setwd("/Volumes/GoogleDrive/Mi unidad/Agrosavia/Colaboraciones/Laura")
datos2<-read.table("paez.csv", header=T, sep=',')
datos2$gen<-as.factor(datos2$gen)
datos2$forestal<-as.factor(datos2$forestal)
datos2$bloque<-as.factor(datos2$bloque)
attach(datos2)
library(ggplot2)
library(emmeans)
#Gráfica diámetro
ggplot(datos2, aes(semana, diam, group = gen, colour = gen)) +
  facet_grid(~forestal) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Diámetro") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  )  
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 275 rows containing non-finite values (stat_smooth).

# Gráfica altura
ggplot(datos2, aes(semana, alt, group = gen, colour = gen)) +
  facet_grid(~forestal) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Altura") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  )
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 275 rows containing non-finite values (stat_smooth).

# Anova general
aov.diam<-aov(diam~semana*forestal*gen+bloque)
aov.alt<-aov(alt~semana*forestal*gen+bloque)
#Análisis para diámetro
library(nlme)
fit.compsym.diam <- gls(diam ~ semana*forestal*gen+bloque, data=datos2, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.diam <- gls(diam ~ semana*forestal*gen+bloque, data=datos2, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.diam <- gls(diam ~ semana*forestal*gen+bloque, data=datos2, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.diam, fit.ar1.diam, fit.ar1het.diam) #compares the models
##                  Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.diam     1 34 2325.655 2483.765 -1128.828                        
## fit.ar1.diam         2 34 2313.326 2471.436 -1122.663                        
## fit.ar1het.diam      3 37 2312.321 2484.381 -1119.160 2 vs 3 7.005676  0.0717
anova(fit.ar1.diam)
## Denom. DF: 773 
##                     numDF  F-value p-value
## (Intercept)             1 9933.582  <.0001
## semana                  1  219.131  <.0001
## forestal                2   14.401  <.0001
## gen                     4    1.644  0.1612
## bloque                  2   33.825  <.0001
## semana:forestal         2    5.243  0.0055
## semana:gen              4    0.284  0.8886
## forestal:gen            8    2.082  0.0352
## semana:forestal:gen     8    1.055  0.3929
anova(fit.ar1het.diam)
## Denom. DF: 773 
##                     numDF   F-value p-value
## (Intercept)             1 10072.937  <.0001
## semana                  1   258.211  <.0001
## forestal                2    12.715  <.0001
## gen                     4     1.532  0.1911
## bloque                  2    35.498  <.0001
## semana:forestal         2     5.858  0.0030
## semana:gen              4     0.302  0.8768
## forestal:gen            8     1.939  0.0515
## semana:forestal:gen     8     1.092  0.3662
# Análisis para altura
fit.compsym.alt <- gls(alt ~ semana*forestal*gen+bloque, data=datos2, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.alt <- gls(alt ~ semana*forestal*gen+bloque, data=datos2, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.alt <- gls(alt ~ semana*forestal*gen+bloque, data=datos2, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.alt, fit.ar1.alt, fit.ar1het.alt) #compares the models
##                 Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.alt     1 34 7958.484 8116.593 -3945.242                        
## fit.ar1.alt         2 34 7941.956 8100.066 -3936.978                        
## fit.ar1het.alt      3 37 7878.555 8050.615 -3902.277 2 vs 3 69.40135  <.0001
anova(fit.ar1het.alt)
## Denom. DF: 773 
##                     numDF  F-value p-value
## (Intercept)             1 7690.972  <.0001
## semana                  1  542.437  <.0001
## forestal                2   30.987  <.0001
## gen                     4    6.351  <.0001
## bloque                  2   23.493  <.0001
## semana:forestal         2   11.574  <.0001
## semana:gen              4    4.154  0.0025
## forestal:gen            8    2.108  0.0329
## semana:forestal:gen     8    1.871  0.0615
#Tukey diámetro
library(multcompView)
interac.tuk.diam<-TukeyHSD(aov.diam, "forestal:gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
fores.tuk.diam<-TukeyHSD(aov.diam, "forestal", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
