binom{M}{0}\binom{N-M}{n}}{\binom{N}{n}}\\ &=1-\frac{\frac{M!}{(M-0)!0!}\frac{(N-M)!}{[(N-M)-n]!n!}}{\frac{N!}{(N-n)!n!}}\\ &=1-\frac{\frac{M!}{M!0!}\frac{(N-M)!}{(N-M-n)!n!}}{\frac{N!}{(N-n)!n!}}\\ &=1-\frac{\frac{(N-M)!}{(N-M-n)!n!}}{\frac{N!}{(N-n)!n!}}\\ &=1-\frac{(N-M)!(N-n)!n!}{(N-M-n)!n!N!}\\ &=1-\frac{(N-M)!(N-n)!}{(N-M-n)!N!}\\ &=1-\frac{(N-M)(N-M-1)\cdots(N-M-n+1)(N-M-n)!(N-n)!}{(N-M-n)!N!}\\ &=1-\frac{(N-M)(N-M-1)\cdots(N-M-n+1)(N-M-n)!(N-n)!}{(N-M-n)!N(N-1)\cdots(N-n+1)(N-n)!}\\ &=1-\frac{(N-M)(N-M-1)\cdots(N-M-n+1)}{N(N-1)\cdots(N-n+1)}\\ \end{align} \]

9.2.6.1 \(M=1\)

\[ \begin{align} {\pi}_{H}&=1-\frac{(N-M)(N-M-1)\cdots(N-M-n+1)}{N(N-1)\cdots(N-n+1)}\\ &=1-\frac{(N-1)(N-1-1)\cdots(N-1-n+1)}{N(N-1)\cdots(N-n+1)}\\ &=1-\frac{(N-1)(N-2)\cdots(N-n)}{N(N-1)\cdots(N-n+1)}\\ &=1-\frac{N-n}{N}\\ &=1-\left[\frac{N}{N}-\frac{n}{N}\right]\\ &=1-\left[1-\frac{n}{N}\right] \end{align} \]

9.2.6.2 \(M=2\) y \(n,N{\rightarrow}+\infty\)

\[ \begin{align} {\pi}_{H}&=1-\frac{(N-M)(N-M-1)\cdots(N-M-n+1)}{N(N-1)\cdots(N-n+1)}\\ &=1-\frac{(N-2)(N-2-1)\cdots(N-2-n+1)}{N(N-1)\cdots(N-n+1)}\\ &=1-\frac{(N-2)(N-3)\cdots(N-n-1)}{N(N-1)\cdots(N-n+1)}\\ &=1-\frac{(N-n)(N-n-1)}{N(N-1)}\\ &=1-\left[\frac{N-n}{N}\right]\left[\frac{N-n-1}{N-1}\right]\\ &=1-\left[\frac{N}{N}-\frac{n}{N}\right]\left[\frac{N-1}{N-1}-\frac{n}{N-1}\right]\\ &=1-\left[1-\frac{n}{N}\right]\left[1-\frac{n}{N-1}\right]\\ &\approx1-\left[1-\frac{n}{N}\right]\left[1-\frac{n}{N}\right]\\ &\approx1-\left[1-\frac{n}{N}\right]^2 \end{align} \]

9.2.6.3 \(M=3\) y \(n,N{\rightarrow}+\infty\)

\[ \begin{align} {\pi}_{H}&=1-\frac{(N-M)(N-M-1)\cdots(N-M-n+1)}{N(N-1)\cdots(N-n+1)}\\ &=1-\frac{(N-3)(N-3-1)\cdots(N-3-n+1)}{N(N-1)\cdots(N-n+1)}\\ &=1-\frac{(N-3)(N-4)\cdots(N-n-2)}{N(N-1)\cdots(N-n+1)}\\ &=1-\frac{(N-n)(N-n-1)(N-n-2)}{N(N-1)(N-2)}\\ &=1-\left[\frac{N-n}{N}\right]\left[\frac{N-n-1}{N-1}\right]\left[\frac{N-n-2}{N-2}\right]\\ &=1-\left[\frac{N}{N}-\frac{n}{N}\right]\left[\frac{N-1}{N-1}-\frac{n}{N-1}\right]\left[\frac{N-2}{N-2}-\frac{n}{N-2}\right]\\ &=1-\left[1-\frac{n}{N}\right]\left[1-\frac{n}{N-1}\right]\left[1-\frac{n}{N-2}\right]\\ &\approx1-\left[1-\frac{n}{N}\right]\left[1-\frac{n}{N}\right]\left[1-\frac{n}{N}\right]\\ &\approx1-\left[1-\frac{n}{N}\right]^3 \end{align} \]

9.3 Muestreo aleatorio simple con reemplazo

Diseño de muestreo con reemplazo; se extraen \(m\) muestras, de manera independiente, de tamaño \(1\)

\[m\text{ muestras independientes de tamaño }1\]

\[{\sum}_{U}p_k=1\]

\[p_k\text{: probabilidad de selección}\]

\[ \begin{align} {\forall}_{k{\in}U\&i=1,\ldots,m}\mathcal{P}(k{\in}s_i)&=p_k\\ &=\frac{1}{N} \end{align} \]

El elemento seleccionado es reemplazado en la población y vuelve a ser parte del próximo sorteo aleatorio con la misma probabilidad de selección \(p_k\)

La probabilidad de inclusión \(\pi_k\) no es lo mismo que la probabilidad de selección \(p_k\)

\[\#(S)=n_{k}(S){\leq}m\]

\[ \begin{align} E[n_{k}(S)]&=mp_k\\ &=m\frac{1}{N}\\ &=\frac{m}{N} \end{align} \]

\[ \begin{align} V[n_{k}(S)]&=mp_k(1-p_k)\\ &=m\frac{1}{N}\left[1-\frac{1}{N}\right]\\ &=\frac{m}{N}\left[1-\frac{1}{N}\right] \end{align} \]

\[\pi_k\text{: es la probabilidad de que el elemento sea seleccionado al menos una vez en la muestra}\]

\[ \begin{align} \mathcal{p}(s)&= \begin{cases} \frac{m!}{n_1(s)!n_2(s)!{\cdots}n_N(s)!}{\prod}_{U}({p}_{k})^{n_k(s)} & \text{si }{\sum}_{U}n_k(s)=m\\ 0 & \text{en otro caso} \end{cases}\\&= \begin{cases} \frac{m!}{n_1(s)!n_2(s)!{\cdots}n_N(s)!}{\prod}_{U}\left(\frac{1}{N}\right)^{n_k(s)} & \text{si }{\sum}_{U}n_k(s)=m\\ 0 & \text{en otro caso} \end{cases} \end{align} \]

\[ \begin{align} {\sum}_{s{\in}Q}\mathcal{p}(s)&={\sum}_{s{\in}Q}\frac{m!}{n_1(s)!n_2(s)!{\cdots}n_N(s)!}{\prod}_{U}\left(\frac{1}{N}\right)^{n_k(s)}\\ &={\sum}_{s{\in}Q}\frac{m!}{n_1(s)!n_2(s)!{\cdots}n_N(s)!}\left(\frac{1}{N}\right)^{n_1(s)}\cdots\left(\frac{1}{N}\right)^{n_N(s)}\\ &=\left(\frac{1}{N}+\cdots+\frac{1}{N}\right)^{m}\\ &=\left(\frac{N}{N}\right)^{m}\\ &=1^{m}\\ &=1 \end{align} \]

\[\#(Q)=\binom{N+m-1}{m}\]

\[{\pi}_{k}=1-\left[1-\frac{1}{N}\right]^{m}\]

\[ \begin{align} {\pi}_{kl}&=1-\left[1-\frac{1}{N}\right]^{m}-\left[1-\frac{1}{N}\right]^{m}+\left[1-\frac{1}{N}-\frac{1}{N}\right]^{m}\\ &=1-2\left[1-\frac{1}{N}\right]^{m}+\left[1-\frac{2}{N}\right]^{m} \end{align} \]

9.3.1 Algoritmo de selección

  1. \({0}<{\frac{1}{N}}<{1}\)

  2. \(\forall_{k{\in}U}{\varepsilon}_{k}{\sim}U{\left[0,1\right]}\)

  3. \({\varepsilon}_{k}<{\frac{1}{N}}{\implies}k{\in}s\)

\[\forall_{k{\in}U}\mathcal{P}\left({\varepsilon}_{k}<{\frac{1}{N}}\right)={\frac{1}{N}}{\implies}I_k(S){\sim}Bernoulli\left(\frac{1}{N}\right)\]

9.3.1.1 \(\boldsymbol{m}\) selecciones

  • Seleccionar un primer elemento

  • Seleccionar un segundo elemento

  • Seleccionar un tercer elemento

  • Seleccionar un \(m\)-ésimo elemento

9.3.1.2 Secuencial

\[{\forall}_{k{\in}U}n_k({s}_{i}){\sim}Binomial\left(m-{\sum}_{i=1}^{k-1}{{n}_{i}},\frac{1}{N-k+1}\right)\]

seleccion <- sample(x=5,size=3,replace=TRUE)
U[seleccion]
## [1] "Raul" "Raul" "Jhon"
seleccion <- S.WR(N=5,m=3)
U[seleccion]
## [1] "Nayibe" "Raul"   "Jhon"

9.3.2 Estimador de Hansen - Hurtwitz

\[ \begin{align} \widehat{t}_{y,p}&=\frac{1}{m}{\sum}_{U}n_{k}(s)\frac{y_{k}}{p_{k}}\\ &=\frac{1}{m}{\sum}_{U}n_{k}(s)\frac{y_{k}}{\frac{1}{N}}\\ &=\frac{1}{m}{\sum}_{U}n_{k}(s)\frac{\frac{y_{k}}{1}}{\frac{1}{N}}\\ &=\frac{N}{m}{\sum}_{U}n_{k}(s)y_{k} \end{align} \]

\[ \begin{align} E_{MAS_{R}}\left[\widehat{t}_{y,p}\right]&=\frac{N}{m}{\sum}_{U}E_{MAS_{R}}\left[n_{k}(s)\right]y_{k}\\ &=\frac{N}{m}{\sum}_{U}\frac{m}{N}y_{k}\\ &=\frac{N}{m}\frac{m}{N}{\sum}_{U}y_{k}\\ &={\sum}_{U}y_{k}\\ &=t_{y} \end{align} \]

\[ \begin{align} V_{MAS_R}\left[\widehat{t}_{y,p}\right]&=V_{MAS_R}\left[\widehat{t}_{y,p}\right]\\ &=V_{MAS_R}\left[\frac{1}{m}{\sum}_{i=1}^{m}Z_{i}\right]\\ &=\frac{1}{m^{2}}{\sum}_{i=1}^{m}V_{MAS_R}\left[Z_{i}\right]\\ &=\frac{1}{m^{2}}{\sum}_{i=1}^{m}{\sum}_{U}\left[\frac{y_{k}}{p_{k}}-t_{y}\right]^{2}p_{k}\\ &=\frac{1}{m^{2}}{\sum}_{i=1}^{m}{\sum}_{U}\left[\frac{y_{k}}{\frac{1}{N}}-t_{y}\right]^{2}\frac{1}{N}\\ &=\frac{1}{m^{2}}{\sum}_{i=1}^{m}\frac{1}{N}{\sum}_{U}\left[\frac{\frac{y_{k}}{1}}{\frac{1}{N}}-t_{y}\right]^{2}\\ &=\frac{1}{m^{2}}{\sum}_{i=1}^{m}\frac{1}{N}{\sum}_{U}\left(Ny_{k}-t_{y}\right)^{2}\\ &=\frac{1}{m^{2}}{\sum}_{i=1}^{m}\frac{1}{N}{\sum}_{U}\left[Ny_{k}-\frac{N}{N}t_{y}\right]^{2}\\ &=\frac{1}{m^{2}}{\sum}_{i=1}^{m}\frac{N^2}{N}{\sum}_{U}\left[y_{k}-\frac{t_{y}}{N}\right]^{2}\\ &=\frac{1}{m^{2}}{m}\frac{N^2}{N}{\sum}_{U}\left(y_{k}-\bar{y}_{U}\right)^{2}\\ &=\frac{1}{m}{N}\left[\frac{N-1}{N-1}\right]{\sum}_{U}\left(y_{k}-\bar{y}_{U}\right)^{2}\\ &=\frac{1}{m}{N}\left(N-1\right)\frac{1}{N-1}{\sum}_{U}\left(y_{k}-\bar{y}_{U}\right)^{2}\\ &=\frac{N\left(N-1\right)}{m}S_{yU}^{2} \end{align} \]

