setwd("/Volumes/GoogleDrive/Mi unidad/Agrosavia/Colaboraciones/Laura")
datos<-read.table("campohermoso.csv", header=T, sep=',')
datos$gen<-as.factor(datos$gen)
datos$forestal<-as.factor(datos$forestal)
datos$bloque<-as.factor(datos$bloque)
attach(datos)
library(ggplot2)
library(emmeans)
#Gráfica diámetro
ggplot(datos, aes(semana, diam, group = gen, colour = gen)) +
  facet_grid(~forestal) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Diámetro") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  ) 
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 333 rows containing non-finite values (stat_smooth).

# Gráfica altura
ggplot(datos, aes(semana, alt, group = gen, colour = gen)) +
  facet_grid(~forestal) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Altura") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  )
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 332 rows containing non-finite values (stat_smooth).

# Anova general
aov.diam<-aov(diam~semana*forestal*gen+bloque)
aov.alt<-aov(alt~semana*forestal*gen+bloque)
#Análisis para diámetro
library(nlme)
fit.compsym.diam <- gls(diam ~ semana*forestal*gen+bloque, data=datos, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.diam <- gls(diam ~ semana*forestal*gen+bloque, data=datos, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.diam <- gls(diam ~ semana*forestal*gen+bloque, data=datos, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.diam, fit.ar1.diam, fit.ar1het.diam) #compares the models
##                  Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.diam     1 34 1870.932 2026.389 -901.4659                        
## fit.ar1.diam         2 34 1858.949 2014.407 -895.4745                        
## fit.ar1het.diam      3 37 1857.064 2026.238 -891.5319 2 vs 3 7.885065  0.0484
anova(fit.ar1.diam)
## Denom. DF: 715 
##                     numDF   F-value p-value
## (Intercept)             1 10145.383  <.0001
## semana                  1   110.023  <.0001
## forestal                2    47.989  <.0001
## gen                     4     1.885  0.1113
## bloque                  2    41.483  <.0001
## semana:forestal         2     0.833  0.4351
## semana:gen              4     0.476  0.7530
## forestal:gen            8     5.778  <.0001
## semana:forestal:gen     8     0.646  0.7389
anova(fit.ar1het.diam)
## Denom. DF: 715 
##                     numDF   F-value p-value
## (Intercept)             1 10189.583  <.0001
## semana                  1   143.762  <.0001
## forestal                2    48.642  <.0001
## gen                     4     1.778  0.1313
## bloque                  2    39.717  <.0001
## semana:forestal         2     0.890  0.4110
## semana:gen              4     0.623  0.6461
## forestal:gen            8     6.062  <.0001
## semana:forestal:gen     8     0.808  0.5955
# Análisis para altura
fit.compsym.alt <- gls(alt ~ semana*forestal*gen+bloque, data=datos, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.alt <- gls(alt ~ semana*forestal*gen+bloque, data=datos, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.alt <- gls(alt ~ semana*forestal*gen+bloque, data=datos, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.alt, fit.ar1.alt, fit.ar1het.alt) #compares the models
##                 Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.alt     1 34 7321.417 7476.922 -3626.709                        
## fit.ar1.alt         2 34 7316.113 7471.618 -3624.056                        
## fit.ar1het.alt      3 37 7301.865 7471.091 -3613.932 2 vs 3 20.24765   2e-04
anova(fit.ar1het.alt)
## Denom. DF: 716 
##                     numDF  F-value p-value
## (Intercept)             1 6620.156  <.0001
## semana                  1  191.354  <.0001
## forestal                2   38.975  <.0001
## gen                     4    7.450  <.0001
## bloque                  2   33.728  <.0001
## semana:forestal         2    0.831  0.4359
## semana:gen              4    1.823  0.1225
## forestal:gen            8    8.072  <.0001
## semana:forestal:gen     8    0.598  0.7796
#Tukey diámetro
library(multcompView)
interac.tuk.diam<-TukeyHSD(aov.diam, "forestal:gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
fores.tuk.diam<-TukeyHSD(aov.diam, "forestal", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
