setwd("/Volumes/GoogleDrive/Mi unidad/Agrosavia/Colaboraciones/Laura")
datos4<-read.table("santamaria.csv", header=T, sep=',')
datos4$gen<-as.factor(datos4$gen)
datos4$forestal<-as.factor(datos4$forestal)
datos4$bloque<-as.factor(datos4$bloque)
attach(datos4)
library(ggplot2)
library(emmeans)
#Gráfica diámetro
ggplot(datos4, aes(semana, diam, group = gen, colour = gen)) +
  facet_grid(~forestal) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Diámetro") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  ) 
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 34 rows containing non-finite values (stat_smooth).

# Gráfica altura
ggplot(datos4, aes(semana, alt, group = gen, colour = gen)) +
  facet_grid(~forestal) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Altura") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  )  
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 34 rows containing non-finite values (stat_smooth).

# Anova general
aov.diam<-aov(diam~semana*forestal*gen+bloque)
aov.alt<-aov(alt~semana*forestal*gen+bloque)
#Análisis para diámetro
library(nlme)
fit.compsym.diam <- gls(diam ~ semana*forestal*gen+bloque, data=datos4, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.diam <- gls(diam ~ semana*forestal*gen+bloque, data=datos4, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.diam <- gls(diam ~ semana*forestal*gen+bloque, data=datos4, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.diam, fit.ar1.diam, fit.ar1het.diam) #compares the models
##                  Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.diam     1 33 1929.753 2077.746 -931.8766                        
## fit.ar1.diam         2 33 1884.634 2032.627 -909.3171                        
## fit.ar1het.diam      3 36 1799.179 1960.626 -863.5895 2 vs 3 91.45515  <.0001
anova(fit.ar1.diam)
## Denom. DF: 655 
##                     numDF  F-value p-value
## (Intercept)             1 9452.403  <.0001
## semana                  1  448.364  <.0001
## forestal                2    0.699  0.4977
## gen                     4    2.206  0.0669
## bloque                  1    1.840  0.1754
## semana:forestal         2    0.201  0.8176
## semana:gen              4    0.162  0.9574
## forestal:gen            8    6.682  <.0001
## semana:forestal:gen     8    1.318  0.2312
anova(fit.ar1het.diam)
## Denom. DF: 655 
##                     numDF   F-value p-value
## (Intercept)             1 10600.425  <.0001
## semana                  1   858.726  <.0001
## forestal                2     0.590  0.5547
## gen                     4     2.961  0.0193
## bloque                  1     2.649  0.1041
## semana:forestal         2     0.361  0.6969
## semana:gen              4     0.312  0.8697
## forestal:gen            8     5.407  <.0001
## semana:forestal:gen     8     2.315  0.0188
# Análisis para altura
fit.compsym.alt <- gls(alt ~ semana*forestal*gen+bloque, data=datos4, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.alt <- gls(alt ~ semana*forestal*gen+bloque, data=datos4, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.alt <- gls(alt ~ semana*forestal*gen+bloque, data=datos4, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.alt, fit.ar1.alt, fit.ar1het.alt) #compares the models
##                 Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.alt     1 33 6643.458 6791.451 -3288.729                        
## fit.ar1.alt         2 33 6635.769 6783.762 -3284.885                        
## fit.ar1het.alt      3 36 6615.120 6776.567 -3271.560 2 vs 3 26.64967  <.0001
anova(fit.ar1.alt)