gen.tuk.diam<-TukeyHSD(aov.diam, "gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
#Tukey altura
interac.tuk.alt<-TukeyHSD(aov.alt, "forestal:gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
fores.tuk.alt<-TukeyHSD(aov.alt, "forestal", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
gen.tuk.alt<-TukeyHSD(aov.alt, "gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
#Etiquetas Tukey diámetro
#Genotipos
generate_label_df_gen_diam <- function(gen.tuk.diam, variable){
  Tukey.levels <- gen.tuk.diam[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.diam <- generate_label_df_gen_diam(gen.tuk.diam, "gen")
labels.gen.diam
##       Letters treatment
## CCN51       a     CCN51
## TCS01       a     TCS01
## TCS06       a     TCS06
## TCS13       a     TCS13
## TCS19       a     TCS19
# Forestal
generate_label_df_forestal_diam <- function(fores.tuk.diam, variable){
  Tukey.levels <- fores.tuk.diam[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.forestal.diam <- generate_label_df_forestal_diam(fores.tuk.diam, "forestal")
labels.forestal.diam
##            Letters  treatment
## Abarco           a     Abarco
## Roble           ab      Roble
## Terminalia       b Terminalia
# Interacción Forestal:Genotipo
generate_label_df_interac_diam <- function(interac.tuk.diam, variable){
  Tukey.levels <- interac.tuk.diam[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.diam <- generate_label_df_interac_diam(interac.tuk.diam, "forestal:gen")
labels.interac.diam
##                  Letters        treatment
## Abarco:CCN51          ac     Abarco:CCN51
## Abarco:TCS01          ac     Abarco:TCS01
## Abarco:TCS06          ac     Abarco:TCS06
## Abarco:TCS13          ac     Abarco:TCS13
## Abarco:TCS19          ac     Abarco:TCS19
## Roble:CCN51           ac      Roble:CCN51
## Roble:TCS01          abc      Roble:TCS01
## Roble:TCS06           ab      Roble:TCS06
## Roble:TCS13            b      Roble:TCS13
## Roble:TCS19           ab      Roble:TCS19
## Terminalia:CCN51      ac Terminalia:CCN51
## Terminalia:TCS01      ac Terminalia:TCS01
## Terminalia:TCS06       c Terminalia:TCS06
## Terminalia:TCS13      ac Terminalia:TCS13
## Terminalia:TCS19       c Terminalia:TCS19
#Etiquetas Tukey altura
#Genotipos
generate_label_df_gen_alt <- function(gen.tuk.alt, variable){
  Tukey.levels <- gen.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.alt <- generate_label_df_gen_alt(gen.tuk.alt, "gen")
labels.gen.alt
##       Letters treatment
## CCN51      ac     CCN51
## TCS01       c     TCS01
## TCS06      ab     TCS06
## TCS13       b     TCS13
## TCS19      ab     TCS19
# Forestal
generate_label_df_forestal_alt <- function(fores.tuk.alt, variable){
  Tukey.levels <- fores.tuk.alt[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.forestal.alt <- generate_label_df_forestal_alt(fores.tuk.alt, "forestal")
labels.forestal.alt
##            Letters  treatment
## Abarco           a     Abarco
## Roble            a      Roble
## Terminalia       a Terminalia
# Interacción Forestal:Genotipo
generate_label_df_interac_alt <- function(interac.tuk.alt, variable){
  Tukey.levels <- interac.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.alt <- generate_label_df_interac_alt(interac.tuk.alt, "forestal:gen")
labels.interac.alt
##                  Letters        treatment
## Abarco:CCN51         cde     Abarco:CCN51
## Abarco:TCS01          de     Abarco:TCS01
## Abarco:TCS06          cd     Abarco:TCS06
## Abarco:TCS13          cd     Abarco:TCS13
## Abarco:TCS19         acd     Abarco:TCS19
## Roble:CCN51          acd      Roble:CCN51
## Roble:TCS01          acd      Roble:TCS01
## Roble:TCS06           ab      Roble:TCS06
## Roble:TCS13            b      Roble:TCS13
## Roble:TCS19           ac      Roble:TCS19
## Terminalia:CCN51      de Terminalia:CCN51
## Terminalia:TCS01       e Terminalia:TCS01
## Terminalia:TCS06      de Terminalia:TCS06
## Terminalia:TCS13      de Terminalia:TCS13
## Terminalia:TCS19    acde Terminalia:TCS19
## Gráficas contrastes de medias diametro
#Gen
contrast <- emmeans(aov.diam, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.gen <- emmeans(aov.diam, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean     SE  df lower.CL upper.CL