gen.tuk.diam<-TukeyHSD(aov.diam, "gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
#Tukey altura
interac.tuk.alt<-TukeyHSD(aov.alt, "forestal:gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
fores.tuk.alt<-TukeyHSD(aov.alt, "forestal", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
gen.tuk.alt<-TukeyHSD(aov.alt, "gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
#Etiquetas Tukey diámetro
#Genotipos
generate_label_df_gen_diam <- function(gen.tuk.diam, variable){
  Tukey.levels <- gen.tuk.diam[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.diam <- generate_label_df_gen_diam(gen.tuk.diam, "gen")
labels.gen.diam
##       Letters treatment
## CCN51       a     CCN51
## TCS01      ab     TCS01
## TCS06      ab     TCS06
## TCS13      ab     TCS13
## TCS19       b     TCS19
# Forestal
generate_label_df_forestal_diam <- function(fores.tuk.diam, variable){
  Tukey.levels <- fores.tuk.diam[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.forestal.diam <- generate_label_df_forestal_diam(fores.tuk.diam, "forestal")
labels.forestal.diam
##            Letters  treatment
## Abarco           a     Abarco
## Roble            a      Roble
## Terminalia       a Terminalia
# Interacción Forestal:Genotipo
generate_label_df_interac_diam <- function(interac.tuk.diam, variable){
  Tukey.levels <- interac.tuk.diam[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.diam <- generate_label_df_interac_diam(interac.tuk.diam, "forestal:gen")
labels.interac.diam
##                  Letters        treatment
## Abarco:CCN51           d     Abarco:CCN51
## Abarco:TCS01           d     Abarco:TCS01
## Abarco:TCS06        abcd     Abarco:TCS06
## Abarco:TCS13           d     Abarco:TCS13
## Abarco:TCS19           d     Abarco:TCS19
## Roble:CCN51          acd      Roble:CCN51
## Roble:TCS01          acd      Roble:TCS01
## Roble:TCS06            d      Roble:TCS06
## Roble:TCS13            d      Roble:TCS13
## Roble:TCS19          abc      Roble:TCS19
## Terminalia:CCN51      cd Terminalia:CCN51
## Terminalia:TCS01     abc Terminalia:TCS01
## Terminalia:TCS06      ab Terminalia:TCS06
## Terminalia:TCS13       b Terminalia:TCS13
## Terminalia:TCS19      ab Terminalia:TCS19
#Etiquetas Tukey altura
#Genotipos
generate_label_df_gen_alt <- function(gen.tuk.alt, variable){
  Tukey.levels <- gen.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.alt <- generate_label_df_gen_alt(gen.tuk.alt, "gen")
labels.gen.alt
##       Letters treatment
## CCN51       b     CCN51
## TCS01       a     TCS01
## TCS06       a     TCS06
## TCS13       a     TCS13
## TCS19       a     TCS19
# Forestal
generate_label_df_forestal_alt <- function(fores.tuk.alt, variable){
  Tukey.levels <- fores.tuk.alt[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.forestal.alt <- generate_label_df_forestal_alt(fores.tuk.alt, "forestal")
labels.forestal.alt
##            Letters  treatment
## Abarco           a     Abarco
## Roble            a      Roble
## Terminalia       a Terminalia
# Interacción Forestal:Genotipo
generate_label_df_interac_alt <- function(interac.tuk.alt, variable){
  Tukey.levels <- interac.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.alt <- generate_label_df_interac_alt(interac.tuk.alt, "forestal:gen")
labels.interac.alt
##                  Letters        treatment
## Abarco:CCN51           f     Abarco:CCN51
## Abarco:TCS01        cdef     Abarco:TCS01
## Abarco:TCS06        abcd     Abarco:TCS06
## Abarco:TCS13        acde     Abarco:TCS13
## Abarco:TCS19         def     Abarco:TCS19
## Roble:CCN51         abcd      Roble:CCN51
## Roble:TCS01          cde      Roble:TCS01
## Roble:TCS06           ef      Roble:TCS06
## Roble:TCS13          cde      Roble:TCS13
## Roble:TCS19          acd      Roble:TCS19
## Terminalia:CCN51     cde Terminalia:CCN51
## Terminalia:TCS01     abc Terminalia:TCS01
## Terminalia:TCS06      ab Terminalia:TCS06
## Terminalia:TCS13      ab Terminalia:TCS13
## Terminalia:TCS19       b Terminalia:TCS19
## Gráficas contrastes de medias diametro
#Gen
contrast <- emmeans(aov.diam, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.gen <- emmeans(aov.diam, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean     SE  df lower.CL upper.CL