## Denom. DF: 655 
##                     numDF   F-value p-value
## (Intercept)             1 20018.297  <.0001
## semana                  1  1240.223  <.0001
## forestal                2     3.123  0.0447
## gen                     4     5.110  0.0005
## bloque                  1     0.131  0.7177
## semana:forestal         2     0.132  0.8766
## semana:gen              4     0.689  0.5999
## forestal:gen            8    11.487  <.0001
## semana:forestal:gen     8     1.065  0.3858
anova(fit.ar1het.alt)
## Denom. DF: 655 
##                     numDF   F-value p-value
## (Intercept)             1 18288.746  <.0001
## semana                  1  1544.340  <.0001
## forestal                2     3.503  0.0307
## gen                     4     6.449  <.0001
## bloque                  1     0.006  0.9377
## semana:forestal         2     0.294  0.7457
## semana:gen              4     0.730  0.5715
## forestal:gen            8    10.470  <.0001
## semana:forestal:gen     8     1.374  0.2043
#Tukey diámetro
library(multcompView)
interac.tuk.diam<-TukeyHSD(aov.diam, "forestal:gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
fores.tuk.diam<-TukeyHSD(aov.diam, "forestal", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
gen.tuk.diam<-TukeyHSD(aov.diam, "gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
#Tukey altura
interac.tuk.alt<-TukeyHSD(aov.alt, "forestal:gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
fores.tuk.alt<-TukeyHSD(aov.alt, "forestal", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
gen.tuk.alt<-TukeyHSD(aov.alt, "gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## gen
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana,
## forestal, gen
#Etiquetas Tukey diámetro
#Genotipos
generate_label_df_gen_diam <- function(gen.tuk.diam, variable){
  Tukey.levels <- gen.tuk.diam[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.diam <- generate_label_df_gen_diam(gen.tuk.diam, "gen")
labels.gen.diam
##       Letters treatment
## CCN51       a     CCN51
## TCS01      ab     TCS01
## TCS06       a     TCS06
## TCS13       b     TCS13
## TCS19       a     TCS19
# Forestal
generate_label_df_forestal_diam <- function(fores.tuk.diam, variable){
  Tukey.levels <- fores.tuk.diam[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.forestal.diam <- generate_label_df_forestal_diam(fores.tuk.diam, "forestal")
labels.forestal.diam
##            Letters  treatment
## Abarco           b     Abarco
## Roble            c      Roble
## Terminalia       a Terminalia
# Interacción Forestal:Genotipo
generate_label_df_interac_diam <- function(interac.tuk.diam, variable){
  Tukey.levels <- interac.tuk.diam[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.diam <- generate_label_df_interac_diam(interac.tuk.diam, "forestal:gen")
labels.interac.diam
##                  Letters        treatment
## Abarco:CCN51        cdef     Abarco:CCN51
## Abarco:TCS01        abcd     Abarco:TCS01
## Abarco:TCS06         abc     Abarco:TCS06
## Abarco:TCS13       acdef     Abarco:TCS13
## Abarco:TCS19           f     Abarco:TCS19
## Roble:CCN51         abcd      Roble:CCN51
## Roble:TCS01        abcde      Roble:TCS01
## Roble:TCS06        acdef      Roble:TCS06
## Roble:TCS13         abcd      Roble:TCS13
## Roble:TCS19        acdef      Roble:TCS19
## Terminalia:CCN51     def Terminalia:CCN51
## Terminalia:TCS01   acdef Terminalia:TCS01
## Terminalia:TCS06      ef Terminalia:TCS06
## Terminalia:TCS13       b Terminalia:TCS13
## Terminalia:TCS19      ab Terminalia:TCS19
#Etiquetas Tukey altura
#Genotipos
generate_label_df_gen_alt <- function(gen.tuk.alt, variable){
  Tukey.levels <- gen.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.alt <- generate_label_df_gen_alt(gen.tuk.alt, "gen")
labels.gen.alt
##       Letters treatment
## CCN51      ac     CCN51
## TCS01      ab     TCS01
## TCS06       c     TCS06
## TCS13      ab     TCS13
## TCS19       b     TCS19
# Forestal
generate_label_df_forestal_alt <- function(fores.tuk.alt, variable){