##  CCN51   3.63 0.0715 773     3.49     3.77
##  TCS01   3.72 0.0790 773     3.56     3.87
##  TCS06   3.62 0.0718 773     3.48     3.76
##  TCS13   3.43 0.0739 773     3.29     3.58
##  TCS19   3.56 0.0763 773     3.41     3.71
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate    SE  df t.ratio p.value
##  CCN51 - TCS01  -0.0849 0.107 773  -0.791  0.9332
##  CCN51 - TCS06   0.0175 0.101 773   0.173  0.9998
##  CCN51 - TCS13   0.1993 0.103 773   1.938  0.2983
##  CCN51 - TCS19   0.0740 0.104 773   0.713  0.9535
##  TCS01 - TCS06   0.1024 0.107 773   0.957  0.8742
##  TCS01 - TCS13   0.2842 0.108 773   2.628  0.0664
##  TCS01 - TCS19   0.1590 0.110 773   1.440  0.6020
##  TCS06 - TCS13   0.1818 0.103 773   1.763  0.3960
##  TCS06 - TCS19   0.0566 0.105 773   0.541  0.9831
##  TCS13 - TCS19  -0.1252 0.106 773  -1.180  0.7632
## 
## Results are averaged over the levels of: forestal, bloque 
## P value adjustment: tukey method for comparing a family of 5 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean     SE  df lower.CL upper.CL .group
##  TCS01   3.72 0.0790 773     3.56     3.87  A    
##  CCN51   3.63 0.0715 773     3.49     3.77  A    
##  TCS06   3.62 0.0718 773     3.48     3.76  A    
##  TCS19   3.56 0.0763 773     3.41     3.71  A    
##  TCS13   3.43 0.0739 773     3.29     3.58  A    
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 5 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal
contrast <- emmeans(aov.diam, ~forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.forestal <- emmeans(aov.diam, pairwise ~ forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal
## $emmeans
##  forestal   emmean     SE  df lower.CL upper.CL
##  Abarco       3.60 0.0531 773     3.50     3.71
##  Roble        3.36 0.0625 773     3.24     3.49
##  Terminalia   3.81 0.0575 773     3.70     3.92
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast            estimate     SE  df t.ratio p.value
##  Abarco - Roble         0.241 0.0825 773   2.920  0.0101
##  Abarco - Terminalia   -0.205 0.0778 773  -2.637  0.0232
##  Roble - Terminalia    -0.446 0.0854 773  -5.225  <.0001
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_forestal <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal
##  forestal   emmean     SE  df lower.CL upper.CL .group
##  Terminalia   3.81 0.0575 773     3.70     3.92  A    
##  Abarco       3.60 0.0531 773     3.50     3.71   B   
##  Roble        3.36 0.0625 773     3.24     3.49    C  
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal*Gen
contrast <- emmeans(aov.diam, ~gen*forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.forestal.gen <- emmeans(aov.diam, pairwise ~ gen*forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal.gen
## $emmeans
##  gen   forestal   emmean    SE  df lower.CL upper.CL
##  CCN51 Abarco       3.50 0.129 773     3.25     3.75
##  TCS01 Abarco       3.78 0.114 773     3.56     4.00
##  TCS06 Abarco       3.65 0.113 773     3.42     3.87
##  TCS13 Abarco       3.60 0.120 773     3.36     3.84
##  TCS19 Abarco       3.50 0.114 773     3.27     3.72
##  CCN51 Roble        3.72 0.115 773     3.49     3.94
##  TCS01 Roble        3.56 0.169 773     3.23     3.89
##  TCS06 Roble        3.27 0.138 773     3.00     3.54
##  TCS13 Roble        2.99 0.147 773     2.70     3.28
##  TCS19 Roble        3.29 0.124 773     3.05     3.53
##  CCN51 Terminalia   3.69 0.126 773     3.44     3.93
##  TCS01 Terminalia   3.82 0.120 773     3.58     4.06
##  TCS06 Terminalia   3.93 0.122 773     3.70     4.17
##  TCS13 Terminalia   3.72 0.115 773     3.49     3.94
##  TCS19 Terminalia   3.90 0.154 773     3.59     4.20
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate    SE  df t.ratio p.value
##  CCN51 Abarco - TCS01 Abarco         -2.80e-01 0.172 773  -1.627  0.9525
##  CCN51 Abarco - TCS06 Abarco         -1.45e-01 0.171 773  -0.848  0.9999
##  CCN51 Abarco - TCS13 Abarco         -1.01e-01 0.176 773  -0.573  1.0000
##  CCN51 Abarco - TCS19 Abarco          2.94e-03 0.173 773   0.017  1.0000
##  CCN51 Abarco - CCN51 Roble          -2.16e-01 0.173 773  -1.249  0.9959
##  CCN51 Abarco - TCS01 Roble          -5.78e-02 0.215 773  -0.269  1.0000
##  CCN51 Abarco - TCS06 Roble           2.30e-01 0.189 773   1.216  0.9968
##  CCN51 Abarco - TCS13 Roble           5.13e-01 0.197 773   2.607  0.3667
##  CCN51 Abarco - TCS19 Roble           2.12e-01 0.178 773   1.189  0.9975
##  CCN51 Abarco - CCN51 