\[ \begin{align} \widehat{V}_{MAS_R}\left[\widehat{t}_{y,p}\right]&=\frac{1}{m}\frac{1}{m-1}{\sum}_{U}n_{k}(s)\left[\frac{y_{k}}{p_{k}}-\widehat{t}_{y,p}\right]^{2}\\ &=\frac{1}{m}\frac{1}{m-1}{\sum}_{U}n_{k}(s)\left[\frac{y_{k}}{\frac{1}{N}}-\widehat{t}_{y,p}\right]^{2}\\ &=\frac{1}{m}\frac{1}{m-1}{\sum}_{U}n_{k}(s)\left[\frac{\frac{y_{k}}{1}}{\frac{1}{N}}-\widehat{t}_{y,p}\right]^{2}\\ &=\frac{1}{m}\frac{1}{m-1}{\sum}_{U}n_{k}(s)\left[{N}y_{k}-\widehat{t}_{y,p}\right]^{2}\\ \end{align} \]

\[ \begin{align} E_{MAS_R}\left\{\widehat{V}_{MAS_R}\left[\widehat{t}_{y,p}\right]\right\}&=E_{MAS_R}\left\{\frac{1}{m}\frac{1}{m-1}{\sum}_{U}n_{k}(s)\left[{N}y_{k}-\widehat{t}_{y,p}\right]^{2}\right\}\\ &=\frac{1}{m}\frac{1}{m-1}{\sum}_{U}E_{MAS_R}\left\{n_{k}(s)\left[{N}y_{k}-\widehat{t}_{y,p}\right]^{2}\right\}\\ &=\frac{1}{m}\frac{1}{m-1}{\sum}_{U}E_{MAS_R}\left\{n_{k}(s)\left[{N}y_{k}-t_{y}-\widehat{t}_{y,p}+t_{y}\right]^{2}\right\}\\ &=\frac{1}{m}\frac{1}{m-1}{\sum}_{U}E_{MAS_R}\left\{n_{k}(s)\left[\left({N}y_{k}-t_{y}\right)-\left(\widehat{t}_{y,p}-t_{y}\right)\right]^{2}\right\}\\ &=\frac{1}{m}\frac{1}{m-1}{\sum}_{U}E_{MAS_R}\left\{n_{k}(s)\left[\left({N}y_{k}-t_{y}\right)^{2}-2\left({N}y_{k}-t_{y}\right)\left(\widehat{t}_{y,p}-t_{y}\right)+\left(\widehat{t}_{y,p}-t_{y}\right)^{2}\right]\right\}\\ &=\frac{1}{m}\frac{1}{m-1}{\sum}_{U}E_{MAS_R}\left\{n_{k}(s)\left[\left({N}y_{k}-t_{y}\right)^{2}-2\frac{m}{m}\left({N}y_{k}-t_{y}\right)\left(\widehat{t}_{y,p}-t_{y}\right)+\left(\widehat{t}_{y,p}-t_{y}\right)^{2}\right]\right\}\\ &=\frac{1}{m}\frac{1}{m-1}{\sum}_{U}E_{MAS_R}\left\{n_{k}(s)\left[\left({N}y_{k}-t_{y}\right)^{2}-2{m}\left(\frac{N}{m}y_{k}-\frac{t_{y}}{m}\right)\left(\widehat{t}_{y,p}-t_{y}\right)+\left(\widehat{t}_{y,p}-t_{y}\right)^{2}\right]\right\}\\ &=\frac{1}{m}\frac{1}{m-1}\left\{{\sum}_{U}E_{MAS_R}\left[n_{k}(s)\left({N}y_{k}-t_{y}\right)^{2}\right]-{\sum}_{U}E_{MAS_R}\left[n_{k}(s)\left(\widehat{t}_{y,p}-t_{y}\right)^{2}\right]\right\}\\ &=\frac{1}{m}\frac{1}{m-1}\left\{{\sum}_{U}\frac{m}{N}\left({N}y_{k}-t_{y}\right)^{2}-{\sum}_{U}\frac{m}{N}E_{MAS_R}\left[\left(\widehat{t}_{y,p}-t_{y}\right)^{2}\right]\right\}\\ &=\frac{1}{m}\frac{1}{m-1}\left\{{m}{\sum}_{U}\frac{1}{N}\left({N}y_{k}-t_{y}\right)^{2}-{N}\frac{m}{N}E_{MAS_R}\left[\left(\widehat{t}_{y,p}-t_{y}\right)^{2}\right]\right\}\\ &=\frac{1}{m}\frac{1}{m-1}\left\{{m}{\sum}_{U}\frac{N^2}{N}\left(y_{k}-\frac{t_{y}}{N}\right)^{2}-{N}\frac{m}{N}E_{MAS_R}\left[\left(\widehat{t}_{y,p}-t_{y}\right)^{2}\right]\right\}\\ &=\frac{1}{m}\frac{1}{m-1}\left\{{m^2}\frac{1}{m}{N}{\sum}_{U}\left(y_{k}-\bar{y}_{U}\right)^{2}-{m}V_{MAS_R}\left[\widehat{t}_{y,p}\right]\right\}\\ &=\frac{1}{m}\frac{1}{m-1}\left\{{m^2}\frac{N}{m}(N-1)\frac{1}{N-1}{\sum}_{U}\left(y_{k}-\bar{y}_{U}\right)^{2}-{m}V_{MAS_R}\left[\widehat{t}_{y,p}\right]\right\}\\ &=\frac{1}{m}\frac{1}{m-1}\left\{{m^2}\frac{N(N-1)}{m}S_{yU}^{2}-{m}V_{MAS_R}\left[\widehat{t}_{y,p}\right]\right\}\\ &=\frac{1}{m}\frac{1}{m-1}\left\{{m^2}V_{MAS_R}\left[\widehat{t}_{y,p}\right]-{m}V_{MAS_R}\left[\widehat{t}_{y,p}\right]\right\}\\ &=\frac{1}{m}\frac{1}{m-1}\left\{{m}^{2}-m\right\}V_{MAS_R}\left[\widehat{t}_{y,p}\right]\\ &=V_{MAS_R}\left[\widehat{t}_{y,p}\right] \end{align} \]