##  CCN51   3.25 0.0596 715     3.14     3.37
##  TCS01   3.08 0.0630 715     2.95     3.20
##  TCS06   3.04 0.0686 715     2.90     3.17
##  TCS13   3.11 0.0601 715     2.99     3.22
##  TCS19   3.06 0.0588 715     2.94     3.17
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate     SE  df t.ratio p.value
##  CCN51 - TCS01   0.1764 0.0867 715   2.036  0.2499
##  CCN51 - TCS06   0.2171 0.0908 715   2.390  0.1191
##  CCN51 - TCS13   0.1462 0.0846 715   1.729  0.4168
##  CCN51 - TCS19   0.1964 0.0837 715   2.345  0.1321
##  TCS01 - TCS06   0.0406 0.0930 715   0.437  0.9924
##  TCS01 - TCS13  -0.0302 0.0869 715  -0.348  0.9969
##  TCS01 - TCS19   0.0199 0.0862 715   0.231  0.9994
##  TCS06 - TCS13  -0.0709 0.0910 715  -0.779  0.9366
##  TCS06 - TCS19  -0.0207 0.0905 715  -0.229  0.9994
##  TCS13 - TCS19   0.0502 0.0841 715   0.597  0.9756
## 
## Results are averaged over the levels of: forestal, bloque 
## P value adjustment: tukey method for comparing a family of 5 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean     SE  df lower.CL upper.CL .group
##  CCN51   3.25 0.0596 715     3.14     3.37  A    
##  TCS13   3.11 0.0601 715     2.99     3.22  A    
##  TCS01   3.08 0.0630 715     2.95     3.20  A    
##  TCS19   3.06 0.0588 715     2.94     3.17  A    
##  TCS06   3.04 0.0686 715     2.90     3.17  A    
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 5 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal
contrast <- emmeans(aov.diam, ~forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.forestal <- emmeans(aov.diam, pairwise ~ forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal
## $emmeans
##  forestal   emmean     SE  df lower.CL upper.CL
##  Abarco       3.37 0.0524 715     3.27     3.47
##  Roble        3.18 0.0468 715     3.09     3.27
##  Terminalia   2.76 0.0450 715     2.68     2.85
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast            estimate     SE  df t.ratio p.value
##  Abarco - Roble         0.189 0.0700 715   2.705  0.0191
##  Abarco - Terminalia    0.609 0.0690 715   8.815  <.0001
##  Roble - Terminalia     0.419 0.0649 715   6.461  <.0001
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_forestal <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal
##  forestal   emmean     SE  df lower.CL upper.CL .group
##  Abarco       3.37 0.0524 715     3.27     3.47  A    
##  Roble        3.18 0.0468 715     3.09     3.27   B   
##  Terminalia   2.76 0.0450 715     2.68     2.85    C  
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal*Gen
contrast <- emmeans(aov.diam, ~gen*forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.forestal.gen <- emmeans(aov.diam, pairwise ~ gen*forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal.gen
## $emmeans
##  gen   forestal   emmean     SE  df lower.CL upper.CL
##  CCN51 Abarco       3.41 0.0997 715     3.21     3.60
##  TCS01 Abarco       3.43 0.1141 715     3.20     3.65
##  TCS06 Abarco       3.02 0.1486 715     2.73     3.31
##  TCS13 Abarco       3.42 0.1094 715     3.21     3.64
##  TCS19 Abarco       3.59 0.1067 715     3.38     3.80
##  CCN51 Roble        3.15 0.1135 715     2.92     3.37
##  TCS01 Roble        3.07 0.1076 715     2.86     3.28
##  TCS06 Roble        3.47 0.0928 715     3.29     3.66
##  TCS13 Roble        3.33 0.1092 715     3.12     3.54
##  TCS19 Roble        2.89 0.0982 715     2.70     3.09
##  CCN51 Terminalia   3.21 0.0961 715     3.02     3.40
##  TCS01 Terminalia   2.73 0.1055 715     2.53     2.94
##  TCS06 Terminalia   2.62 0.1078 715     2.41     2.83
##  TCS13 Terminalia   2.57 0.0928 715     2.39     2.75
##  TCS19 Terminalia   2.69 0.1003 715     2.49     2.89
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                            estimate    SE  df t.ratio p.value