Terminalia     -1.86e-01 0.179 773  -1.038  0.9994
##  CCN51 Abarco - TCS01 Terminalia     -3.19e-01 0.177 773  -1.796  0.8993
##  CCN51 Abarco - TCS06 Terminalia     -4.34e-01 0.177 773  -2.449  0.4789
##  CCN51 Abarco - TCS13 Terminalia     -2.16e-01 0.173 773  -1.248  0.9959
##  CCN51 Abarco - TCS19 Terminalia     -3.95e-01 0.200 773  -1.975  0.8129
##  TCS01 Abarco - TCS06 Abarco          1.35e-01 0.160 773   0.841  1.0000
##  TCS01 Abarco - TCS13 Abarco          1.79e-01 0.166 773   1.083  0.9991
##  TCS01 Abarco - TCS19 Abarco          2.83e-01 0.161 773   1.754  0.9153
##  TCS01 Abarco - CCN51 Roble           6.39e-02 0.162 773   0.395  1.0000
##  TCS01 Abarco - TCS01 Roble           2.22e-01 0.205 773   1.087  0.9991
##  TCS01 Abarco - TCS06 Roble           5.10e-01 0.179 773   2.849  0.2231
##  TCS01 Abarco - TCS13 Roble           7.93e-01 0.186 773   4.256  0.0022
##  TCS01 Abarco - TCS19 Roble           4.92e-01 0.168 773   2.926  0.1865
##  TCS01 Abarco - CCN51 Terminalia      9.45e-02 0.169 773   0.558  1.0000
##  TCS01 Abarco - TCS01 Terminalia     -3.85e-02 0.166 773  -0.232  1.0000
##  TCS01 Abarco - TCS06 Terminalia     -1.54e-01 0.167 773  -0.924  0.9999
##  TCS01 Abarco - TCS13 Terminalia      6.38e-02 0.162 773   0.393  1.0000
##  TCS01 Abarco - TCS19 Terminalia     -1.15e-01 0.192 773  -0.598  1.0000
##  TCS06 Abarco - TCS13 Abarco          4.47e-02 0.165 773   0.271  1.0000
##  TCS06 Abarco - TCS19 Abarco          1.48e-01 0.160 773   0.925  0.9999
##  TCS06 Abarco - CCN51 Roble          -7.09e-02 0.161 773  -0.441  1.0000
##  TCS06 Abarco - TCS01 Roble           8.75e-02 0.203 773   0.430  1.0000
##  TCS06 Abarco - TCS06 Roble           3.75e-01 0.178 773   2.106  0.7307
##  TCS06 Abarco - TCS13 Roble           6.58e-01 0.185 773   3.556  0.0304
##  TCS06 Abarco - TCS19 Roble           3.57e-01 0.167 773   2.136  0.7101
##  TCS06 Abarco - CCN51 Terminalia     -4.03e-02 0.169 773  -0.239  1.0000
##  TCS06 Abarco - TCS01 Terminalia     -1.73e-01 0.165 773  -1.052  0.9993
##  TCS06 Abarco - TCS06 Terminalia     -2.89e-01 0.166 773  -1.743  0.9189
##  TCS06 Abarco - TCS13 Terminalia     -7.10e-02 0.161 773  -0.441  1.0000
##  TCS06 Abarco - TCS19 Terminalia     -2.49e-01 0.191 773  -1.307  0.9934
##  TCS13 Abarco - TCS19 Abarco          1.04e-01 0.166 773   0.625  1.0000
##  TCS13 Abarco - CCN51 Roble          -1.16e-01 0.166 773  -0.694  1.0000
##  TCS13 Abarco - TCS01 Roble           4.28e-02 0.209 773   0.205  1.0000
##  TCS13 Abarco - TCS06 Roble           3.31e-01 0.183 773   1.806  0.8953
##  TCS13 Abarco - TCS13 Roble           6.14e-01 0.191 773   3.221  0.0861
##  TCS13 Abarco - TCS19 Roble           3.13e-01 0.172 773   1.816  0.8913
##  TCS13 Abarco - CCN51 Terminalia     -8.50e-02 0.173 773  -0.491  1.0000
##  TCS13 Abarco - TCS01 Terminalia     -2.18e-01 0.171 773  -1.277  0.9948
##  TCS13 Abarco - TCS06 Terminalia     -3.33e-01 0.171 773  -1.951  0.8262
##  TCS13 Abarco - TCS13 Terminalia     -1.16e-01 0.167 773  -0.694  1.0000
##  TCS13 Abarco - TCS19 Terminalia     -2.94e-01 0.195 773  -1.509  0.9748
##  TCS19 Abarco - CCN51 Roble          -2.19e-01 0.162 773  -1.355  0.9907
##  TCS19 Abarco - TCS01 Roble          -6.08e-02 0.204 773  -0.298  1.0000
##  TCS19 Abarco - TCS06 Roble           2.27e-01 0.179 773   1.267  0.9952
##  TCS19 Abarco - TCS13 Roble           5.10e-01 0.186 773   2.741  0.2821
##  TCS19 Abarco - TCS19 Roble           2.09e-01 0.168 773   1.242  0.9961
##  TCS19 Abarco - CCN51 Terminalia     -1.89e-01 0.170 773  -1.112  0.9988
##  TCS19 Abarco - TCS01 Terminalia     -3.22e-01 0.166 773  -1.940  0.8323
##  TCS19 Abarco - TCS06 Terminalia     -4.37e-01 0.167 773  -2.621  0.3573
##  TCS19 Abarco - TCS13 Terminalia     -2.19e-01 0.162 773  -1.353  0.9908
##  TCS19 Abarco - TCS19 Terminalia     -3.98e-01 0.192 773  -2.074  0.7522
##  CCN51 Roble - TCS01 Roble            1.58e-01 0.204 773   0.776  1.0000
##  CCN51 Roble - TCS06 Roble            4.46e-01 0.179 773   2.486  0.4517
##  CCN51 Roble - TCS13 Roble            7.29e-01 0.186 773   3.913  0.0085
##  CCN51 Roble - TCS19 Roble            4.28e-01 0.169 773   2.536  0.4156
##  CCN51 Roble - CCN51 Terminalia       3.06e-02 0.170 773   0.180  1.0000
##  CCN51 Roble - TCS01 Terminalia      -1.02e-01 0.166 773  -0.616  1.0000
##  CCN51 Roble - TCS06 