9.3.2.1 Estimación del total y tamaño de muestra

9.3.2.1.1 \(m=697\)
attach(Lucy)
seleccion <- S.WR(N,n)
muestra <- Lucy[seleccion,]
attach(muestra);muestra
##            ID Ubication  Level Zone Income Employees Taxes SPAM
## 5       AB005      c1k5  Small    A    391        91   7.0  yes
## 6       AB006      c1k6  Small    A    296        89   3.0   no
## 9       AB009      c1k9  Small    A    350        84   5.0  yes
## 9.1     AB009      c1k9  Small    A    350        84   5.0  yes
## 15      AB015     c1k15  Small    A    411        36   7.0   no
## 17      AB017     c1k17  Small    A    311        34   4.0   no
## 18      AB018     c1k18  Small    A    342        40   5.0  yes
## 19      AB019     c1k19  Small    A    342        60   5.0  yes
## 19.1    AB019     c1k19  Small    A    342        60   5.0  yes
## 21      AB021     c1k21  Small    A    425        49   8.0  yes
## 29      AB029     c1k29  Small    A    310        94   4.0  yes
## 33      AB033     c1k33  Small    A    334        72   5.0  yes
## 34      AB034     c1k34  Small    A    350        80   5.0   no
## 35      AB035     c1k35  Small    A    381        94   6.0   no
## 36      AB036     c1k36  Small    A    343        52   5.0  yes
## 36.1    AB036     c1k36  Small    A    343        52   5.0  yes
## 41      AB041     c1k41  Small    A    340        20   5.0  yes
## 43      AB043     c1k43  Small    A    440        22   8.0  yes
## 44      AB044     c1k44  Small    A    337        44   5.0   no
## 45      AB045     c1k45  Small    A    365        53   6.0  yes
## 49      AB050     c1k49  Small    A    334        16   5.0   no
## 61      AB064     c1k61  Small    A    350        76   5.0   no
## 65      AB068     c1k65  Small    A    360        61   5.0   no
## 65.1    AB068     c1k65  Small    A    360        61   5.0   no
## 72      AB077     c1k72  Small    A    363        81   5.0  yes
## 77      AB082     c1k77  Small    A    410        24   7.0  yes
## 77.1    AB082     c1k77  Small    A    410        24   7.0  yes
## 82      AB087     c1k82  Small    A    238        83   2.0  yes
## 84      AB089     c1k84  Small    A    481        65  10.5  yes
## 85      AB092     c1k85  Small    A    490        66  10.5  yes
## 94     AB1135     c1k94  Small    A    470        32  10.0  yes
## 95     AB1151     c1k95  Small    A    490        98  10.5  yes
## 98     AB1193     c1k98  Small    B    490        38  10.5  yes
## 105    AB1229      c2k6  Small    B    388        91   6.0   no
## 112     AB126     c2k13  Small    B     65        69   0.5  yes
## 118    AB1305     c2k19  Small    B    436        77   8.0  yes
## 120     AB132     c2k21  Small    B    125        34   0.5   no
## 121     AB133     c2k22  Small    B     28        73   0.5  yes
## 128    AB1338     c2k29  Small    B    282        69   3.0  yes
## 132    AB1341     c2k33  Small    B    304        18   4.0   no
## 133    AB1342     c2k34  Small    B    290        93   3.0  yes
## 134    AB1343     c2k35  Small    B    340        36   5.0   no
## 137    AB1346     c2k38  Small    B    340        96   5.0  yes
## 142    AB1350     c2k43  Small    B    280        69   3.0   no
## 143    AB1351     c2k44  Small    B    245        39   2.0   no
## 147    AB1355     c2k48  Small    B    266        16   3.0   no
## 151    AB1359     c2k52  Small    B    370        70   6.0  yes
## 167    AB1373     c2k68  Small    B    355        33   5.0  yes
## 177    AB1382     c2k78  Small    B    319        55   4.0  yes
## 187    AB1391     c2k88  Small    B    290        77   3.0   no
## 191    AB1395     c2k92  Small    B    339        48   5.0   no
## 193    AB1397     c2k94  Small    B    350        48   5.0  yes
## 194    AB1398     c2k95  Small    B    330        39   4.0  yes
## 199    AB1402      c3k1  Small    B    280        61   3.0  yes
## 201    AB1404      c3k3  Small    B    334        60   5.0  yes
## 202    AB1405      c3k4  Small    B    290        57   3.0  yes
## 204    AB1407      c3k6  Small    B    302        18   4.0  yes
## 207     AB141      c3k9  Small    B    128        66   0.5  yes
## 210    AB1412     c3k12  Small    B    314        58   4.0  yes
## 221    AB1422     c3k23  Small    B    295        57   3.0   no
## 224    AB1425     c3k26  Small    B    287        25   3.0  yes
## 234    AB1434     c3k36  Small    B    257        44   2.0  yes
## 234.1  AB1434     c3k36  Small    B    257        44   2.0  yes
## 239    AB1439     c3k41  Small    B    297        57   3.0   no
## 239.1  AB1439     c3k41  Small    B    297        57   3.0   no
## 241    AB1440     c3k43  Small    B    270        28   3.0  yes
## 242    AB1441     c3k44  Small    B    351        29   5.0  yes
## 245    AB1444     c3k47  Small    B    390        19   7.0  yes
## 247    AB1446     c3k49  Small    B    333        48   5.0  yes
## 252    AB1450     c3k54  Small    B    334        80   5.0   no
## 253    AB1451     c3k55  Small    B    232        47   2.0   no
## 257    AB1455     c3k59  Small    B    270        76   3.0  yes
## 261    AB1459     c3k63  Small    B    204        65   1.0  yes
## 265    AB1462     c3k67  Small    B    330        32   4.0  yes
## 267    AB1464     c3k69  Small    B    314        18   4.0   no
## 282    AB1478     c3k84  Small    B    267        88   3.0   no
## 284     AB148     c3k86  Small    B     91        29   0.5   no
## 284.1   AB148     c3k86  Small    B     91        29   0.5   no
## 293    AB1488     c3k95  Small    B    209        30   1.0  yes
## 296    AB1490     c3k98  Small    B    245        67   2.0   no
## 297    AB1491     c3k99  Small    B    296        13   3.0  yes
## 300    AB1494      c4k3  Small    B    215        30   2.0  yes
## 301    AB1495      c4k4  Small    B    240        31   2.0  yes
## 302    AB1496      c4k5  Small    B    202        73   1.0   no
## 302.1  AB1496      c4k5  Small    B    202        73   1.0   no
## 309    AB1502     c4k12  Small    B    253        44   2.0  yes
## 318    AB1510     c4k21  Small    B    260        12   2.0  yes
## 321    AB1513     c4k24  Small    B    196        45   1.0  yes
## 323    AB1515     c4k26  Small    B    241        87   2.0  yes
## 325    AB1517     c4k28  Small    B    208        22   1.0   no
## 330    AB1521     c4k33  Small    B    344        84   5.0  yes
## 331    AB1522     c4k34  Small    B    201        85   1.0  yes
## 338    AB1529     c4k41  Small    B    266        20   3.0  yes
## 340    AB1530     c4k43  Small    B    328        75   4.0  yes
## 342    AB1532     c4k45  Small    B    271        80   3.0  yes
## 348    AB1538     c4k51  Small    B    280        13   3.0  yes
## 349    AB1539     c4k52  Small    B    314        54   4.0   no
## 352    AB1541     c4k55  Small    B    310        54   4.0  yes
## 355    AB1544     c4k58  Small    B    245        63   2.0  yes
## 364    AB1552     c4k67  Small    B    227         6   2.0  yes
## 368    AB1556     c4k71  Small    B    313        86   4.0  yes
## 368.1  AB1556     c4k71  Small    B    313        86   4.0  yes
## 368.2  AB1556     c4k71  Small    B    313        86   4.0  yes
## 369    AB1557     c4k72  Small    B    290        89   3.0  yes
## 370    AB1558     c4k73  Small    B    206        10   1.0  yes
## 371    AB1559     c4k74  Small    B    260        76   2.0   no
## 373    AB1560     c4k76  Small    B    270        72   3.0  yes
## 374    AB1561     c4k77  Small    B    317        67   4.0  yes
## 374.1  AB1561     c4k77  Small    B    317        67   4.0  yes
## 375    AB1562     c4k78  Small    B    296        45   3.0  yes
## 378    AB1565     c4k81  Small    B    206        46   1.0   no
## 382    AB1569     c4k85  Small    B    345        68   5.0  yes
## 389    AB1575     c4k92  Small    B    273        16   3.0  yes
## 391    AB1577     c4k94  Small    B    313        46   4.0  yes
## 391.1  AB1577     c4k94  Small    B    313        46   4.0  yes
## 395    AB1580     c4k98  Small    B    299        85   3.0   no
## 396    AB1581     c4k99  Small    B    235        55   2.0   no
## 396.1  AB1581     c4k99  Small    B    235        55   2.0   no
## 397    AB1582      c5k1  Small    B    328        39   4.0   no
## 400    AB1585      c5k4  Small    B    300        54   3.0  yes
## 405     AB159      c5k9  Small    B     65        73   0.5  yes
## 409    AB1593     c5k13  Small    B    293        81   3.0  yes
## 410    AB1594     c5k14  Small    B    264        44   3.0   no
## 414    AB1598     c5k18  Small    B    292        89   3.0   no
## 415    AB1599     c5k19  Small    B    268        44   3.0   no
## 416     AB160     c5k20  Small    B    179        16   1.0   no
## 432    AB1614     c5k36  Small    B    276        16   3.0  yes
## 442    AB1623     c5k46  Small    B    341        52   5.0  yes
## 444    AB1625     c5k48  Small    B    303        54   4.0  yes
## 446    AB1627     c5k50  Small    B    295        29   3.0  yes
## 450    AB1630     c5k54  Small    B    236        31   2.0  yes
## 451    AB1631     c5k55  Small    B    226        18   2.0   no
## 458    AB1638     c5k62  Small    B    264        40   3.0   no
## 463    AB1642     c5k67  Small    B    235        75   2.0   no
## 467    AB1646     c5k71  Small    B    334        76   5.0   no
## 474    AB1652     c5k78  Small    B    369        97   6.0  yes
## 489    AB1666     c5k93  Small    B    275        44   3.0   no
## 491    AB1668     c5k95  Small    B    336        80   5.0  yes
## 501    AB1677      c6k6  Small    B    248        71   2.0   no
## 504     AB168      c6k9  Small    B     87         9   0.5  yes
## 505    AB1680     c6k10  Small    B    235        91   2.0  yes
## 511    AB1686     c6k16  Small    B    269        36   3.0  yes
## 512    AB1687     c6k17  Small    B    315        63   4.0  yes
## 518    AB1692     c6k23  Small    B    130        14   0.5  yes
## 522    AB1696     c6k27  Small    B    212        14   1.0   no
## 526     AB170     c6k31  Small    B     75        73   0.5  yes
## 528    AB1701     c6k33  Small    B    195        37   1.0   no
## 535    AB1708     c6k40  Small    B    154         7   1.0  yes
## 536    AB1709     c6k41  Small    B    220        82   2.0   no
## 538    AB1710     c6k43  Small    B      1        45   0.5  yes
## 539    AB1711     c6k44  Small    B    180        12   1.0  yes
## 539.1  AB1711     c6k44  Small    B    180        12   1.0  yes
## 542    AB1714     c6k47  Small    B    130        50   0.5   no
## 544    AB1716     c6k49  Small    B    125        74   0.5   no
## 544.1  AB1716     c6k49  Small    B    125        74   0.5   no
## 558    AB1729     c6k63  Small    B    106        53   0.5  yes
## 558.1  AB1729     c6k63  Small    B    106        53   0.5  yes
## 559     AB173     c6k64  Small    B    144        15   0.5  yes
## 566    AB1736     c6k71  Small    B    130        66   0.5   no
## 574    AB1743     c6k79  Small    B    196        89   1.0  yes
## 582    AB1750     c6k87  Small    B    164        72   1.0  yes
## 588    AB1756     c6k93  Small    B    141        27   0.5  yes
## 592     AB176     c6k97  Small    B     83        85   0.5  yes
## 601    AB1768      c7k7  Small    B    190        25   1.0  yes
## 612    AB1778     c7k18  Small    B    134        31   0.5  yes
## 618    AB1783     c7k24  Small    B    220        74   2.0  yes
## 635    AB1799     c7k41  Small    B    130        38   0.5  yes
## 641    AB1804     c7k47  Small    B    136        83   0.5   no
## 647     AB181     c7k53  Small    B    194        85   1.0  yes
## 648    AB1810     c7k54  Small    B    156        23   1.0  yes
## 652    AB1814     c7k58  Small    B     86        77   0.5   no
## 653    AB1815     c7k59  Small    B    162        56   1.0  yes
## 653.1  AB1815     c7k59  Small    B    162        56   1.0  yes
## 655    AB1817     c7k61  Small    B    191        25   1.0  yes
## 657    AB1819     c7k63  Small    B     97        25   0.5  yes
## 659    AB1820     c7k65  Small    B    131        74   0.5   no
## 660    AB1821     c7k66  Small    B     80        41   0.5  yes
## 660.1  AB1821     c7k66  Small    B     80        41   0.5  yes
## 664    AB1825     c7k70  Small    B    181        64   1.0  yes
## 667    AB1828     c7k73  Small    B     94        41   0.5   no
## 670    AB1830     c7k76  Small    B    117        38   0.5   no
## 673    AB1833     c7k79  Small    B    152        83   1.0  yes
## 675    AB1835     c7k81  Small    B    131        82   0.5  yes
## 676    AB1836     c7k82  Small    B    144        11   0.5  yes
## 677    AB1837     c7k83  Small    B    170        60   1.0   no
## 678    AB1838     c7k84  Small    B    157        59   1.0  yes
## 689    AB1848     c7k95  Small    B    179        24   1.0  yes
## 695    AB1853      c8k2  Small    C    190        21   1.0  yes
## 700    AB1858      c8k7  Small    C    176        20   1.0   no
## 702     AB186      c8k9  Small    C     67        77   0.5   no
## 704    AB1861     c8k11  Small    C    120        22   0.5  yes
## 709    AB1866     c8k16  Small    C    196        57   1.0  yes
## 712    AB1869     c8k19  Small    C    172        56   1.0  yes
## 713     AB187     c8k20  Small    C     98        65   0.5  yes
## 720    AB1876     c8k27  Small    C    135        51   0.5  yes
## 720.1  AB1876     c8k27  Small    C    135        51   0.5  yes
## 730    AB1885     c8k37  Small    C    380        18   6.0  yes
## 731    AB1886     c8k38  Small    C    335        64   5.0   no
## 737    AB1891     c8k44  Small    C    470        44  10.0  yes
## 744    AB1898     c8k51  Small    C    370        98   6.0  yes
## 745    AB1899     c8k52  Small    C    390        31   6.0   no
## 745.1  AB1899     c8k52  Small    C    390        31   6.0   no
## 748    AB1901     c8k55  Small    C    384        50   6.0   no
## 752    AB1906     c8k59  Small    C    460        43   9.0   no
## 756    AB1910     c8k63  Small    C    350        92   5.0  yes
## 756.1  AB1910     c8k63  Small    C    350        92   5.0  yes
## 764    AB1918     c8k71  Small    C    390        39   7.0  yes
## 765    AB1919     c8k72  Small    C    410        36   7.0  yes
## 769    AB1922     c8k76  Small    C    410        36   7.0   no
## 769.1  AB1922     c8k76  Small    C    410        36   7.0   no
## 770    AB1923     c8k77  Small    C    450        58   9.0  yes
## 770.1  AB1923     c8k77  Small    C    450        58   9.0  yes
## 773    AB1927     c8k80  Small    C    420        48   7.0  yes
## 777    AB1930     c8k84  Small    C    380        34   6.0  yes
## 778    AB1931     c8k85  Small    C    416        52   7.0  yes
## 781    AB1934     c8k88  Small    C    470        52  10.0  yes
## 782    AB1936     c8k89  Small    C    310        18   4.0   no
## 784    AB1938     c8k91  Small    C    410        36   7.0  yes
## 786     AB194     c8k93  Small    C    153        27   1.0   no
## 786.1   AB194     c8k93  Small    C    153        27   1.0   no
## 791    AB1946     c8k98  Small    C    390        59   7.0  yes
## 791.1  AB1946     c8k98  Small    C    390        59   7.0  yes
## 795     AB195      c9k3  Small    C    198        49   1.0  yes
## 801    AB1955      c9k9  Small    C    440        82   8.0   no
## 802    AB1956     c9k10  Small    C    470        76  10.0  yes
## 806    AB1960     c9k14  Small    C    312        74   4.0  yes
## 811    AB1965     c9k19  Small    C    475        89  10.0  yes
## 822    AB1975     c9k30  Small    C    420        36   8.0  yes
## 831    AB1983     c9k39  Small    C    440        94   8.0  yes
## 832    AB1984     c9k40  Small    C    480        25  10.0  yes
## 833    AB1985     c9k41  Small    C    300        14   3.0  yes
## 838    AB1990     c9k46  Small    C    378        62   6.0  yes
## 838.1  AB1990     