##  CCN51 Abarco - TCS01 Abarco         -0.01884 0.152 715  -0.124  1.0000
##  CCN51 Abarco - TCS06 Abarco          0.38809 0.179 715   2.173  0.6844
##  CCN51 Abarco - TCS13 Abarco         -0.01587 0.148 715  -0.107  1.0000
##  CCN51 Abarco - TCS19 Abarco         -0.18011 0.146 715  -1.234  0.9963
##  CCN51 Abarco - CCN51 Roble           0.26055 0.151 715   1.725  0.9251
##  CCN51 Abarco - TCS01 Roble           0.33577 0.146 715   2.293  0.5962
##  CCN51 Abarco - TCS06 Roble          -0.06648 0.136 715  -0.488  1.0000
##  CCN51 Abarco - TCS13 Roble           0.07628 0.148 715   0.516  1.0000
##  CCN51 Abarco - TCS19 Roble           0.51441 0.140 715   3.676  0.0203
##  CCN51 Abarco - CCN51 Terminalia      0.19989 0.138 715   1.444  0.9830
##  CCN51 Abarco - TCS01 Terminalia      0.67276 0.145 715   4.642  0.0004
##  CCN51 Abarco - TCS06 Terminalia      0.79002 0.147 715   5.375  <.0001
##  CCN51 Abarco - TCS13 Terminalia      0.83858 0.136 715   6.157  <.0001
##  CCN51 Abarco - TCS19 Terminalia      0.71521 0.141 715   5.058  0.0001
##  TCS01 Abarco - TCS06 Abarco          0.40693 0.188 715   2.167  0.6888
##  TCS01 Abarco - TCS13 Abarco          0.00298 0.158 715   0.019  1.0000
##  TCS01 Abarco - TCS19 Abarco         -0.16127 0.156 715  -1.032  0.9995
##  TCS01 Abarco - CCN51 Roble           0.27940 0.161 715   1.735  0.9216
##  TCS01 Abarco - TCS01 Roble           0.35462 0.157 715   2.259  0.6214
##  TCS01 Abarco - TCS06 Roble          -0.04763 0.147 715  -0.324  1.0000
##  TCS01 Abarco - TCS13 Roble           0.09513 0.158 715   0.602  1.0000
##  TCS01 Abarco - TCS19 Roble           0.53325 0.150 715   3.544  0.0318
##  TCS01 Abarco - CCN51 Terminalia      0.21874 0.149 715   1.467  0.9803
##  TCS01 Abarco - TCS01 Terminalia      0.69160 0.156 715   4.447  0.0010
##  TCS01 Abarco - TCS06 Terminalia      0.80887 0.157 715   5.154  <.0001
##  TCS01 Abarco - TCS13 Terminalia      0.85742 0.147 715   5.833  <.0001
##  TCS01 Abarco - TCS19 Terminalia      0.73405 0.152 715   4.836  0.0002
##  TCS06 Abarco - TCS13 Abarco         -0.40395 0.184 715  -2.199  0.6657
##  TCS06 Abarco - TCS19 Abarco         -0.56820 0.183 715  -3.105  0.1188
##  TCS06 Abarco - CCN51 Roble          -0.12753 0.186 715  -0.684  1.0000
##  TCS06 Abarco - TCS01 Roble          -0.05231 0.183 715  -0.286  1.0000
##  TCS06 Abarco - TCS06 Roble          -0.45456 0.175 715  -2.598  0.3730
##  TCS06 Abarco - TCS13 Roble          -0.31180 0.184 715  -1.694  0.9347
##  TCS06 Abarco - TCS19 Roble           0.12632 0.178 715   0.708  1.0000
##  TCS06 Abarco - CCN51 Terminalia     -0.18819 0.177 715  -1.061  0.9993
##  TCS06 Abarco - TCS01 Terminalia      0.28467 0.182 715   1.568  0.9649
##  TCS06 Abarco - TCS06 Terminalia      0.40194 0.184 715   2.190  0.6719
##  TCS06 Abarco - TCS13 Terminalia      0.45049 0.175 715   2.570  0.3920
##  TCS06 Abarco - TCS19 Terminalia      0.32712 0.180 715   1.822  0.8890
##  TCS13 Abarco - TCS19 Abarco         -0.16425 0.153 715  -1.075  0.9992
##  TCS13 Abarco - CCN51 Roble           0.27642 0.158 715   1.754  0.9152
##  TCS13 Abarco - TCS01 Roble           0.35164 0.153 715   2.299  0.5917
##  TCS13 Abarco - TCS06 Roble          -0.05061 0.143 715  -0.353  1.0000
##  TCS13 Abarco - TCS13 Roble           0.09215 0.155 715   0.596  1.0000
##  TCS13 Abarco - TCS19 Roble           0.53027 0.147 715   3.606  0.0258
##  TCS13 Abarco - CCN51 Terminalia      0.21576 0.146 715   1.482  0.9785
##  TCS13 Abarco - TCS01 Terminalia      0.68862 0.152 715   4.545  0.0006
##  TCS13 Abarco - TCS06 Terminalia      0.80589 0.154 715   5.239  <.0001
##  TCS13 Abarco - TCS13 Terminalia      0.85444 0.144 715   5.954  <.0001
##  TCS13 Abarco - TCS19 Terminalia      0.73108 0.148 715   4.924  0.0001
##  TCS19 Abarco - CCN51 Roble           0.44067 0.156 715   2.828  0.2344
##  TCS19 Abarco - TCS01 Roble           0.51589 0.152 715   3.405  0.0497
##  TCS19 Abarco - TCS06 Roble           0.11364 0.141 715   0.804  1.0000
##  TCS19 Abarco - TCS13 Roble           0.25640 0.153 715   1.679  0.9390
##  TCS19 Abarco - TCS19 Roble           0.69452 0.145 715   4.789  0.0002
##  TCS19 Abarco - CCN51 Terminalia      0.38001 0.144 715   2.647  0.3406
##  TCS19 Abarco - TCS01 Terminalia      0.85287 0.150 715   5.685  <.0001
##  TCS19 Abarco - TCS06 Terminalia      0.97014 0.152 715   6.393  <.0001
##  TCS19 Abarco - TCS13 Terminalia      1.01869 0.141 715   7.204  <.0001
##  TCS19 Abarco - TCS19 Terminalia      0.89532 0.146 715   6.116  <.0001
##  CCN51 Roble - TCS01 Roble            0.07522 0.156 715   0.481  1.0000
##  CCN51 Roble - TCS06 Roble           -0.32703 0.147 715  -2.231  0.6419
##  CCN51 Roble - TCS13 Roble           -0.18427 0.157 715  -1.171  0.9979
##  CCN51 Roble - TCS19 Roble            0.25385 0.150 715   1.691  0.9356
##  CCN51 Roble - CCN51 Terminalia      -0.06066 0.149 715  -0.407  1.0000
##  CCN51 Roble - TCS01 