Terminalia      -2.18e-01 0.167 773  -1.303  0.9936
##  CCN51 Roble - TCS13 Terminalia      -9.73e-05 0.162 773  -0.001  1.0000
##  CCN51 Roble - TCS19 Terminalia      -1.79e-01 0.192 773  -0.927  0.9998
##  TCS01 Roble - TCS06 Roble            2.88e-01 0.219 773   1.317  0.9929
##  TCS01 Roble - TCS13 Roble            5.71e-01 0.223 773   2.556  0.4018
##  TCS01 Roble - TCS19 Roble            2.70e-01 0.211 773   1.282  0.9946
##  TCS01 Roble - CCN51 Terminalia      -1.28e-01 0.212 773  -0.602  1.0000
##  TCS01 Roble - TCS01 Terminalia      -2.61e-01 0.207 773  -1.258  0.9955
##  TCS01 Roble - TCS06 Terminalia      -3.76e-01 0.209 773  -1.802  0.8972
##  TCS01 Roble - TCS13 Terminalia      -1.59e-01 0.205 773  -0.775  1.0000
##  TCS01 Roble - TCS19 Terminalia      -3.37e-01 0.231 773  -1.460  0.9812
##  TCS06 Roble - TCS13 Roble            2.83e-01 0.202 773   1.401  0.9872
##  TCS06 Roble - TCS19 Roble           -1.79e-02 0.185 773  -0.097  1.0000
##  TCS06 Roble - CCN51 Terminalia      -4.16e-01 0.187 773  -2.228  0.6444
##  TCS06 Roble - TCS01 Terminalia      -5.49e-01 0.184 773  -2.986  0.1613
##  TCS06 Roble - TCS06 Terminalia      -6.64e-01 0.184 773  -3.608  0.0255
##  TCS06 Roble - TCS13 Terminalia      -4.46e-01 0.180 773  -2.483  0.4543
##  TCS06 Roble - TCS19 Terminalia      -6.25e-01 0.207 773  -3.013  0.1506
##  TCS13 Roble - TCS19 Roble           -3.01e-01 0.193 773  -1.562  0.9661
##  TCS13 Roble - CCN51 Terminalia      -6.99e-01 0.194 773  -3.603  0.0260
##  TCS13 Roble - TCS01 Terminalia      -8.32e-01 0.190 773  -4.388  0.0012
##  TCS13 Roble - TCS06 Terminalia      -9.47e-01 0.191 773  -4.961  0.0001
##  TCS13 Roble - TCS13 Terminalia      -7.29e-01 0.187 773  -3.908  0.0087
##  TCS13 Roble - TCS19 Terminalia      -9.08e-01 0.214 773  -4.251  0.0022
##  TCS19 Roble - CCN51 Terminalia      -3.98e-01 0.176 773  -2.263  0.6184
##  TCS19 Roble - TCS01 Terminalia      -5.31e-01 0.173 773  -3.065  0.1316
##  TCS19 Roble - TCS06 Terminalia      -6.46e-01 0.173 773  -3.726  0.0169
##  TCS19 Roble - TCS13 Terminalia      -4.28e-01 0.169 773  -2.533  0.4176
##  TCS19 Roble - TCS19 Terminalia      -6.07e-01 0.197 773  -3.075  0.1283
##  CCN51 Terminalia - TCS01 Terminalia -1.33e-01 0.174 773  -0.763  1.0000
##  CCN51 Terminalia - TCS06 Terminalia -2.49e-01 0.175 773  -1.424  0.9851
##  CCN51 Terminalia - TCS13 Terminalia -3.07e-02 0.170 773  -0.180  1.0000
##  CCN51 Terminalia - TCS19 Terminalia -2.09e-01 0.198 773  -1.058  0.9993
##  TCS01 Terminalia - TCS06 Terminalia -1.15e-01 0.171 773  -0.675  1.0000
##  TCS01 Terminalia - TCS13 Terminalia  1.02e-01 0.166 773   0.614  1.0000
##  TCS01 Terminalia - TCS19 Terminalia -7.61e-02 0.196 773  -0.389  1.0000
##  TCS06 Terminalia - TCS13 Terminalia  2.18e-01 0.167 773   1.301  0.9938
##  TCS06 Terminalia - TCS19 Terminalia  3.94e-02 0.196 773   0.201  1.0000
##  TCS13 Terminalia - TCS19 Terminalia -1.78e-01 0.193 773  -0.927  0.9998
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 15 estimates
cld_forestal_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal_gen
##  gen   forestal   emmean    SE  df lower.CL upper.CL .group
##  TCS06 Terminalia   3.93 0.122 773     3.70     4.17  A    
##  TCS19 Terminalia   3.90 0.154 773     3.59     4.20  AB   
##  TCS01 Terminalia   3.82 0.120 773     3.58     4.06  AB   
##  TCS01 Abarco       3.78 0.114 773     3.56     4.00  AB   
##  TCS13 Terminalia   3.72 0.115 773     3.49     3.94  AB   
##  CCN51 Roble        3.72 0.115 773     3.49     3.94  AB   
##  CCN51 Terminalia   3.69 0.126 773     3.44     3.93  AB   
##  TCS06 Abarco       3.65 0.113 773     3.42     3.87  AB   
##  TCS13 Abarco       3.60 0.120 773     3.36     3.84  ABC  
##  TCS01 Roble        3.56 0.169 773     3.23     3.89  ABC  
##  CCN51 Abarco       3.50 0.129 773     3.25     3.75  ABC  
##  TCS19 Abarco       3.50 0.114 773     3.27     3.72  ABC  
##  TCS19 Roble        3.29 0.124 773     3.05     3.53   BC  
##  TCS06 Roble        3.27 0.138 773     3.00     3.54   BC  
##  TCS13 Roble        2.99 0.147 773     2.70     3.28    C  
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 15 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
## Gráficas contrastes de medias altura
#Gen