c9k46  Small    C    378        62   6.0  yes
## 840    AB1992     c9k48  Small    C    430        37   8.0   no
## 841    AB1993     c9k49  Small    C    410        24   7.0   no
## 842    AB1994     c9k50  Small    C    440        94   8.0   no
## 845    AB1997     c9k53  Small    C    400        95   7.0  yes
## 853    AB2005     c9k61  Small    C    390        47   6.0  yes
## 857    AB2009     c9k65  Small    C    491        74  10.5  yes
## 861    AB2016     c9k69  Small    C    436        97   8.0  yes
## 862    AB2017     c9k70  Small    C    363        97   5.0   no
## 862.1  AB2017     c9k70  Small    C    363        97   5.0   no
## 862.2  AB2017     c9k70  Small    C    363        97   5.0   no
## 865    AB2021     c9k73  Small    C    324        23   4.0   no
## 866    AB2022     c9k74  Small    C    370        54   6.0   no
## 867    AB2023     c9k75  Small    C    469        20  10.0   no
## 875    AB2032     c9k83  Small    C    400        19   7.0  yes
## 877    AB2034     c9k85  Small    C    434        53   8.0  yes
## 879    AB2036     c9k87  Small    C    490        54  10.5  yes
## 881    AB2038     c9k89  Small    C    460        99   9.0  yes
## 883     AB204     c9k91  Small    C     91        65   0.5  yes
## 884    AB2040     c9k92  Small    C    430        81   8.0  yes
## 886    AB2043     c9k94  Small    C    400        79   7.0  yes
## 887    AB2044     c9k95  Small    C    404        87   7.0  yes
## 889    AB2047     c9k97  Small    C    385        94   6.0  yes
## 890    AB2049     c9k98  Small    C    480        85  10.0  yes
## 890.1  AB2049     c9k98  Small    C    480        85  10.0  yes
## 897    AB2058     c10k6  Small    C    480        93  10.0   no
## 899     AB206     c10k8  Small    C    110        62   0.5   no
## 899.1   AB206     c10k8  Small    C    110        62   0.5   no
## 901    AB2062    c10k10  Small    C    333        76   5.0   no
## 903    AB2064    c10k12  Small    C    420        76   8.0  yes
## 907    AB2069    c10k16  Small    C    390        31   7.0   no
## 908     AB207    c10k17  Small    C    171        12   1.0  yes
## 910    AB2071    c10k19  Small    C    375        30   6.0   no
## 912    AB2073    c10k21  Small    C    420        76   8.0   no
## 913    AB2074    c10k22  Small    C    332        28   4.0  yes
## 921    AB2082    c10k30  Small    C    480        41  10.0  yes
## 921.1  AB2082    c10k30  Small    C    480        41  10.0  yes
## 939    AB2103    c10k48  Small    C    308        82   4.0   no
## 947    AB2114    c10k56  Small    C    361        37   5.0  yes
## 947.1  AB2114    c10k56  Small    C    361        37   5.0  yes
## 951    AB2118    c10k60  Small    C    480        85  10.0   no
## 954    AB2120    c10k63  Small    C    350        20   5.0  yes
## 956    AB2122    c10k65  Small    C    420        28   7.0   no
## 971    AB2139    c10k80  Small    C    332        20   4.0   no
## 973    AB2141    c10k82  Small    C    480        21  10.0  yes
## 974    AB2142    c10k83  Small    C    390        19   7.0  yes
## 974.1  AB2142    c10k83  Small    C    390        19   7.0  yes
## 978    AB2146    c10k87  Small    C    476        81  10.0  yes
## 979    AB2147    c10k88  Small    C    487       105  10.5  yes
## 985    AB2152    c10k94  Small    C    452        63   9.0   no
## 987    AB2155    c10k96  Small    C    480        41  10.0   no
## 987.1  AB2155    c10k96  Small    C    480        41  10.0   no
## 1002   AB2169    c11k12  Small    C    260        68   2.0   no
## 1010   AB2178    c11k20  Small    C    494        38  10.5   no
## 1016   AB2186    c11k26  Small    C    345        40   5.0  yes
## 1024   AB2195    c11k34  Small    C    445        38   9.0  yes
## 1032   AB2203    c11k42  Small    C    421        85   8.0  yes
## 1038    AB221    c11k48  Small    C     20        41   0.5   no
## 1046   AB2218    c11k56  Small    C    365        85   6.0   no
## 1048    AB222    c11k58  Small    C    110        78   0.5   no
## 1056    AB223    c11k66  Small    C     89        65   0.5  yes
## 1060   AB2233    c11k70  Small    C    380        26   6.0  yes
## 1067   AB2240    c11k77  Small    C    374        18   6.0  yes
## 1067.1 AB2240    c11k77  Small    C    374        18   6.0  yes
## 1071   AB2244    c11k81  Small    C    491        94  10.5   no
## 1074   AB2247    c11k84  Small    C    320        35   4.0  yes
## 1075   AB2248    c11k85  Small    C    411        52   7.0  yes
## 1083   AB2258    c11k93  Small    C    394        87   7.0  yes
## 1084   AB2259    c11k94  Small    C    463        24  10.0  yes
## 1085    AB226    c11k95  Small    C    101        73   0.5  yes
## 1092   AB2268     c12k3  Small    C    385        74   6.0   no
## 1094    AB227     c12k5  Small    C    122        54   0.5  yes
## 1097   AB2273     c12k8  Small    C    357        21   5.0   no
## 1098   AB2274     c12k9  Small    C    443        74   8.0   no
## 1100   AB2276    c12k11  Small    C    410        88   7.0  yes
## 1100.1 AB2276    c12k11  Small    C    410        88   7.0  yes
## 1102   AB2278    c12k13  Small    C    374        14   6.0  yes
## 1106   AB2282    c12k17  Small    C    362        45   5.0  yes
## 1117   AB2292    c12k28  Small    C    460        79   9.0  yes
## 1121   AB2296    c12k32  Small    C    461        44   9.0   no
## 1121.1 AB2296    c12k32  Small    C    461        44   9.0   no
## 1125    AB230    c12k36  Small    C    158        15   1.0  yes
## 1131   AB2306    c12k42  Small    C    350        25   5.0  yes
## 1134   AB2310    c12k45  Small    C    324        31   4.0   no
## 1134.1 AB2310    c12k45  Small    C    324        31   4.0   no
## 1136   AB2312    c12k47  Small    C    424        61   8.0  yes
## 1140   AB2316    c12k51  Small    C    392        47   7.0  yes
## 1142   AB2318    c12k53  Small    C    414        28   7.0  yes
## 1144    AB232    c12k55  Small    C     87         9   0.5  yes
## 1147   AB2322    c12k58  Small    C    416        80   7.0   no
## 1151   AB2326    c12k62  Small    C    424        45   8.0   no
## 1155   AB2330    c12k66  Small    C    354        25   5.0  yes
## 1162   AB2339    c12k73  Small    C    425        21   8.0  yes
## 1165   AB2342    c12k76  Small    C    409        52   7.0   no
## 1166   AB2343    c12k77  Small    C    455        67   9.0   no
## 1167   AB2344    c12k78  Small    C    388        95   6.0  yes
## 1174   AB2350    c12k85  Small    C    373        26   6.0  yes
## 1179   AB2356    c12k90  Small    C    436        29   8.0   no
## 1179.1 AB2356    c12k90  Small    C    436        29   8.0   no
## 1181   AB2358    c12k92  Small    C    348        56   5.0  yes
## 1181.1 AB2358    c12k92  Small    C    348        56   5.0  yes
## 1182   AB2359    c12k93  Small    C    367        53   6.0  yes
## 1192   AB2368     c13k4  Small    C    438        61   8.0  yes
## 1196   AB2371     c13k8  Small    C    400        55   7.0  yes
## 1198   AB2373    c13k10  Small    C    452        79   9.0  yes
## 1200   AB2375    c13k12  Small    C    489       101  10.5  yes
## 1201   AB2377    c13k13  Small    C    365        81   6.0  yes
## 1203   AB2380    c13k15  Small    C    421        21   8.0   no
## 1203.1 AB2380    c13k15  Small    C    421        21   8.0   no
## 1205   AB2383    c13k17  Small    C    484        69  10.5   no
## 1207   AB2385    c13k19  Small    C    375        46   6.0  yes
## 1209   AB2387    c13k21  Small    C    405        52   7.0   no
## 1216   AB2393    c13k28  Small    C    410        60   7.0  yes
## 1222    AB243    c13k34  Small    C     93        65   0.5   no
## 1227    AB248    c13k39  Small    C    117        18   0.5  yes
## 1232    AB253    c13k44  Small    C    154        75   1.0  yes
## 1236    AB257    c13k48  Small    C     97        25   0.5   no
## 1242    AB263    c13k54  Small    C    177        48   1.0   no
## 1245    AB266    c13k57  Small    C     93         5   0.5   no
## 1251    AB272    c13k63  Small    C    112        70   0.5  yes
## 1251.1  AB272    c13k63  Small    C    112        70   0.5  yes
## 1255    AB276    c13k67  Small    C    119        38   0.5  yes
## 1266    AB287    c13k78  Small    C    127        42   0.5   no
## 1277    AB298    c13k89  Small    C    153         7   1.0   no
## 1283    AB304    c13k95  Small    C    149         7   0.5  yes
## 1283.1  AB304    c13k95  Small    C    149         7   0.5  yes
## 1285    AB306    c13k97  Small    C    148        79   0.5   no
## 1286    AB307    c13k98  Small    C    101        77   0.5  yes
## 1287    AB308    c13k99  Small    C    120        46   0.5  yes
## 1292    AB313     c14k5  Small    C    196        77   1.0   no
## 1293    AB314     c14k6  Small    C    152        79   1.0  yes
## 1296    AB317     c14k9  Small    C     96        69   0.5  yes
## 1297    AB318    c14k10  Small    C    103        33   0.5   no
## 1298    AB319    c14k11  Small    C     98        25   0.5  yes
## 1298.1  AB319    c14k11  Small    C     98        25   0.5  yes
## 1300    AB321    c14k13  Small    C    133        35   0.5  yes
## 1308    AB329    c14k21  Small    C    168         8   1.0   no
## 1310    AB331    c14k23  Small    C    169        28   1.0  yes
## 1315    AB336    c14k28  Small    C    131        22   0.5   no
## 1316    AB337    c14k29  Small    C    131        74   0.5   no
## 1316.1  AB337    c14k29  Small    C    131        74   0.5   no
## 1323    AB344    c14k36  Small    C    127        14   0.5  yes
## 1327    AB348    c14k40  Small    C    119        78   0.5  yes
## 1332    AB353    c14k45  Small    C    128        62   0.5  yes
## 1333    AB354    c14k46  Small    C    174        32   1.0  yes
## 1333.1  AB354    c14k46  Small    C    174        32   1.0  yes
## 1335    AB356    c14k48  Small    C    209        90   1.0   no
## 1340    AB361    c14k53  Small    C    145        27   0.5  yes
## 1341    AB362    c14k54  Small    C    191        45   1.0  yes
## 1341.1  AB362    c14k54  Small    C    191        45   1.0  yes
## 1344    AB365    c14k57  Small    C    143        55   0.5   no
## 1345    AB366    c14k58  Small    C     78        13   0.5  yes
## 1350    AB371    c14k63  Small    C    120        10   0.5   no
## 1366    AB387    c14k79  Small    C     64        37   0.5  yes
## 1367    AB388    c14k80  Small    C     96        29   0.5  yes
## 1373    AB394    c14k86  Small    C    132        82   0.5  yes
## 1375    AB396    c14k88  Small    C     99        65   0.5  yes
## 1380    AB401    c14k93  Small    C    188        73   1.0  yes
## 1380.1  AB401    c14k93  Small    C    188        73   1.0  yes
## 1385    AB406    c14k98  Small    C    119        54   0.5   no
## 1387    AB408     c15k1  Small    C    119        66   0.5  yes
## 1389    AB410     c15k3  Small    C    165        76   1.0  yes
## 1391    AB412     c15k5  Small    C     76        85   0.5  yes
## 1403    AB424    c15k17  Small    C    230        39   2.0  yes
## 1404    AB425    c15k18  Small    C    305        66   4.0  yes
## 1408    AB429    c15k22  Small    C    270        60   3.0   no
## 1409    AB430    c15k23  Small    C    276        48   3.0  yes
## 1422    AB443    c15k36  Small    C    249        67   2.0   no
## 1426    AB447    c15k40  Small    C    250        91   2.0  yes
## 1426.1  AB447    c15k40  Small    C    250        91   2.0  yes
## 1429    AB450    c15k43  Small    C    292        29   3.0  yes
## 1437    AB458    c15k51  Small    C    236        43   2.0  yes
## 1447    AB468    c15k61  Small    C    272        40   3.0   no
## 1452    AB473    c15k66  Small    C    247        91   2.0   no
## 1454    AB475    c15k68  Small    C    235        59   2.0   no
## 1454.1  AB475    c15k68  Small    C    235        59   2.0   no
## 1458    AB479    c15k72  Small    C    300        66   3.0  yes
## 1464    AB485    c15k78  Small    C    237        23   2.0  yes
## 1466    AB487    c15k80  Small    C    259        28   2.0  yes
## 1470    AB491    c15k84  Small    C    219        10   2.0  yes
## 1476    AB497    c15k90  Small    C    239        31   2.0  yes
## 1479    AB500    c15k93  Small    C    278        17   3.0   no
## 1481    AB502    c15k95  Small    C    268        52   3.0   no
## 1484    AB505    c15k98  Small    C    219         6   2.0   no
## 1485    AB506    c15k99  Small    C    258        52   2.0  yes
## 1488    AB509     c16k3  Small    C    226        38   2.0  yes
## 1489    AB510     c16k4  Small    C    213        50   1.0  yes
## 1501    AB522    c16k16  Small    C    248        83   2.0  yes
## 1502    AB523    c16k17  Small    C    299        89   3.0   no
## 1506    AB527    c16k21  Small    C    179        40   1.0  yes
## 1507    AB528    c16k22  Small    C    214        34   1.0   no
## 1509    AB530    c16k24  Small    C    328        15   4.0   no
## 1511    AB532    c16k26  Small    C    245        39   2.0   no
## 1513    AB534    c16k28  Small    C    253        60   2.0  yes
## 1516    AB537    c16k31  Small    C    242        23   2.0   no
## 1517    AB538    c16k32  Small    C    218        22   2.0   no
## 1520    AB541    c16k35  Small    C    227        34   2.0  yes
## 1523    AB544    c16k38  Small    C    341        16   5.0  yes
## 1524    AB545    c16k39  Small    C    296        41   3.0  yes
## 1528    AB549    c16k43  Small    C    234        11   2.0  yes
## 1531    AB552    c16k46  Small    C    243        47   2.0   no
## 1534    AB555    c16k49  Small    C    279        85   3.0  yes
## 1535    AB556    c16k50  Small    C    237        31   2.0  yes
## 1536    AB557    c16k51  Small    C    220        86   2.0   no
## 1537    AB558    c16k52  Small    C    220        18   2.0  yes
## 1539    AB560    c16k54  Small    C    243        75   2.0  yes
## 1549    AB591    c16k64  Small    C    460        83   9.0   no
## 1552    AB608    c16k67  Small    C    480        89  10.0  yes
## 1559    AB669    c16k74  Small    D    490        42  10.5   no
## 1559.1  AB669    c16k74  Small    D    490        42  10.5   no
## 1562    AB703    c16k77  Small    D    470        68  10.0  yes
## 1565    AB753    c16k80  Small    D    496        30  10.5  yes
## 1572    AB833    c16k87  Small    D    470        36  10.0  yes
## 1573    AB852    c16k88  Small    E    480        89  10.0  yes
## 1574    AB881    c16k89  Small    E    470        32  10.0   no
## 1581    AB076    c16k96 Medium    A    500        87  11.0  yes
## 1594   AB1006    c17k10 Medium    A    760       124  29.0   no
## 1596   AB1009    c17k12 Medium    A    600        44  17.0  yes
## 1599   AB1012    c17k15 Medium    A    680       124  23.0   no
## 1603   AB1016    c17k19 Medium    A    935       119  42.0   no
## 1608   AB1020    c17k24 Medium    A    730       126  27.0   no
## 1612   AB1024    c17k28 Medium    A    925       107  42.0   no
## 1616   AB1030    c17k32 Medium    A    710        92  26.0  yes
## 1620   AB1034    c17k36 Medium    A    790        54  31.0  yes
## 1623   AB1037    c17k39 Medium    A    986        96  46.0  yes
## 1625   AB1043    c17k41 Medium    A    990       129  47.0  yes
## 1633   AB1051    c17k49 Medium    A    675        48  23.0   no
## 1639   AB1057    c17k55 Medium    A    610        89  18.0   no
## 1639.1 AB1057    c17k55 Medium    A    610        89  18.0   no
## 1645   AB1063    c17k61 Medium    A    680        96  23.0  yes
## 1645.1 AB1063    c17k61 Medium    A    680        96  23.0  yes
## 1648   AB1066    c17k64 Medium    A    850       102  36.0  yes
## 1649   AB1067    c17k65 Medium    A    810        97  33.0  yes
## 1651   AB1069    c17k67 Medium    A    937       127  43.0  yes
## 1652    AB107    c17k68 Medium    A    560        72  15.0  yes
## 1657   AB1075    c17k73 Medium    A    563        64  15.0   