Terminalia       0.41220 0.155 715   2.663  0.3302
##  CCN51 Roble - TCS06 Terminalia       0.52947 0.156 715   3.385  0.0529
##  CCN51 Roble - TCS13 Terminalia       0.57802 0.147 715   3.943  0.0076
##  CCN51 Roble - TCS19 Terminalia       0.45466 0.152 715   3.000  0.1558
##  TCS01 Roble - TCS06 Roble           -0.40225 0.142 715  -2.833  0.2316
##  TCS01 Roble - TCS13 Roble           -0.25949 0.153 715  -1.693  0.9350
##  TCS01 Roble - TCS19 Roble            0.17864 0.146 715   1.226  0.9966
##  TCS01 Roble - CCN51 Terminalia      -0.13588 0.144 715  -0.942  0.9998
##  TCS01 Roble - TCS01 Terminalia       0.33699 0.150 715   2.241  0.6350
##  TCS01 Roble - TCS06 Terminalia       0.45425 0.152 715   2.979  0.1642
##  TCS01 Roble - TCS13 Terminalia       0.50280 0.142 715   3.538  0.0324
##  TCS01 Roble - TCS19 Terminalia       0.37944 0.147 715   2.579  0.3856
##  TCS06 Roble - TCS13 Roble            0.14276 0.143 715   0.997  0.9996
##  TCS06 Roble - TCS19 Roble            0.58089 0.135 715   4.300  0.0018
##  TCS06 Roble - CCN51 Terminalia       0.26637 0.134 715   1.994  0.8017
##  TCS06 Roble - TCS01 Terminalia       0.73924 0.140 715   5.267  <.0001
##  TCS06 Roble - TCS06 Terminalia       0.85650 0.142 715   6.020  <.0001
##  TCS06 Roble - TCS13 Terminalia       0.90505 0.131 715   6.898  <.0001
##  TCS06 Roble - TCS19 Terminalia       0.78169 0.137 715   5.722  <.0001
##  TCS13 Roble - TCS19 Roble            0.43812 0.147 715   2.983  0.1627
##  TCS13 Roble - CCN51 Terminalia       0.12361 0.146 715   0.849  0.9999
##  TCS13 Roble - TCS01 Terminalia       0.59647 0.152 715   3.931  0.0080
##  TCS13 Roble - TCS06 Terminalia       0.71374 0.153 715   4.654  0.0004
##  TCS13 Roble - TCS13 Terminalia       0.76229 0.143 715   5.321  <.0001
##  TCS13 Roble - TCS19 Terminalia       0.63892 0.148 715   4.309  0.0017
##  TCS19 Roble - CCN51 Terminalia      -0.31452 0.137 715  -2.290  0.5984
##  TCS19 Roble - TCS01 Terminalia       0.15835 0.144 715   1.099  0.9989
##  TCS19 Roble - TCS06 Terminalia       0.27561 0.146 715   1.890  0.8579
##  TCS19 Roble - TCS13 Terminalia       0.32417 0.135 715   2.400  0.5155
##  TCS19 Roble - TCS19 Terminalia       0.20080 0.140 715   1.431  0.9843
##  CCN51 Terminalia - TCS01 Terminalia  0.47287 0.143 715   3.312  0.0661
##  CCN51 Terminalia - TCS06 Terminalia  0.59013 0.145 715   4.082  0.0044
##  CCN51 Terminalia - TCS13 Terminalia  0.63868 0.134 715   4.782  0.0002
##  CCN51 Terminalia - TCS19 Terminalia  0.51532 0.139 715   3.713  0.0178
##  TCS01 Terminalia - TCS06 Terminalia  0.11726 0.151 715   0.777  1.0000
##  TCS01 Terminalia - TCS13 Terminalia  0.16582 0.140 715   1.180  0.9977
##  TCS01 Terminalia - TCS19 Terminalia  0.04245 0.146 715   0.292  1.0000
##  TCS06 Terminalia - TCS13 Terminalia  0.04856 0.142 715   0.341  1.0000
##  TCS06 Terminalia - TCS19 Terminalia -0.07481 0.147 715  -0.508  1.0000
##  TCS13 Terminalia - TCS19 Terminalia -0.12337 0.137 715  -0.903  0.9999
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 15 estimates
cld_forestal_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal_gen
##  gen   forestal   emmean     SE  df lower.CL upper.CL .group 
##  TCS19 Abarco       3.59 0.1067 715     3.38     3.80  A     
##  TCS06 Roble        3.47 0.0928 715     3.29     3.66  AB    
##  TCS01 Abarco       3.43 0.1141 715     3.20     3.65  AB    
##  TCS13 Abarco       3.42 0.1094 715     3.21     3.64  AB    
##  CCN51 Abarco       3.41 0.0997 715     3.21     3.60  AB    
##  TCS13 Roble        3.33 0.1092 715     3.12     3.54  ABC   
##  CCN51 Terminalia   3.21 0.0961 715     3.02     3.40  ABCD  
##  CCN51 Roble        3.15 0.1135 715     2.92     3.37  ABCDE 
##  TCS01 Roble        3.07 0.1076 715     2.86     3.28   BCDE 
##  TCS06 Abarco       3.02 0.1486 715     2.73     3.31  ABCDEF
##  TCS19 Roble        2.89 0.0982 715     2.70     3.09    CDEF
##  TCS01 Terminalia   2.73 0.1055 715     2.53     2.94     DEF
##  TCS19 Terminalia   2.69 0.1003 715     2.49     2.89      EF
##  TCS06 Terminalia   2.62 0.1078 715     2.41     2.83      EF
##  TCS13 Terminalia   2.57 0.0928 715     2.39     2.75       F
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 15 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
## Gráficas contrastes de medias altura
#Gen