contrast <- emmeans(aov.alt, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.gen <- emmeans(aov.alt, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean   SE  df lower.CL upper.CL
##  CCN51    123 2.73 773      118      128
##  TCS01    131 3.02 773      125      136
##  TCS06    117 2.75 773      112      123
##  TCS13    110 2.83 773      105      116
##  TCS19    111 2.92 773      105      117
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE  df t.ratio p.value
##  CCN51 - TCS01    -7.59 4.10 773  -1.851  0.3453
##  CCN51 - TCS06     5.68 3.87 773   1.469  0.5827
##  CCN51 - TCS13    12.90 3.93 773   3.282  0.0095
##  CCN51 - TCS19    11.81 3.97 773   2.977  0.0249
##  TCS01 - TCS06    13.28 4.09 773   3.247  0.0107
##  TCS01 - TCS13    20.50 4.13 773   4.958  <.0001
##  TCS01 - TCS19    19.40 4.22 773   4.599  <.0001
##  TCS06 - TCS13     7.22 3.94 773   1.831  0.3561
##  TCS06 - TCS19     6.13 4.00 773   1.531  0.5424
##  TCS13 - TCS19    -1.09 4.06 773  -0.269  0.9989
## 
## Results are averaged over the levels of: forestal, bloque 
## P value adjustment: tukey method for comparing a family of 5 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean   SE  df lower.CL upper.CL .group
##  TCS01    131 3.02 773      125      136  A    
##  CCN51    123 2.73 773      118      128  AB   
##  TCS06    117 2.75 773      112      123   BC  
##  TCS19    111 2.92 773      105      117    C  
##  TCS13    110 2.83 773      105      116    C  
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 5 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal
contrast <- emmeans(aov.alt, ~forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.forestal <- emmeans(aov.alt, pairwise ~ forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal
## $emmeans
##  forestal   emmean   SE  df lower.CL upper.CL
##  Abarco        123 2.03 773    118.8      127
##  Roble         104 2.39 773     98.9      108
##  Terminalia    129 2.20 773    124.6      133
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast            estimate   SE  df t.ratio p.value
##  Abarco - Roble         19.15 3.15 773   6.075  <.0001
##  Abarco - Terminalia    -6.14 2.98 773  -2.065  0.0979
##  Roble - Terminalia    -25.30 3.26 773  -7.752  <.0001
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_forestal <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal
##  forestal   emmean   SE  df lower.CL upper.CL .group
##  Terminalia    129 2.20 773    124.6      133  A    
##  Abarco        123 2.03 773    118.8      127  A    
##  Roble         104 2.39 773     98.9      108   B   
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal*Gen
contrast <- emmeans(aov.alt, ~gen*forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")
## Warning: Comparison discrepancy in group "1", TCS13 Abarco - TCS01 Terminalia:
##     Target overlap = 1e-04, overlap on graph = -0.0011

medias.forestal.gen <- emmeans(aov.alt, pairwise ~ gen*forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal.gen
## $emmeans
##  gen   forestal   emmean   SE  df lower.CL upper.CL
##  CCN51 Abarco      123.6 4.95 773    113.9    133.3
##  TCS01 Abarco      133.3 4.36 773    124.8    141.9
##  TCS06 Abarco      120.8 4.30 773    112.3    129.2
##  TCS13 Abarco      120.2 4.60 773    111.2    129.3
##  TCS19 Abarco      115.8 4.36 773    107.2    124.4
##  CCN51 Roble       116.2 4.39 773    107.6    124.8
##  TCS01 Roble       115.9 6.47 773    103.2    128.6
##  TCS06 Roble        97.4 5.27 773     87.0    107.7
##  TCS13 Roble        83.7 5.62 773     72.7     94.8
##  TCS19 Roble       104.7 4.73 773     95.4    114.0
##  CCN51 Terminalia  129.1 4.80 773    119.7    138.5
##  TCS01 Terminalia  142.4 4.61 773    133.4    151.5
##  TCS06 Terminalia  133.7 4.65 773    124.6    142.8
##  TCS13 Terminalia  126.2 4.40 773    117.6    134.9
##  TCS19 Terminalia  113.0 5.90 773    101.4    124.5
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                            estimate   SE  df t.ratio p.value