no
## 1657.1 AB1075    c17k73 Medium    A    563        64  15.0   no
## 1661   AB1079    c17k77 Medium    A    557        32  14.0  yes
## 1661.1 AB1079    c17k77 Medium    A    557        32  14.0  yes
## 1664   AB1081    c17k80 Medium    A    814       106  33.0   no
## 1664.1 AB1081    c17k80 Medium    A    814       106  33.0   no
## 1667   AB1085    c17k83 Medium    A    585        59  16.0   no
## 1669   AB1087    c17k85 Medium    A    568        44  15.0  yes
## 1670   AB1088    c17k86 Medium    A    710        76  26.0   no
## 1673   AB1090    c17k89 Medium    A    760        92  29.0  yes
## 1673.1 AB1090    c17k89 Medium    A    760        92  29.0  yes
## 1677   AB1097    c17k93 Medium    A    599        36  17.0  yes
## 1678   AB1099    c17k94 Medium    A    580        97  16.0  yes
## 1679    AB110    c17k95 Medium    A    520        69  12.0   no
## 1680   AB1100    c17k96 Medium    A    560        52  15.0   no
## 1689    AB111     c18k6 Medium    A    990       141  47.0   no
## 1692   AB1112     c18k9 Medium    A    576       105  15.0  yes
## 1693   AB1113    c18k10 Medium    A    530        61  13.0  yes
## 1694   AB1114    c18k11 Medium    A    635       116  20.0  yes
## 1697    AB112    c18k14 Medium    A    780        81  30.0   no
## 1705   AB1133    c18k22 Medium    A    570        65  15.0  yes
## 1709   AB1138    c18k26 Medium    A    637       104  20.0   no
## 1709.1 AB1138    c18k26 Medium    A    637       104  20.0   no
## 1713   AB1141    c18k30 Medium    A    510        44  12.0   no
## 1714   AB1142    c18k31 Medium    A    645        89  21.0   no
## 1718   AB1146    c18k35 Medium    A    760        84  29.0   no
## 1721    AB115    c18k38 Medium    A    656       106  22.0   no
## 1721.1  AB115    c18k38 Medium    A    656       106  22.0   no
## 1725   AB1155    c18k42 Medium    A    610        57  18.0   no
## 1730   AB1160    c18k47 Medium    A    850       113  36.0   no
## 1734   AB1164    c18k51 Medium    A    753        56  29.0  yes
## 1735   AB1165    c18k52 Medium    A    760        68  29.0   no
## 1737   AB1167    c18k54 Medium    A    850       125  36.0  yes
## 1740   AB1170    c18k57 Medium    A    720        92  26.0  yes
## 1740.1 AB1170    c18k57 Medium    A    720        92  26.0  yes
## 1746   AB1177    c18k63 Medium    A    859       118  37.0  yes
## 1752   AB1183    c18k69 Medium    A    656        62  22.0   no
## 1752.1 AB1183    c18k69 Medium    A    656        62  22.0   no
## 1763   AB1196    c18k80 Medium    B    623        95  19.0   no
## 1769   AB1202    c18k86 Medium    B    870        74  37.0  yes
## 1780   AB1218    c18k97 Medium    B    580       102  16.0   no
## 1793   AB1239    c19k11 Medium    B    550        95  14.0   no
## 1793.1 AB1239    c19k11 Medium    B    550        95  14.0   no
## 1796   AB1243    c19k14 Medium    B    540        74  13.0  yes
## 1802   AB1249    c19k20 Medium    B    530        61  13.0   no
## 1806   AB1255    c19k24 Medium    B    630        79  20.0  yes
## 1807   AB1256    c19k25 Medium    B    618        70  19.0  yes
## 1809   AB1258    c19k27 Medium    B    545        42  14.0   no
## 1809.1 AB1258    c19k27 Medium    B    545        42  14.0   no
## 1811   AB1260    c19k29 Medium    B    904       137  41.0   no
## 1812   AB1261    c19k30 Medium    B    887       108  39.0  yes
## 1812.1 AB1261    c19k30 Medium    B    887       108  39.0  yes
## 1813   AB1262    c19k31 Medium    B    510        60  12.0  yes
## 1816   AB1265    c19k34 Medium    B    589       107  16.0  yes
## 1817   AB1266    c19k35 Medium    B    671       111  23.0   no
## 1823   AB1272    c19k41 Medium    B    714        52  26.0  yes
## 1826   AB1275    c19k44 Medium    B    640        57  21.0   no
## 1827   AB1276    c19k45 Medium    B    551        87  14.0  yes
## 1828   AB1277    c19k46 Medium    B    821        71  34.0  yes
## 1833   AB1282    c19k51 Medium    B    662        94  22.0  yes
## 1835   AB1285    c19k53 Medium    B    669        79  22.0  yes
## 1836   AB1286    c19k54 Medium    B    890        60  39.0  yes
## 1841   AB1291    c19k59 Medium    B    600        60  17.0  yes
## 1841.1 AB1291    c19k59 Medium    B    600        60  17.0  yes
## 1845   AB1296    c19k63 Medium    B    674        47  23.0  yes
## 1847   AB1298    c19k65 Medium    B    619        46  19.0  yes
## 1852   AB1303    c19k70 Medium    B    503        91  12.0  yes
## 1856   AB1309    c19k74 Medium    B    576        97  15.0  yes
## 1860   AB1313    c19k78 Medium    B    697        65  24.0  yes
## 1861   AB1314    c19k79 Medium    B    980        75  46.0  yes
## 1863   AB1316    c19k81 Medium    B    649       117  21.0   no
## 1866   AB1320    c19k84 Medium    B    721        65  27.0  yes
## 1868   AB1322    c19k86 Medium    B    667        98  22.0  yes
## 1878   AB1905    c19k96 Medium    C    500        59  12.0   no
## 1879   AB1908    c19k97 Medium    C    600        76  17.0   no
## 1889   AB2014     c20k8 Medium    C    530        25  13.0  yes
## 1894   AB2031    c20k13 Medium    C    540        74  13.0   no
## 1897   AB2048    c20k16 Medium    C    530        41  13.0  yes
## 1900   AB2057    c20k19 Medium    C    500        47  12.0   no
## 1900.1 AB2057    c20k19 Medium    C    500        47  12.0   no
## 1907   AB2091    c20k26 Medium    C    554        88  14.0  yes
## 1915   AB2138    c20k34 Medium    C    520        85  12.0  yes
## 1916   AB2140    c20k35 Medium    C    520        92  12.0  yes
## 1917   AB2154    c20k36 Medium    C    504        87  12.0  yes
## 1917.1 AB2154    c20k36 Medium    C    504        87  12.0  yes
## 1919   AB2177    c20k38 Medium    C    500        63  12.0   no
## 1926   AB2206    c20k45 Medium    C    520        81  12.0  yes
## 1927   AB2214    c20k46 Medium    C    519        28  12.0  yes
## 1927.1 AB2214    c20k46 Medium    C    519        28  12.0  yes
## 1927.2 AB2214    c20k46 Medium    C    519        28  12.0  yes
## 1928   AB2222    c20k47 Medium    C    590        91  16.0   no
## 1932   AB2251    c20k51 Medium    C    505        51  12.0  yes
## 1939   AB2305    c20k58 Medium    C    500        87  12.0   no
## 1943   AB2334    c20k62 Medium    C    550        47  14.0  yes
## 1954    AB572    c20k73 Medium    C    508        87  12.0  yes
## 1956    AB574    c20k75 Medium    C    550        87  14.0  yes
## 1963    AB581    c20k82 Medium    C    540        98  13.0  yes
## 1964    AB582    c20k83 Medium    C    570        53  15.0  yes
## 1968    AB586    c20k87 Medium    C    620        99  19.0   no
## 1969    AB587    c20k88 Medium    C    660       118  22.0   no
## 1971    AB589    c20k90 Medium    C    580        70  16.0  yes
## 1974    AB594    c20k93 Medium    C    808        63  32.0   no
## 1977    AB597    c20k96 Medium    C    570        73  15.0  yes
## 1977.1  AB597    c20k96 Medium    C    570        73  15.0  yes
## 1984    AB606     c22k4 Medium    C    500        39  12.0  yes
## 1985    AB607     c22k5 Medium    C    580        82  16.0  yes
## 1988    AB611     c22k8 Medium    C    640        69  21.0   no
## 1993    AB616    c22k13 Medium    D    530        81  13.0  yes
## 1996    AB619    c22k16 Medium    D    510        60  12.0  yes
## 1998    AB621    c22k18 Medium    D    590        55  16.0  yes
## 1998.1  AB621    c22k18 Medium    D    590        55  16.0  yes
## 2001    AB625    c22k21 Medium    D    630        80  20.0  yes
## 2006    AB630    c22k26 Medium    D    640        53  21.0   no
## 2006.1  AB630    c22k26 Medium    D    640        53  21.0   no
## 2009    AB633    c22k29 Medium    D    690        77  24.0  yes
## 2014    AB643    c22k34 Medium    D    540       106  13.0   no
## 2018    AB647    c22k38 Medium    D    710        83  25.0  yes
## 2024    AB654    c22k44 Medium    D    597       108  17.0   no
## 2025    AB655    c22k45 Medium    D    536        70  13.0  yes
## 2026    AB656    c22k46 Medium    D    640       113  21.0   no
## 2030    AB660    c22k50 Medium    D    930       127  42.0  yes
## 2042    AB675    c22k62 Medium    D    600        92  17.0  yes
## 2043    AB676    c22k63 Medium    D    520       101  12.0  yes
## 2047    AB682    c22k67 Medium    D    650        81  22.0  yes
## 2048    AB683    c22k68 Medium    D    656        90  22.0   no
## 2051    AB686    c22k71 Medium    D    620        67  19.0   no
## 2055    AB690    c22k75 Medium    D    750        95  28.0  yes
## 2058    AB693    c22k78 Medium    D    640        93  21.0   no
## 2058.1  AB693    c22k78 Medium    D    640        93  21.0   no
## 2065    AB700    c22k85 Medium    D    593        95  17.0  yes
## 2067    AB702    c22k87 Medium    D    520        85  12.0   no
## 2067.1  AB702    c22k87 Medium    D    520        85  12.0   no
## 2069    AB705    c22k89 Medium    D    540        86  13.0   no
## 2079    AB715    c22k99 Medium    D    710        87  25.0   no
## 2080    AB716     c23k1 Medium    D    600       104  17.0   no
## 2082    AB718     c23k3 Medium    D    650        89  21.0  yes
## 2086    AB722     c23k7 Medium    D    820        98  33.0  yes
## 2092    AB732    c23k13 Medium    D    570        73  15.0   no
## 2098    AB738    c23k19 Medium    D    760       124  29.0  yes
## 2104    AB752    c23k25 Medium    D    508        55  12.0  yes
## 2108    AB758    c23k29 Medium    D    650        65  21.0  yes
## 2110    AB760    c23k31 Medium    D    810       130  33.0   no
## 2115    AB765    c23k36 Medium    D    920       130  42.0  yes
## 2116    AB769    c23k37 Medium    D    590        87  17.0   no
## 2120    AB773    c23k41 Medium    D    500        51  12.0  yes
## 2121    AB774    c23k42 Medium    D    550        51  14.0   no
## 2123    AB776    c23k44 Medium    D    569        60  15.0  yes
## 2123.1  AB776    c23k44 Medium    D    569        60  15.0  yes
## 2124    AB777    c23k45 Medium    D    580        54  16.0  yes
## 2127    AB780    c23k48 Medium    D    590        39  17.0  yes
## 2133    AB786    c23k54 Medium    D    780       121  30.0  yes
## 2135    AB788    c23k56 Medium    D    810        96  32.0   no
## 2142    AB795    c23k63 Medium    D    628        91  19.0  yes
## 2142.1  AB795    c23k63 Medium    D    628        91  19.0  yes
## 2144    AB797    c23k65 Medium    D    810       117  33.0   no
## 2145    AB798    c23k66 Medium    D    880       120  38.0   no
## 2152    AB808    c23k73 Medium    D    986       151  46.0  yes
## 2154    AB810    c23k75 Medium    D    520       105  12.0  yes
## 2157    AB814    c23k78 Medium    D    551        79  14.0  yes
## 2159    AB816    c23k80 Medium    D    620        54  19.0  yes
## 2169    AB826    c23k90 Medium    D    750        75  28.0   no
## 2170    AB828    c23k91 Medium    D    545       102  14.0  yes
## 2174    AB832    c23k95 Medium    D    711        68  26.0   no
## 2174.1  AB832    c23k95 Medium    D    711        68  26.0   no
## 2181    AB840     c24k3 Medium    E    694        73  24.0  yes
## 2184    AB843     c24k6 Medium    E    710        91  25.0   no
## 2187    AB846     c24k9 Medium    E    750        51  28.0   no
## 2189    AB848    c24k11 Medium    E    892        92  40.0  yes
## 2191    AB850    c24k13 Medium    E    564        32  15.0  yes
## 2193    AB853    c24k15 Medium    E    582        98  16.0   no
## 2195    AB855    c24k17 Medium    E    830        64  35.0  yes
## 2199    AB859    c24k21 Medium    E    810       105  33.0  yes
## 2204    AB867    c24k26 Medium    E    546        34  14.0  yes
## 2217    AB882    c24k39 Medium    E    510        99  12.0   no
## 2221    AB886    c24k43 Medium    E    605        69  18.0  yes
## 2224    AB889    c24k46 Medium    E    855        90  36.0  yes
## 2230    AB898    c24k52 Medium    E    670       115  23.0  yes
## 2231    AB899    c24k53 Medium    E    750        75  28.0   no
## 2231.1  AB899    c24k53 Medium    E    750        75  28.0   no
## 2233    AB901    c24k55 Medium    E    868        62  37.0  yes
## 2234    AB902    c24k56 Medium    E    630        91  20.0  yes
## 2247    AB921    c24k69 Medium    E    531        93  13.0   no
## 2252    AB926    c24k74 Medium    E    640       100  20.0  yes
## 2255    AB929    c24k77 Medium    E    758        48  29.0  yes
## 2255.1  AB929    c24k77 Medium    E    758        48  29.0  yes
## 2263    AB938    c24k85 Medium    E    520        52  12.0   no
## 2267    AB942    c24k89 Medium    E    610        86  18.0   no
## 2272    AB947    c24k94 Medium    E    700       118  24.0   no
## 2279    AB955     c25k2 Medium    E    944        64  43.0   no
## 2282    AB961     c25k5 Medium    E    590        79  16.0  yes
## 2284    AB964     c25k7 Medium    E    540        66  13.0  yes
## 2285    AB965     c25k8 Medium    E    601        65  18.0   no
## 2296    AB976    c25k19 Medium    E    910       109  41.0  yes
## 2304    AB990    c25k27 Medium    E    571        77  15.0  yes
## 2305    AB991    c25k28 Medium    E    510       104  12.0   no
## 2305.1  AB991    c25k28 Medium    E    510       104  12.0   no
## 2306    AB992    c25k29 Medium    E    610        93  18.0  yes
## 2313    AB999    c25k36 Medium    E    648        65  21.0   no
## 2316   AB1008    c25k39    Big    A   1390       171  77.0  yes
## 2317   AB1026    c25k40    Big    A   1044        78  52.0  yes
## 2319   AB1029    c25k42    Big    A   1110        97  58.0  yes
## 2322   AB1040    c25k45    Big    A   1130        82  61.0  yes
## 2322.1 AB1040    c25k45    Big    A   1130        82  61.0  yes
## 2330   AB1108    c25k53    Big    A   1094        83  57.0  yes
## 2335   AB1125    c25k58    Big    A   1450       133  94.0  yes
## 2336   AB1126    c25k59    Big    A   1614       159 138.0  yes
## 2337   AB1130    c25k60    Big    A   1080       140  54.0  yes
## 2340   AB1153    c25k63    Big    A   1121       146  59.0  yes
## 2341   AB1172    c25k64    Big    A   1440       133  84.0  yes
## 2346   AB1209    c25k69    Big    B   1060        90  53.0   no
## 2347   AB1211    c25k70    Big    B   1050       142  52.0  yes
## 2348   AB1212    c25k71    Big    B   1616       158 142.0  yes
## 2348.1 AB1212    c25k71    Big    B   1616       158 142.0  yes
## 2350   AB1220    c25k73    Big    B   1480       193 104.0   no
## 2350.1 AB1220    c25k73    Big    B   1480       193 104.0   no
## 2350.2 AB1220    c25k73    Big    B   1480       193 104.0   no
## 2351   AB1231    c25k74    Big    B   1160       121  62.0   no
## 2359    AB637    c25k82    Big    D   1405       111  83.0  yes
## 2361    AB725    c25k84    Big    D   1005        83  49.0  yes
## 2371    AB766    c25k94    Big    D   1110        93  58.0  yes
## 2372    AB767    c25k95    Big    D   1300       176  68.0  yes
## 2372.1  AB767    c25k95    Big    D   1300       176  68.0  yes
## 2373    AB799    c25k96    Big    D   1094       131  56.0   no
## 2378    AB891     c26k2    Big    E   1040       118  52.0   no
## 2378.1  AB891     c26k2    Big    E   1040       118  52.0   no
## 2379    AB892     c26k3    Big    E   1084        92  54.0  yes
## 2382    AB905     c26k6    Big    E   1405       110  83.0   no
## 2387    AB932    c26k11    Big    E   1360       104  72.0  yes
## 2390    AB957    c26k14    Big    E   1220       163  63.0   no
## 2392    AB984    c26k16    Big    E   1020        89  50.0  yes
a.estimar <- data.frame(muestra$Income, muestra$Employees, muestra$Taxes);E.WR(N,n,a.estimar)
##                   N muestra.Income muestra.Employees muestra.Taxes
## Estimation     2396   1.067506e+06      1.547465e+05  30403.761836
## Standard Error    0   2.492457e+04      2.939407e+03   1601.824661
## CVE               0   2.334842e+00      1.899498e+00      5.268508
## DEFF            NaN   1.410241e+00      1.410241e+00      1.410241