contrast <- emmeans(aov.alt, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.gen <- emmeans(aov.alt, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean   SE  df lower.CL upper.CL
##  CCN51  115.5 2.68 716    110.3      121
##  TCS01  105.5 2.83 716    100.0      111
##  TCS06   99.2 3.08 716     93.1      105
##  TCS13  101.2 2.70 716     95.9      107
##  TCS19   98.5 2.63 716     93.3      104
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE  df t.ratio p.value
##  CCN51 - TCS01   10.001 3.89 716   2.570  0.0771
##  CCN51 - TCS06   16.370 4.08 716   4.014  0.0006
##  CCN51 - TCS13   14.303 3.80 716   3.767  0.0017
##  CCN51 - TCS19   17.026 3.76 716   4.534  0.0001
##  TCS01 - TCS06    6.369 4.18 716   1.525  0.5466
##  TCS01 - TCS13    4.302 3.90 716   1.102  0.8054
##  TCS01 - TCS19    7.024 3.86 716   1.818  0.3639
##  TCS06 - TCS13   -2.067 4.08 716  -0.506  0.9868
##  TCS06 - TCS19    0.656 4.06 716   0.162  0.9998
##  TCS13 - TCS19    2.723 3.77 716   0.722  0.9514
## 
## Results are averaged over the levels of: forestal, bloque 
## P value adjustment: tukey method for comparing a family of 5 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean   SE  df lower.CL upper.CL .group
##  CCN51  115.5 2.68 716    110.3      121  A    
##  TCS01  105.5 2.83 716    100.0      111  AB   
##  TCS13  101.2 2.70 716     95.9      107   B   
##  TCS06   99.2 3.08 716     93.1      105   B   
##  TCS19   98.5 2.63 716     93.3      104   B   
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 5 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal
contrast <- emmeans(aov.alt, ~forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.forestal <- emmeans(aov.alt, pairwise ~ forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal
## $emmeans
##  forestal   emmean   SE  df lower.CL upper.CL
##  Abarco      113.1 2.35 716    108.4    117.7
##  Roble       108.1 2.10 716    104.0    112.2
##  Terminalia   90.8 2.02 716     86.8     94.8
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast            estimate   SE  df t.ratio p.value
##  Abarco - Roble          4.95 3.15 716   1.574  0.2574
##  Abarco - Terminalia    22.27 3.10 716   7.189  <.0001
##  Roble - Terminalia     17.32 2.91 716   5.951  <.0001
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_forestal <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal
##  forestal   emmean   SE  df lower.CL upper.CL .group
##  Abarco      113.1 2.35 716    108.4    117.7  A    
##  Roble       108.1 2.10 716    104.0    112.2  A    
##  Terminalia   90.8 2.02 716     86.8     94.8   B   
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal*Gen
contrast <- emmeans(aov.alt, ~gen*forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.forestal.gen <- emmeans(aov.alt, pairwise ~ gen*forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal.gen
## $emmeans
##  gen   forestal   emmean   SE  df lower.CL upper.CL
##  CCN51 Abarco      136.2 4.48 716    127.4    145.0
##  TCS01 Abarco      113.2 5.12 716    103.1    123.2
##  TCS06 Abarco       92.9 6.67 716     79.8    106.0
##  TCS13 Abarco      104.6 4.91 716     94.9    114.2
##  TCS19 Abarco      118.5 4.79 716    109.1    127.9
##  CCN51 Roble        97.1 5.09 716     87.1    107.1
##  TCS01 Roble       111.4 4.83 716    101.9    120.9
##  TCS06 Roble       121.3 4.17 716    113.1    129.4
##  TCS13 Roble       111.3 4.90 716    101.7    120.9
##  TCS19 Roble        99.5 4.41 716     90.8    108.2
##  CCN51 Terminalia  113.3 4.32 716    104.8    121.8
##  TCS01 Terminalia   92.0 4.74 716     82.7    101.3
##  TCS06 Terminalia   83.3 4.84 716     73.8     92.8
##  TCS13 Terminalia   87.8 4.17 716     79.6     96.0
##  TCS19 Terminalia   77.5 4.46 716     68.7     86.3
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                            estimate   SE  df t.ratio p.value