##  CCN51 Abarco - TCS01 Abarco           -9.743 6.58 773  -1.480  0.9788
##  CCN51 Abarco - TCS06 Abarco            2.814 6.55 773   0.429  1.0000
##  CCN51 Abarco - TCS13 Abarco            3.348 6.72 773   0.498  1.0000
##  CCN51 Abarco - TCS19 Abarco            7.791 6.60 773   1.181  0.9977
##  CCN51 Abarco - CCN51 Roble             7.388 6.62 773   1.116  0.9987
##  CCN51 Abarco - TCS01 Roble             7.659 8.23 773   0.931  0.9998
##  CCN51 Abarco - TCS06 Roble            26.212 7.23 773   3.628  0.0239
##  CCN51 Abarco - TCS13 Roble            39.858 7.52 773   5.300  <.0001
##  CCN51 Abarco - TCS19 Roble            18.859 6.81 773   2.767  0.2670
##  CCN51 Abarco - CCN51 Terminalia       -5.532 6.84 773  -0.809  1.0000
##  CCN51 Abarco - TCS01 Terminalia      -18.841 6.78 773  -2.779  0.2606
##  CCN51 Abarco - TCS06 Terminalia      -10.121 6.78 773  -1.494  0.9770
##  CCN51 Abarco - TCS13 Terminalia       -2.645 6.63 773  -0.399  1.0000
##  CCN51 Abarco - TCS19 Terminalia       10.637 7.64 773   1.392  0.9879
##  TCS01 Abarco - TCS06 Abarco           12.557 6.13 773   2.049  0.7677
##  TCS01 Abarco - TCS13 Abarco           13.090 6.33 773   2.067  0.7565
##  TCS01 Abarco - TCS19 Abarco           17.534 6.17 773   2.842  0.2271
##  TCS01 Abarco - CCN51 Roble            17.130 6.19 773   2.768  0.2665
##  TCS01 Abarco - TCS01 Roble            17.401 7.82 773   2.225  0.6466
##  TCS01 Abarco - TCS06 Roble            35.954 6.84 773   5.254  <.0001
##  TCS01 Abarco - TCS13 Roble            49.601 7.12 773   6.964  <.0001
##  TCS01 Abarco - TCS19 Roble            28.602 6.43 773   4.449  0.0009
##  TCS01 Abarco - CCN51 Terminalia        4.211 6.47 773   0.650  1.0000
##  TCS01 Abarco - TCS01 Terminalia       -9.099 6.35 773  -1.433  0.9842
##  TCS01 Abarco - TCS06 Terminalia       -0.379 6.37 773  -0.059  1.0000
##  TCS01 Abarco - TCS13 Terminalia        7.098 6.20 773   1.145  0.9983
##  TCS01 Abarco - TCS19 Terminalia       20.379 7.33 773   2.782  0.2590
##  TCS06 Abarco - TCS13 Abarco            0.533 6.30 773   0.085  1.0000
##  TCS06 Abarco - TCS19 Abarco            4.977 6.13 773   0.812  1.0000
##  TCS06 Abarco - CCN51 Roble             4.573 6.14 773   0.744  1.0000
##  TCS06 Abarco - TCS01 Roble             4.844 7.77 773   0.623  1.0000
##  TCS06 Abarco - TCS06 Roble            23.397 6.81 773   3.435  0.0451
##  TCS06 Abarco - TCS13 Roble            37.044 7.08 773   5.235  <.0001
##  TCS06 Abarco - TCS19 Roble            16.045 6.39 773   2.509  0.4351
##  TCS06 Abarco - CCN51 Terminalia       -8.347 6.44 773  -1.296  0.9940
##  TCS06 Abarco - TCS01 Terminalia      -21.656 6.30 773  -3.439  0.0446
##  TCS06 Abarco - TCS06 Terminalia      -12.936 6.33 773  -2.043  0.7720
##  TCS06 Abarco - TCS13 Terminalia       -5.459 6.15 773  -0.887  0.9999
##  TCS06 Abarco - TCS19 Terminalia        7.822 7.29 773   1.073  0.9992
##  TCS13 Abarco - TCS19 Abarco            4.444 6.34 773   0.701  1.0000
##  TCS13 Abarco - CCN51 Roble             4.040 6.36 773   0.635  1.0000
##  TCS13 Abarco - TCS01 Roble             4.311 7.99 773   0.540  1.0000
##  TCS13 Abarco - TCS06 Roble            22.864 7.00 773   3.268  0.0751
##  TCS13 Abarco - TCS13 Roble            36.511 7.28 773   5.013  0.0001
##  TCS13 Abarco - TCS19 Roble            15.512 6.58 773   2.357  0.5481
##  TCS13 Abarco - CCN51 Terminalia       -8.880 6.62 773  -1.342  0.9915
##  TCS13 Abarco - TCS01 Terminalia      -22.189 6.52 773  -3.402  0.0500
##  TCS13 Abarco - TCS06 Terminalia      -13.469 6.53 773  -2.061  0.7601
##  TCS13 Abarco - TCS13 Terminalia       -5.992 6.37 773  -0.941  0.9998
##  TCS13 Abarco - TCS19 Terminalia        7.289 7.45 773   0.979  0.9997
##  TCS19 Abarco - CCN51 Roble            -0.404 6.19 773  -0.065  1.0000
##  TCS19 Abarco - TCS01 Roble            -0.133 7.81 773  -0.017  1.0000
##  TCS19 Abarco - TCS06 Roble            18.420 6.85 773   2.689  0.3136
##  TCS19 Abarco - TCS13 Roble            32.067 7.11 773   4.509  0.0007
##  TCS19 Abarco - TCS19 Roble            11.068 6.44 773   1.719  0.9269
##  TCS19 Abarco - CCN51 Terminalia      -13.324 6.48 773  -2.055  0.7644
##  TCS19 Abarco - TCS01 Terminalia      -26.633 6.34 773  -4.202  0.0027
##  TCS19 Abarco - TCS06 Terminalia      -17.913 6.37 773  -2.810  0.2435
##  TCS19 Abarco - TCS13 Terminalia      -10.436 6.19 773  -1.685  0.9374
##  TCS19 Abarco - TCS19 Terminalia        2.845 7.33 773   0.388  1.0000
##  CCN51 Roble - TCS01 Roble              0.271 7.81 773   0.035  1.0000
##  CCN51 Roble - TCS06 Roble             18.824 6.86 773   2.744  0.2806
##  CCN51 Roble - TCS13 Roble             32.471 7.12 773   4.558  0.0006
##  CCN51 Roble - TCS19 Roble             