9.3.3 El efecto de diseño

\[ \begin{align} {Deff}_{MAS_R}&=\frac{{V}_{MAS_R}\left(\widehat{T}_{y,\cdot}\right)}{{V}_{MAS}\left(\widehat{T}_{y,\pi}\right)}\\ &=\frac{{V}_{MAS_R}\left(\widehat{t}_{y,\pi}\right)}{\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2}}\\ &=\frac{\frac{N\left(N-1\right)}{m}S_{yU}^{2}}{\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2}}\\ &=\frac{\frac{N^2}{m}\left(1-\frac{1}{N}\right)S_{yU}^{2}}{\frac{N^2}{n}\left(1-\frac{n}{N}\right)S_{yU}^{2}}\\ &=\frac{\frac{N^2}{m}\left(1-\frac{1}{N}\right)}{\frac{N^2}{n}\left(1-\frac{n}{N}\right)}\\ &=\frac{\frac{1}{m}\left(1-\frac{1}{N}\right)}{\frac{1}{n}\left(1-\frac{n}{N}\right)}\\ &=\left(1-\frac{1}{N}\right)\frac{1}{\frac{m}{n}\left(1-\frac{n}{N}\right)}\\ &=\left(1-\frac{1}{N}\right)\frac{1}{\left(1-\frac{n}{N}\right)}\\ \end{align} \]