##  CCN51 Abarco - TCS01 Abarco           22.987 6.81 716   3.376  0.0544
##  CCN51 Abarco - TCS06 Abarco           43.277 8.02 716   5.396  <.0001
##  CCN51 Abarco - TCS13 Abarco           31.602 6.63 716   4.767  0.0002
##  CCN51 Abarco - TCS19 Abarco           17.640 6.56 716   2.690  0.3131
##  CCN51 Abarco - CCN51 Roble            39.068 6.78 716   5.758  <.0001
##  CCN51 Abarco - TCS01 Roble            24.760 6.58 716   3.765  0.0148
##  CCN51 Abarco - TCS06 Roble            14.897 6.11 716   2.437  0.4881
##  CCN51 Abarco - TCS13 Roble            24.872 6.64 716   3.745  0.0159
##  CCN51 Abarco - TCS19 Roble            36.668 6.29 716   5.833  <.0001
##  CCN51 Abarco - CCN51 Terminalia       22.840 6.22 716   3.673  0.0205
##  CCN51 Abarco - TCS01 Terminalia       44.165 6.51 716   6.786  <.0001
##  CCN51 Abarco - TCS06 Terminalia       52.843 6.60 716   8.007  <.0001
##  CCN51 Abarco - TCS13 Terminalia       48.343 6.12 716   7.903  <.0001
##  CCN51 Abarco - TCS19 Terminalia       58.677 6.32 716   9.281  <.0001
##  TCS01 Abarco - TCS06 Abarco           20.291 8.43 716   2.406  0.5111
##  TCS01 Abarco - TCS13 Abarco            8.615 7.11 716   1.212  0.9970
##  TCS01 Abarco - TCS19 Abarco           -5.347 7.02 716  -0.762  1.0000
##  TCS01 Abarco - CCN51 Roble            16.081 7.23 716   2.224  0.6474
##  TCS01 Abarco - TCS01 Roble             1.774 7.05 716   0.252  1.0000
##  TCS01 Abarco - TCS06 Roble            -8.090 6.61 716  -1.225  0.9966
##  TCS01 Abarco - TCS13 Roble             1.885 7.09 716   0.266  1.0000
##  TCS01 Abarco - TCS19 Roble            13.681 6.76 716   2.025  0.7833
##  TCS01 Abarco - CCN51 Terminalia       -0.147 6.70 716  -0.022  1.0000
##  TCS01 Abarco - TCS01 Terminalia       21.178 6.98 716   3.032  0.1438
##  TCS01 Abarco - TCS06 Terminalia       29.856 7.05 716   4.237  0.0024
##  TCS01 Abarco - TCS13 Terminalia       25.356 6.60 716   3.841  0.0112
##  TCS01 Abarco - TCS19 Terminalia       35.690 6.79 716   5.256  <.0001
##  TCS06 Abarco - TCS13 Abarco          -11.675 8.25 716  -1.415  0.9858
##  TCS06 Abarco - TCS19 Abarco          -25.637 8.22 716  -3.120  0.1140
##  TCS06 Abarco - CCN51 Roble            -4.210 8.37 716  -0.503  1.0000
##  TCS06 Abarco - TCS01 Roble           -18.517 8.22 716  -2.254  0.6252
##  TCS06 Abarco - TCS06 Roble           -28.381 7.86 716  -3.612  0.0253
##  TCS06 Abarco - TCS13 Roble           -18.406 8.26 716  -2.227  0.6452
##  TCS06 Abarco - TCS19 Roble            -6.609 8.01 716  -0.826  1.0000
##  TCS06 Abarco - CCN51 Terminalia      -20.437 7.97 716  -2.565  0.3953
##  TCS06 Abarco - TCS01 Terminalia        0.887 8.15 716   0.109  1.0000
##  TCS06 Abarco - TCS06 Terminalia        9.566 8.24 716   1.161  0.9981
##  TCS06 Abarco - TCS13 Terminalia        5.065 7.87 716   0.644  1.0000
##  TCS06 Abarco - TCS19 Terminalia       15.400 8.04 716   1.916  0.8447
##  TCS13 Abarco - TCS19 Abarco          -13.962 6.86 716  -2.035  0.7766
##  TCS13 Abarco - CCN51 Roble             7.466 7.08 716   1.055  0.9993
##  TCS13 Abarco - TCS01 Roble            -6.842 6.87 716  -0.996  0.9996
##  TCS13 Abarco - TCS06 Roble           -16.705 6.44 716  -2.596  0.3742
##  TCS13 Abarco - TCS13 Roble            -6.730 6.94 716  -0.970  0.9997
##  TCS13 Abarco - TCS19 Roble             5.066 6.60 716   0.767  1.0000
##  TCS13 Abarco - CCN51 Terminalia       -8.762 6.54 716  -1.340  0.9916
##  TCS13 Abarco - TCS01 Terminalia       12.563 6.80 716   1.846  0.8782
##  TCS13 Abarco - TCS06 Terminalia       21.241 6.91 716   3.076  0.1284
##  TCS13 Abarco - TCS13 Terminalia       16.741 6.44 716   2.598  0.3729
##  TCS13 Abarco - TCS19 Terminalia       27.075 6.64 716   4.078  0.0045
##  TCS19 Abarco - CCN51 Roble            21.428 7.00 716   3.062  0.1331
##  TCS19 Abarco - TCS01 Roble             7.120 6.80 716   1.046  0.9994
##  TCS19 Abarco - TCS06 Roble            -2.743 6.35 716  -0.432  1.0000
##  TCS19 Abarco - TCS13 Roble             7.232 6.86 716   1.055  0.9993
##  TCS19 Abarco - TCS19 Roble            19.028 6.51 716   2.921  0.1889
##  TCS19 Abarco - CCN51 Terminalia        5.200 6.45 716   0.806  1.0000
##  TCS19 Abarco - TCS01 Terminalia       26.525 6.74 716   3.937  0.0078
##  TCS19 Abarco - TCS06 Terminalia       35.203 6.81 716   5.166  <.0001
##  TCS19 Abarco - TCS13 Terminalia       30.703 6.35 716   4.835  0.0002
##  TCS19 Abarco - TCS19 Terminalia       41.037 6.55 716   6.267  <.0001
##  CCN51 Roble - TCS01 Roble            -14.307 7.02 716  -2.037  0.7752
##  CCN51 Roble - TCS06 Roble            -24.171 6.58 716  -3.673  0.0205
##  CCN51 Roble - TCS13 Roble            -14.196 7.06 716  -2.009  0.7924
##  CCN51 Roble - TCS19 Roble             -2.400 6.74 716  -0.356  1.0000