11.472 6.46 773   1.777  0.9068
##  CCN51 Roble - CCN51 Terminalia       -12.920 6.51 773  -1.985  0.8067
##  CCN51 Roble - TCS01 Terminalia       -26.229 6.36 773  -4.127  0.0037
##  CCN51 Roble - TCS06 Terminalia       -17.509 6.39 773  -2.739  0.2835
##  CCN51 Roble - TCS13 Terminalia       -10.032 6.21 773  -1.615  0.9552
##  CCN51 Roble - TCS19 Terminalia         3.249 7.36 773   0.442  1.0000
##  TCS01 Roble - TCS06 Roble             18.553 8.35 773   2.221  0.6495
##  TCS01 Roble - TCS13 Roble             32.200 8.54 773   3.772  0.0144
##  TCS01 Roble - TCS19 Roble             11.201 8.05 773   1.391  0.9880
##  TCS01 Roble - CCN51 Terminalia       -13.191 8.12 773  -1.625  0.9529
##  TCS01 Roble - TCS01 Terminalia       -26.500 7.92 773  -3.345  0.0597
##  TCS01 Roble - TCS06 Terminalia       -17.780 7.98 773  -2.227  0.6453
##  TCS01 Roble - TCS13 Terminalia       -10.303 7.82 773  -1.318  0.9929
##  TCS01 Roble - TCS19 Terminalia         2.978 8.82 773   0.338  1.0000
##  TCS06 Roble - TCS13 Roble             13.647 7.72 773   1.767  0.9105
##  TCS06 Roble - TCS19 Roble             -7.352 7.08 773  -1.039  0.9994
##  TCS06 Roble - CCN51 Terminalia       -31.744 7.13 773  -4.452  0.0009
##  TCS06 Roble - TCS01 Terminalia       -45.053 7.02 773  -6.415  <.0001
##  TCS06 Roble - TCS06 Terminalia       -36.333 7.04 773  -5.164  <.0001
##  TCS06 Roble - TCS13 Terminalia       -28.856 6.87 773  -4.199  0.0027
##  TCS06 Roble - TCS19 Terminalia       -15.575 7.93 773  -1.965  0.8182
##  TCS13 Roble - TCS19 Roble            -20.999 7.36 773  -2.852  0.2220
##  TCS13 Roble - CCN51 Terminalia       -45.390 7.41 773  -6.124  <.0001
##  TCS13 Roble - TCS01 Terminalia       -58.700 7.24 773  -8.103  <.0001
##  TCS13 Roble - TCS06 Terminalia       -49.980 7.30 773  -6.849  <.0001
##  TCS13 Roble - TCS13 Terminalia       -42.503 7.13 773  -5.959  <.0001
##  TCS13 Roble - TCS19 Terminalia       -29.222 8.16 773  -3.580  0.0281
##  TCS19 Roble - CCN51 Terminalia       -24.391 6.72 773  -3.631  0.0236
##  TCS19 Roble - TCS01 Terminalia       -37.701 6.62 773  -5.697  <.0001
##  TCS19 Roble - TCS06 Terminalia       -28.981 6.63 773  -4.372  0.0013
##  TCS19 Roble - TCS13 Terminalia       -21.504 6.46 773  -3.327  0.0630
##  TCS19 Roble - TCS19 Terminalia        -8.223 7.54 773  -1.090  0.9990
##  CCN51 Terminalia - TCS01 Terminalia  -13.309 6.66 773  -1.998  0.7994
##  CCN51 Terminalia - TCS06 Terminalia   -4.589 6.67 773  -0.688  1.0000
##  CCN51 Terminalia - TCS13 Terminalia    2.887 6.51 773   0.443  1.0000
##  CCN51 Terminalia - TCS19 Terminalia   16.169 7.56 773   2.139  0.7080
##  TCS01 Terminalia - TCS06 Terminalia    8.720 6.54 773   1.333  0.9920
##  TCS01 Terminalia - TCS13 Terminalia   16.197 6.36 773   2.545  0.4092
##  TCS01 Terminalia - TCS19 Terminalia   29.478 7.48 773   3.941  0.0077
##  TCS06 Terminalia - TCS13 Terminalia    7.477 6.40 773   1.168  0.9979
##  TCS06 Terminalia - TCS19 Terminalia   20.758 7.49 773   2.770  0.2657
##  TCS13 Terminalia - TCS19 Terminalia   13.281 7.36 773   1.804  0.8961
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 15 estimates
cld_forestal_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal_gen
##  gen   forestal   emmean   SE  df lower.CL upper.CL .group
##  TCS01 Terminalia  142.4 4.61 773    133.4    151.5  A    
##  TCS06 Terminalia  133.7 4.65 773    124.6    142.8  AB   
##  TCS01 Abarco      133.3 4.36 773    124.8    141.9  AB   
##  CCN51 Terminalia  129.1 4.80 773    119.7    138.5  AB   
##  TCS13 Terminalia  126.2 4.40 773    117.6    134.9  ABC  
##  CCN51 Abarco      123.6 4.95 773    113.9    133.3  ABC  
##  TCS06 Abarco      120.8 4.30 773    112.3    129.2   BC  
##  TCS13 Abarco      120.2 4.60 773    111.2    129.3  ABCD 
##  CCN51 Roble       116.2 4.39 773    107.6    124.8   BCD 
##  TCS01 Roble       115.9 6.47 773    103.2    128.6  ABCD 
##  TCS19 Abarco      115.8 4.36 773    107.2    124.4   BCD 
##  TCS19 Terminalia  113.0 5.90 773    101.4    124.5   BCD 
##  TCS19 Roble       104.7 4.73 773     95.4    114.0    CDE
##  TCS06 Roble        97.4 5.27 773     87.0    107.7     DE
##  TCS13 Roble        83.7 5.62 773     72.7     94.8      E
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 15 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
detach(datos2)