Deff_MAS_R <- (1-1/N)*(1/(1-n/N)); Deff_MAS_R
## [1] 1.409653
n*Deff_MAS_R
## [1] 982.528

9.4 Diseño de muestreo sistemático

\[N=na+c\]

\[0{\leq}c{<}a\]

\[c=N-\left\|\frac{N}{a}\right\|a\]

\[s=\left\{r,r+1a,r+2a,\ldots,r+(n-1)a\right\}\]

Grupo \(s_1\) \(\cdots\) \(s_r\) \(\cdots\) \(s_a\)
\(n=1\) \(1\) \(\cdots\) \(r\) \(\cdots\) \(a\)
\(n=2\) \(1+a\) \(\cdots\) \(r+a\) \(\cdots\) \(2a\)
\(n=3\) \(1+2a\) \(\cdots\) \(r+2a\) \(\cdots\) \(3a\)
\(\vdots\) \(\vdots\) \(\ddots\) \(\vdots\) \(\ddots\) \(\vdots\)
\(n=\left\|\frac{N}{a}\right\|\) \(1+(n-1)a\) \(\cdots\) \(r+(n-1)a\) \(\cdots\) \(na\)
\(n=\left\|\frac{N}{a}\right\|+1\) \(1+na\) \(\cdots\) \(\square\) \(\cdots\) \(\square\)

\[ \begin{align} U&={\bigcup}_{r=1}^{a}s_r \end{align} \]

\[Q_r=\left\{s_1,s_2,\ldots,s_r,\ldots,s_a\right\}\]

\[\#\left(Q_r\right)=a\]

\[ \begin{align} \mathcal{p}(s)&= \begin{cases} \frac{1}{a}&\text{ si }s{\in}Q_r\\ 0&\text{ en otro caso} \end{cases} \end{align} \]

9.4.1 Algoritmo de selección

  1. \({0}{\leq}p(r)={\frac{1}{a}}{\leq}{1}\)
  1. \(\forall_{k{\in}\left\{1,2,\ldots,a\right\}}r{\sim}U{\left[1,a\right]}\)

  2. \(r{\in}s\)

  1. \(s_{r} = \left\{k: k = r + (j-1)a; j=1,2,\ldots,n(s)\right\}\)

\[U=\{Santiago, Nestor, Nayibe, Raul, Jhon\}\]

Grupo \(s_1\) \(s_2\)
\(n=1\) \(Santiago\) \(Raul\)
\(n=2\) \(Nestor\) \(Jhon\)
\(n=\left\|\frac{5}{2}\right\|+1\) \(Nayibe\) \(\square\)

\(s_1=\{Santiago, Nestor, Nayibe\}\)

\(s_2=\{Raul, Jhon\}\)

\[ \begin{align} \pi_k&={\sum}_{s{\in}Q}I_k\left({s}\right)\mathcal{p}\left({s}\right)\\ &=\frac{\binom{1}{1}\binom{a-1}{0}}{\binom{a}{1}}\\ &=\frac{1}{a} \end{align} \]

\[ \begin{align} \pi_{kl}&=\mathcal{P}(k{\in}s_r\text{ & }l{\in}s_r)\\ &=\mathcal{P}(I_k(S_r)=1{\mid}I_l(S_r)=1)\mathcal{P}(I_l(S_r)=1)\\ &=1\frac{1}{a}\\ &=\frac{1}{a} \end{align} \]

9.4.2 Estimador de Horvitz - Thompson

\[ \begin{align} \widehat{t}_{y,\pi}&={\sum}_{s}\frac{y_k}{\pi_k}\\ &=\frac{1}{\pi_k}{\sum}_{s}y_k\\ &=\frac{1}{\frac{1}{a}}{\sum}_{s}y_k\\ &=\frac{a}{1}{\sum}_{s}y_k \end{align} \]

\[ \begin{align} V[\widehat{t}_{y,\pi}]&={{\sum}{\sum}}_{U}{\Delta}_{kl}\frac{y_k}{\pi_k}\frac{y_l}{\pi_l} \end{align} \]

\[ \begin{align} {\Delta}_{kl}&= \begin{cases} {\pi}_{kl}-{\pi}_{k}{\pi}_{l}&\text{ para }k{\neq}l\\ {\pi}_{k}\left(1-{\pi}_{k}\right)&\text{ para }k{=}l \end{cases}\\ &= \begin{cases} 0&\text{ para }k{\neq}l\\ \frac{1}{a}-\frac{1}{a}\frac{1}{a}&\text{ para }k{=}l \end{cases}\\ &= \begin{cases} 0&\text{ para }k{\neq}l\\ \frac{1}{a}\left(1-\frac{1}{a}\right)&\text{ para }k{=}l \end{cases} \end{align} \]

\[ \begin{align} V_{SIS}[\widehat{t}_{y,\pi}]&=V_{SIS}\left[\frac{a}{1}{\sum}_{s}y_k\right]\\ &=\frac{a^2}{1^2}V_{SIS}\left[{\sum}_{U}I_k(s)y_k\right]\\ &=\frac{a^2}{1^2}V_{SIS}\left[{\sum\sum}_{U}I_k(s)y_k\right]\\ &=\frac{a^2}{1^2}{\sum\sum}_{U}C_{SIS}\left[I_k(s)y_k,I_l(s)y_l\right]\\ &=\frac{a^2}{1^2}\left\{{\sum}_{k=l}V_{SIS}\left[I_k(s)y_k\right]+{\sum\sum}_{k{\neq}l}C_{SIS}\left[I_k(s)y_k,I_l(s)y_l\right]\right\}\\ &=\frac{a^2}{1^2}\left\{{\sum}_{k=l}V_{SIS}\left[I_k(s)\right]y_k^2+{\sum\sum}_{k{\neq}l}C_{SIS}\left[I_k(s),I_l(s)\right]y_ky_l\right\}\\ &=\frac{a^2}{1^2}\left\{{\sum}_{k=l}\frac{1}{a^2}\left(N-n\right)y_k^2-{\sum\sum}_{k{\neq}l}\frac{1}{a^2}\left[\frac{a-1}{a-1}\right]y_ky_l\right\}\\ &=\frac{a^2}{1^2}\left\{\frac{1}{a^2}\left(a-1\right){\sum}_{k=l}y_k^2-\frac{1}{a^2}\left[\frac{a-1}{a-1}\right]{\sum\sum}_{k{\neq}l}y_ky_l\right\}\\ &=\frac{a^2}{1^2}\frac{1}{a^2}\left(a-1\right)\left\{{\sum}_{k=l}y_k^2-\frac{1}{N-1}{\sum\sum}_{k{\neq}l}y_ky_l\right\}\\ &=\frac{1}{1}\left(a-1\right)\left\{{\sum}_{U}y_k^2-\frac{1}{a-1}\left[\left({{\sum}_{U}y_k}\right)^2-{\sum}_{U}y_k^2\right]\right\}\\ &=\frac{1}{1}\left(a-1\right)\frac{1}{a-1}\left\{\left(a-1\right){\sum}_{U}y_k^2-\left[\left({{\sum}_{U}y_k}\right)^2-{\sum}_{U}y_k^2\right]\right\}\\ &=\frac{1}{1}\left(a-1\right)\frac{1}{a-1}\left\{a{\sum}_{U}y_k^2-{\sum}_{k=l}y_k^2-\left({{\sum}_{U}y_k}\right)^2+{\sum}_{U}y_k^2\right\}\\ &=\frac{1}{1}\left(a-1\right)\frac{1}{a-1}\left\{N{\sum}_{U}y_k^2-\left({{\sum}_{U}y_k}\right)^2\right\}\\ &=\frac{a}{1}\left(a-1\right)\frac{1}{a-1}\left\{{\sum}_{U}y_k^2-\frac{1}{a}\left({{\sum}_{U}y_k}\right)^2\right\}\\ &=\frac{a^2}{1}\left(1-\frac{1}{a}\right)\frac{1}{a-1}\left\{{\sum}_{U}y_k^2-{N}\left[\frac{{\sum}_{U}y_k}{a}\right]^2\right\}\\ &=\frac{a^2}{1}\left(1-\frac{1}{a}\right)S_{yU}^{2} \end{align} \]

\[ \begin{align} \widehat{V}_{SIS}[\widehat{t}_{y,\pi}]&=\frac{a^2}{1}\left(1-\frac{1}{a}\right)S_{ys}^{2} \end{align} \]

\[ \begin{align} E\left[S_{ys}^{2}\right]&=E\left\{\frac{1}{a-1}\left[{\sum}_{s}y_k^2-{a}\bar{y}_{s}^2\right]\right\}\\ &=\frac{1}{a-1}E\left[{\sum}_{s}y_k^2-{a}\bar{y}_{s}^2\right]\\ &=\frac{1}{a-1}\left\{E\left[{\sum}_{s}y_k^2\right]-{a}E\left[\bar{y}_{s}^2\right]\right\}\\ &=\frac{1}{a-1}\left\{E\left[{\sum}_{U}I_k(s)y_k^2\right]-{a}E\left[\frac{\widehat{t}_{y,\pi}^2}{a^2}\right]\right\}\\ &=\frac{1}{a-1}\left\{{\sum}_{U}E\left[I_k(s)\right]y_k^2-\frac{a}{a^2}E\left[\widehat{t}_{y,\pi}^2\right]\right\}\\ &=\frac{1}{a-1}\left\{{\sum}_{U}\pi_ky_k^2-\frac{a}{a^2}E\left[\widehat{t}_{y,\pi}^2\right]\right\}\\ &=\frac{1}{a-1}\left\{\frac{a}{a}{\sum}_{U}y_k^2-\frac{a}{a^2}E\left[\widehat{t}_{y,\pi}^2\right]\right\}\\ &=\frac{a}{a-1}\left\{\frac{1}{a}{\sum}_{U}y_k^2-\frac{1}{a^2}\left\{V_{MAS}\left[\widehat{t}_{y,\pi}^2\right]-{t}_{y,\pi}^{2}\right\}\right\}\\ &=\frac{a}{a-1}\left\{\frac{1}{a}{\sum}_{U}y_k^2-\frac{1}{a^2}\frac{a^2}{a}\left[1-\frac{a}{a}\right]S_{yU}^{2}-\frac{1}{a^2}{t}_{y,\pi}^{2}\right\}\\ &=\frac{a}{a-1}\left\{\frac{1}{a}{\sum}_{U}y_k^2-\frac{1}{a}\left[1-\frac{a}{a}\right]S_{yU}^{2}-\frac{1}{a^2}{t}_{y,\pi}^{2}\right\}\\ &=\frac{a}{a-1}\left\{\frac{1}{a}{\sum}_{U}y_k^2-\frac{1}{a^2}{t}_{y,\pi}^{2}-\frac{1}{a}\left[\frac{a}{a}-\frac{a}{a}\right]S_{yU}^{2}\right\}\\ &=\frac{a}{a-1}\left\{\frac{1}{a}\left[{\sum}_{U}y_k^2-\frac{1}{a}{t}_{y,\pi}^{2}\right]-\frac{1}{a}\left[\frac{a-a}{a}\right]S_{yU}^{2}\right\}\\ &=\frac{a}{a-1}\left\{\frac{a-1}{a}\frac{1}{a-1}\left[{\sum}_{U}y_k^2-{a}\frac{{t}_{y,\pi}^{2}}{a^{2}}\right]-\frac{a-a}{aa}S_{yU}^{2}\right\}\\ &=\frac{a}{a-1}\left\{\frac{a-1}{a}\frac{1}{a-1}\left[{\sum}_{U}y_k^2-{a}\bar{y}_{U}^2\right]-\frac{a-a}{aa}S_{yU}^{2}\right\}\\ &=\frac{a}{a-1}\left\{\frac{a-1}{a}S_{yU}^{2}-\frac{a-a}{aa}S_{yU}^{2}\right\}\\ &=\frac{a}{a-1}\left\{\frac{aa-a}{aa}S_{yU}^{2}-\frac{a-a}{aa}S_{yU}^{2}\right\}\\ &=\frac{a}{a-1}\frac{aa-a-(a-a)}{aa}S_{yU}^{2}\\ &=\frac{a}{a-1}\frac{aa-a-a+a}{aa}S_{yU}^{2}\\ &=\frac{a}{a-1}\frac{aa-a}{aa}S_{yU}^{2}\\ &=\frac{a}{a-1}\frac{a-1}{a}S_{yU}^{2}\\ &=S_{yU}^{2} \end{align} \]