##  CCN51 Roble - CCN51 Terminalia       -16.228 6.69 716  -2.427  0.4958
##  CCN51 Roble - TCS01 Terminalia         5.097 6.95 716   0.733  1.0000
##  CCN51 Roble - TCS06 Terminalia        13.776 7.02 716   1.962  0.8201
##  CCN51 Roble - TCS13 Terminalia         9.275 6.58 716   1.409  0.9864
##  CCN51 Roble - TCS19 Terminalia        19.609 6.78 716   2.893  0.2018
##  TCS01 Roble - TCS06 Roble             -9.864 6.38 716  -1.547  0.9687
##  TCS01 Roble - TCS13 Roble              0.112 6.88 716   0.016  1.0000
##  TCS01 Roble - TCS19 Roble             11.908 6.54 716   1.820  0.8897
##  TCS01 Roble - CCN51 Terminalia        -1.920 6.48 716  -0.296  1.0000
##  TCS01 Roble - TCS01 Terminalia        19.404 6.75 716   2.873  0.2116
##  TCS01 Roble - TCS06 Terminalia        28.083 6.85 716   4.102  0.0041
##  TCS01 Roble - TCS13 Terminalia        23.583 6.38 716   3.695  0.0190
##  TCS01 Roble - TCS19 Terminalia        33.917 6.58 716   5.155  <.0001
##  TCS06 Roble - TCS13 Roble              9.975 6.43 716   1.551  0.9681
##  TCS06 Roble - TCS19 Roble             21.771 6.07 716   3.588  0.0274
##  TCS06 Roble - CCN51 Terminalia         7.943 6.00 716   1.324  0.9925
##  TCS06 Roble - TCS01 Terminalia        29.268 6.30 716   4.643  0.0004
##  TCS06 Roble - TCS06 Terminalia        37.947 6.39 716   5.941  <.0001
##  TCS06 Roble - TCS13 Terminalia        33.446 5.89 716   5.676  <.0001
##  TCS06 Roble - TCS19 Terminalia        43.780 6.11 716   7.171  <.0001
##  TCS13 Roble - TCS19 Roble             11.796 6.60 716   1.788  0.9024
##  TCS13 Roble - CCN51 Terminalia        -2.032 6.54 716  -0.311  1.0000
##  TCS13 Roble - TCS01 Terminalia        19.293 6.81 716   2.831  0.2325
##  TCS13 Roble - TCS06 Terminalia        27.971 6.89 716   4.062  0.0048
##  TCS13 Roble - TCS13 Terminalia        23.471 6.43 716   3.648  0.0224
##  TCS13 Roble - TCS19 Terminalia        33.805 6.63 716   5.098  <.0001
##  TCS19 Roble - CCN51 Terminalia       -13.828 6.17 716  -2.242  0.6344
##  TCS19 Roble - TCS01 Terminalia         7.497 6.47 716   1.158  0.9981
##  TCS19 Roble - TCS06 Terminalia        16.175 6.55 716   2.470  0.4637
##  TCS19 Roble - TCS13 Terminalia        11.675 6.07 716   1.925  0.8402
##  TCS19 Roble - TCS19 Terminalia        22.009 6.27 716   3.509  0.0357
##  CCN51 Terminalia - TCS01 Terminalia   21.325 6.41 716   3.326  0.0634
##  CCN51 Terminalia - TCS06 Terminalia   30.003 6.49 716   4.623  0.0004
##  CCN51 Terminalia - TCS13 Terminalia   25.503 6.00 716   4.252  0.0022
##  CCN51 Terminalia - TCS19 Terminalia   35.837 6.20 716   5.776  <.0001
##  TCS01 Terminalia - TCS06 Terminalia    8.679 6.77 716   1.281  0.9946
##  TCS01 Terminalia - TCS13 Terminalia    4.178 6.31 716   0.662  1.0000
##  TCS01 Terminalia - TCS19 Terminalia   14.512 6.51 716   2.229  0.6436
##  TCS06 Terminalia - TCS13 Terminalia   -4.500 6.39 716  -0.705  1.0000
##  TCS06 Terminalia - TCS19 Terminalia    5.834 6.58 716   0.886  0.9999
##  TCS13 Terminalia - TCS19 Terminalia   10.334 6.10 716   1.693  0.9349
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 15 estimates
cld_forestal_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal_gen
##  gen   forestal   emmean   SE  df lower.CL upper.CL .group 
##  CCN51 Abarco      136.2 4.48 716    127.4    145.0  A     
##  TCS06 Roble       121.3 4.17 716    113.1    129.4  AB    
##  TCS19 Abarco      118.5 4.79 716    109.1    127.9  ABC   
##  CCN51 Terminalia  113.3 4.32 716    104.8    121.8   BCD  
##  TCS01 Abarco      113.2 5.12 716    103.1    123.2  ABCD  
##  TCS01 Roble       111.4 4.83 716    101.9    120.9   BCD  
##  TCS13 Roble       111.3 4.90 716    101.7    120.9   BCD  
##  TCS13 Abarco      104.6 4.91 716     94.9    114.2   BCDE 
##  TCS19 Roble        99.5 4.41 716     90.8    108.2    CDE 
##  CCN51 Roble        97.1 5.09 716     87.1    107.1    CDEF
##  TCS06 Abarco       92.9 6.67 716     79.8    106.0    CDEF
##  TCS01 Terminalia   92.0 4.74 716     82.7    101.3     DEF
##  TCS13 Terminalia   87.8 4.17 716     79.6     96.0      EF
##  TCS06 Terminalia   83.3 4.84 716     73.8     92.8      EF
##  TCS19 Terminalia   77.5 4.46 716     68.7     86.3       F
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 15 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
detach(datos)