\[ \begin{align} S_{ys}^{2}&=\frac{1}{a-1}\left\{{\sum}_{s}y_k^2-{a}\left[\frac{{\sum}_{s}y_k}{a}\right]^2\right\}\\ &=\frac{1}{a-1}\left[{\sum}_{s}y_k^2-{a}\bar{y}_{s}^2\right]\\ &=\frac{1}{a-1}\left[{\sum}_{s}y_k^2-2{a}\bar{y}_{s}^2+{a}\bar{y}_{s}^2\right]\\ &=\frac{1}{a-1}\left[{\sum}_{s}y_k^2-2\bar{y}_{s}{a}\bar{y}_{s}+{a}\bar{y}_{s}^2\right]\\ &=\frac{1}{a-1}\left[{\sum}_{s}y_k^2-2\bar{y}_{s}{a}\frac{{\sum}_{s}y_k}{a}+{a}\bar{y}_{s}^2\right]\\ &=\frac{1}{a-1}\left[{\sum}_{s}y_k^2-2\bar{y}_{s}{\sum}_{s}y_k+{\sum}_{s}\bar{y}_{s}^2\right]\\ &=\frac{1}{a-1}{\sum}_{s}\left(y_k^2-2y_k\bar{y}_{s}+\bar{y}_{s}^2\right)\\ &=\frac{1}{a-1}{\sum}_{s}\left(y_k-\bar{y}_{s}\right)^2\\ \end{align} \]

\[ \begin{align} \widehat{t}_{y,\pi}(s=U)&={\sum}_{s=U}\frac{y_k}{\pi_k}\\ &=\frac{a}{a}{\sum}_{s=U}y_k\\ &={t}_{y} \end{align} \]

\[ \begin{align} \widehat{t}_{y,alt}&=a\tilde{y}_{s}\\ &=a\frac{{\sum}_{s}\frac{y_k}{{\pi}_{k}}}{{\sum}_{s}\frac{1}{{\pi}_{k}}}\\ &=a\frac{\widehat{t}_{y\pi}}{\widehat{a}}\\ &=a\frac{\widehat{t}_{y\pi}}{a{(s)}}\\ &=a\bar{y}_{s}\\ \end{align} \]

9.4.2.1 Estimador del promedio

\[ \begin{align} \widehat{\bar{y}}_{\pi}&=\frac{\widehat{t}_{y,\pi}}{a}\\ &=\frac{{\sum}_{s}\frac{y_k}{{\pi}_{k}}}{a}\\ &=\frac{\frac{a}{a}{\sum}_{s}{y_k}}{\frac{a}{1}}\\ &=\frac{{\sum}_{s}{y_k}}{a}\\ &=\bar{y}_{s}\\ \end{align} \]

\[ \begin{align} {V}_{SIS}[\widehat{\bar{y}}_{\pi}]&=\frac{a^2}{a}\left(1-\frac{a}{a}\right)\frac{1}{a^2}S_{yU}^{2}\\ &=\frac{1}{a}\left(1-\frac{a}{a}\right)S_{yU}^{2} \end{align} \]

\[ \begin{align} \widehat{V}_{SIS}[\widehat{\bar{y}}_{\pi}]&=\frac{a^2}{a}\left(1-\frac{a}{a}\right)\frac{1}{a^2}S_{ys}^{2}\\ &=\frac{1}{a}\left(1-\frac{a}{a}\right)S_{ys}^{2} \end{align} \]

\[ \begin{align} E\left[S_{ys}^{2}\right]&=E\left\{\frac{1}{a-1}\left[{\sum}_{s}y_k^2-{a}\bar{y}_{s}^2\right]\right\}\\ &=\frac{1}{a-1}E\left[{\sum}_{s}y_k^2-{a}\bar{y}_{s}^2\right]\\ &=\frac{1}{a-1}\left\{E\left[{\sum}_{s}y_k^2\right]-{a}E\left[\bar{y}_{s}^2\right]\right\}\\ &=\frac{1}{a-1}\left\{E\left[{\sum}_{U}I_k(s)y_k^2\right]-{a}E\left[\frac{\widehat{t}_{y,\pi}^2}{a^2}\right]\right\}\\ &=\frac{1}{a-1}\left\{{\sum}_{U}E\left[I_k(s)\right]y_k^2-\frac{a}{a^2}E\left[\widehat{t}_{y,\pi}^2\right]\right\}\\ &=\frac{1}{a-1}\left\{{\sum}_{U}\pi_ky_k^2-\frac{a}{a^2}E\left[\widehat{t}_{y,\pi}^2\right]\right\}\\ &=\frac{1}{a-1}\left\{\frac{a}{a}{\sum}_{U}y_k^2-\frac{a}{a^2}E\left[\widehat{t}_{y,\pi}^2\right]\right\}\\ &=\frac{a}{a-1}\left\{\frac{1}{a}{\sum}_{U}y_k^2-\frac{1}{a^2}\left\{V_{MAS}\left[\widehat{t}_{y,\pi}^2\right]-{t}_{y,\pi}^{2}\right\}\right\}\\ &=\frac{a}{a-1}\left\{\frac{1}{a}{\sum}_{U}y_k^2-\frac{1}{a^2}\frac{a^2}{a}\left[1-\frac{a}{a}\right]S_{yU}^{2}-\frac{1}{a^2}{t}_{y,\pi}^{2}\right\}\\ &=\frac{a}{a-1}\left\{\frac{1}{a}{\sum}_{U}y_k^2-\frac{1}{a}\left[1-\frac{a}{a}\right]S_{yU}^{2}-\frac{1}{a^2}{t}_{y,\pi}^{2}\right\}\\ &=\frac{a}{a-1}\left\{\frac{1}{a}{\sum}_{U}y_k^2-\frac{1}{a^2}{t}_{y,\pi}^{2}-\frac{1}{a}\left[\frac{a}{a}-\frac{a}{a}\right]S_{yU}^{2}\right\}\\ &=\frac{a}{a-1}\left\{\frac{1}{a}\left[{\sum}_{U}y_k^2-\frac{1}{a}{t}_{y,\pi}^{2}\right]-\frac{1}{a}\left[\frac{a-a}{a}\right]S_{yU}^{2}\right\}\\ &=\frac{a}{a-1}\left\{\frac{a-1}{a}\frac{1}{a-1}\left[{\sum}_{U}y_k^2-{a}\frac{{t}_{y,\pi}^{2}}{a^{2}}\right]-\frac{a-a}{aa}S_{yU}^{2}\right\}\\ &=\frac{a}{a-1}\left\{\frac{a-1}{a}\frac{1}{a-1}\left[{\sum}_{U}y_k^2-{a}\bar{y}_{U}^2\right]-\frac{a-a}{aa}S_{yU}^{2}\right\}\\ &=\frac{a}{a-1}\left\{\frac{a-1}{a}S_{yU}^{2}-\frac{a-a}{aa}S_{yU}^{2}\right\}\\ &=\frac{a}{a-1}\left\{\frac{aa-a}{aa}S_{yU}^{2}-\frac{a-a}{aa}S_{yU}^{2}\right\}\\ &=\frac{a}{a-1}\frac{aa-a-(a-a)}{aa}S_{yU}^{2}\\ &=\frac{a}{a-1}\frac{aa-a-a+a}{aa}S_{yU}^{2}\\ &=\frac{a}{a-1}\frac{aa-a}{aa}S_{yU}^{2}\\ &=\frac{a}{a-1}\frac{a-1}{a}S_{yU}^{2}\\ &=S_{yU}^{2} \end{align} \]

\[ \begin{align} S_{ys}^{2}&=\frac{1}{a-1}\left\{{\sum}_{s}y_k^2-{a}\left[\frac{{\sum}_{s}y_k}{a}\right]^2\right\}\\ &=\frac{1}{a-1}\left[{\sum}_{s}y_k^2-{a}\bar{y}_{s}^2\right]\\ &=\frac{1}{a-1}\left[{\sum}_{s}y_k^2-2{a}\bar{y}_{s}^2+{a}\bar{y}_{s}^2\right]\\ &=\frac{1}{a-1}\left[{\sum}_{s}y_k^2-2\bar{y}_{s}{a}\bar{y}_{s}+{a}\bar{y}_{s}^2\right]\\ &=\frac{1}{a-1}\left[{\sum}_{s}y_k^2-2\bar{y}_{s}{a}\frac{{\sum}_{s}y_k}{a}+{a}\bar{y}_{s}^2\right]\\ &=\frac{1}{a-1}\left[{\sum}_{s}y_k^2-2\bar{y}_{s}{\sum}_{s}y_k+{\sum}_{s}\bar{y}_{s}^2\right]\\ &=\frac{1}{a-1}{\sum}_{s}\left(y_k^2-2y_k\bar{y}_{s}+\bar{y}_{s}^2\right)\\ &=\frac{1}{a-1}{\sum}_{s}\left(y_k-\bar{y}_{s}\right)^2\\ \end{align} \]

\[ \begin{align} \widehat{t}_{y,\pi}(s=U)&={\sum}_{s=U}\frac{y_k}{\pi_k}\\ &=\frac{a}{a}{\sum}_{s=U}y_k\\ &={t}_{y} \end{align} \]

\[ \begin{align} \widehat{t}_{y,alt}&=a\tilde{y}_{s}\\ &=a\frac{{\sum}_{s}\frac{y_k}{{\pi}_{k}}}{{\sum}_{s}\frac{1}{{\pi}_{k}}}\\ &=a\frac{\widehat{t}_{y\pi}}{\widehat{a}}\\ &=a\frac{\widehat{t}_{y\pi}}{n{(s)}}\\ &=a\bar{y}_{s}\\ \end{align} \]

9.4.2.2 Estimador del promedio

\[ \begin{align} \widehat{\bar{y}}_{\pi}&=\frac{\widehat{t}_{y,\pi}}{a}\\ &=\frac{{\sum}_{s}\frac{y_k}{{\pi}_{k}}}{a}\\ &=\frac{\frac{a}{a}{\sum}_{s}{y_k}}{\frac{a}{1}}\\ &=\frac{{\sum}_{s}{y_k}}{a}\\ &=\bar{y}_{s}\\ \end{align} \]

\[ \begin{align} {V}_{SIS}[\widehat{\bar{y}}_{\pi}]&=\frac{a^2}{a}\left(1-\frac{a}{a}\right)\frac{1}{a^2}S_{yU}^{2}\\ &=\frac{1}{a}\left(1-\frac{a}{a}\right)S_{yU}^{2} \end{align} \]

\[ \begin{align} \widehat{V}_{SIS}[\widehat{\bar{y}}_{\pi}]&=\frac{a^2}{a}\left(1-\frac{a}{a}\right)\frac{1}{a^2}S_{ys}^{2}\\ &=\frac{1}{a}\left(1-\frac{a}{a}\right)S_{ys}^{2} \end{align} \]