  Tukey.levels <- fores.tuk.alt[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.forestal.alt <- generate_label_df_forestal_alt(fores.tuk.alt, "forestal")
labels.forestal.alt
##            Letters  treatment
## Abarco           b     Abarco
## Roble            b      Roble
## Terminalia       a Terminalia
# Interacción Forestal:Genotipo
generate_label_df_interac_alt <- function(interac.tuk.alt, variable){
  Tukey.levels <- interac.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.alt <- generate_label_df_interac_alt(interac.tuk.alt, "forestal:gen")
labels.interac.alt
##                  Letters        treatment
## Abarco:CCN51           f     Abarco:CCN51
## Abarco:TCS01       abcde     Abarco:TCS01
## Abarco:TCS06        abcd     Abarco:TCS06
## Abarco:TCS13        cdef     Abarco:TCS13
## Abarco:TCS19       acdef     Abarco:TCS19
## Roble:CCN51           ab      Roble:CCN51
## Roble:TCS01          abc      Roble:TCS01
## Roble:TCS06           ef      Roble:TCS06
## Roble:TCS13         cdef      Roble:TCS13
## Roble:TCS19        abcde      Roble:TCS19
## Terminalia:CCN51     def Terminalia:CCN51
## Terminalia:TCS01     def Terminalia:TCS01
## Terminalia:TCS06       f Terminalia:TCS06
## Terminalia:TCS13       b Terminalia:TCS13
## Terminalia:TCS19      ab Terminalia:TCS19
## Gráficas contrastes de medias diametro
#Gen
contrast <- emmeans(aov.diam, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.gen <- emmeans(aov.diam, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean     SE  df lower.CL upper.CL
##  CCN51   4.33 0.0712 655     4.19     4.47
##  TCS01   4.12 0.0745 655     3.98     4.27
##  TCS06   4.34 0.0756 655     4.19     4.49
##  TCS13   4.02 0.0723 655     3.87     4.16
##  TCS19   4.31 0.0712 655     4.17     4.45
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate    SE  df t.ratio p.value
##  CCN51 - TCS01   0.2029 0.103 655   1.968  0.2828
##  CCN51 - TCS06  -0.0137 0.104 655  -0.132  0.9999
##  CCN51 - TCS13   0.3098 0.101 655   3.053  0.0199
##  CCN51 - TCS19   0.0136 0.101 655   0.135  0.9999
##  TCS01 - TCS06  -0.2166 0.106 655  -2.041  0.2475
##  TCS01 - TCS13   0.1069 0.104 655   1.030  0.8415
##  TCS01 - TCS19  -0.1893 0.103 655  -1.836  0.3535
##  TCS06 - TCS13   0.3235 0.105 655   3.092  0.0176
##  TCS06 - TCS19   0.0273 0.104 655   0.263  0.9989
##  TCS13 - TCS19  -0.2962 0.101 655  -2.919  0.0298
## 
## Results are averaged over the levels of: forestal, bloque 
## P value adjustment: tukey method for comparing a family of 5 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean     SE  df lower.CL upper.CL .group
##  TCS06   4.34 0.0756 655     4.19     4.49  A    
##  CCN51   4.33 0.0712 655     4.19     4.47  A    
##  TCS19   4.31 0.0712 655     4.17     4.45  A    
##  TCS01   4.12 0.0745 655     3.98     4.27  AB   
##  TCS13   4.02 0.0723 655     3.87     4.16   B   
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 5 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal
contrast <- emmeans(aov.diam, ~forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.forestal <- emmeans(aov.diam, pairwise ~ forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal
## $emmeans
##  forestal   emmean     SE  df lower.CL upper.CL
##  Abarco       4.29 0.0552 655     4.18      4.4
##  Roble        4.19 0.0573 655     4.08      4.3
##  Terminalia   4.19 0.0571 655     4.08      4.3
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast            estimate     SE  df t.ratio p.value
##  Abarco - Roble       0.09832 0.0795 655   1.236  0.4322
##  Abarco - Terminalia  0.09535 0.0794 655   1.201  0.4533
##  Roble - Terminalia  -0.00297 0.0809 655  -0.037  0.9993
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_forestal <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal
##  forestal   emmean     SE  df lower.CL upper.CL .group
##  Abarco       4.29 0.0552 655     4.18      4.4  A    
##  Terminalia   4.19 0.0571 655     4.08      4.3  A    
##  Roble        4.19 0.0573 655     4.08      4.3  A    
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal*Gen
contrast <- emmeans(aov.diam, ~gen*forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.forestal.gen <- emmeans(aov.diam, pairwise ~ gen*forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal.gen
## $emmeans
##  gen   forestal   emmean    SE  df lower.CL upper.CL
##  CCN51 Abarco       4.46 0.123 655     4.22     4.70
##  TCS01 Abarco       3.98 0.123 655     3.74     4.22
##  TCS06 Abarco       3.91 0.126 655     3.66     4.15
##  TCS13 Abarco       4.40 0.123 655     4.16     4.64
##  TCS19 Abarco       4.68 0.123 655     4.44     4.93
##  CCN51 Roble        3.99 0.124 655     3.75     4.24
##  TCS01 Roble        4.08 0.126 655     3.83     4.33
##  TCS06 Roble        4.47 0.142 655     4.19     4.75
##  TCS13 Roble        3.99 0.123 655     3.75     4.23
##  TCS19 Roble        4.42 0.124 655     4.18     4.66
##  CCN51 Terminalia   4.52 0.123 655     4.28     4.76
##  TCS01 Terminalia   4.30 0.138 655     4.03     4.58
##  TCS06 Terminalia   4.64 0.124 655     4.40     4.89
##  TCS13 Terminalia   3.66 0.130 655     3.40     3.91
##  TCS19 Terminalia   3.83 0.123 655     3.59     4.07
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                            estimate    SE  df t.ratio p.value
##  CCN51 Abarco - TCS01 Abarco          0.47960 0.174 655   2.760  0.2716
##  CCN51 Abarco - TCS06 Abarco          0.55477 0.176 655   3.158  0.1030
##  CCN51 Abarco - TCS13 Abarco          0.06238 0.174 655   0.359  1.0000
##  CCN51 Abarco - TCS19 Abarco         -0.22205 0.174 655  -1.278  0.9947
##  CCN51 Abarco - CCN51 Roble           0.47126 0.175 655   2.697  0.3087
##  CCN51 Abarco - TCS01 Roble           0.38138 0.176 655   2.169  0.6868
##  CCN51 Abarco - TCS06 Roble          -0.00450 0.188 655  -0.024  1.0000
##  CCN51 Abarco - TCS13 Roble           0.47489 0.174 655   2.733  0.2874
##  CCN51 Abarco - TCS19 Roble           0.04327 0.175 655   0.248  1.0000
##  CCN51 Abarco - CCN51 Terminalia     -0.06029 0.174 655  -0.347  1.0000
##  CCN51 Abarco - TCS01 Terminalia      0.15857 0.185 655   0.858  0.9999
##  CCN51 Abarco - TCS06 Terminalia     -0.18047 0.175 655  -1.033  0.9995
##  CCN51 Abarco - TCS13 Terminalia      0.80312 0.179 655   4.493  0.0008
##  CCN51 Abarco - TCS19 Terminalia      0.63053 0.174 655   3.628  0.0240
##  TCS01 Abarco - TCS06 Abarco          0.07517 0.176 655   0.428  1.0000
##  TCS01 Abarco - TCS13 Abarco         -0.41722 0.174 655  -2.401  0.5149
##  TCS01 Abarco - TCS19 Abarco         -0.70165 0.174 655  -4.038  0.0053
##  TCS01 Abarco - CCN51 Roble          -0.00834 0.175 655  -0.048  1.0000
##  TCS01 Abarco - TCS01 Roble          -0.09822 0.176 655  -0.559  1.0000
##  TCS01 Abarco - TCS06 Roble          -0.48410 0.188 655  -2.575  0.3888
##  TCS01 Abarco - TCS13 Roble          -0.00471 0.174 655  -0.027  1.0000
##  TCS01 Abarco - TCS19 Roble          -0.43633 0.175 655  -2.497  0.4436
##  TCS01 Abarco - CCN51 Terminalia     -0.53989 0.174 655  -3.107  0.1184
##  TCS01 Abarco - TCS01 Terminalia     -0.32103 0.185 655  -1.736  0.9212
##  TCS01 Abarco - TCS06 Terminalia     -0.66006 0.175 655  -3.778  0.0142
##  TCS01 Abarco - TCS13 Terminalia      0.32352 0.179 655   1.810  0.8937
##  TCS01 Abarco - TCS19 Terminalia      0.15093 0.174 655   0.869  0.9999
##  TCS06 Abarco - TCS13 Abarco         -0.49239 0.176 655  -2.803  0.2476
##  TCS06 Abarco - TCS19 Abarco         -0.77682 0.176 655  -4.423  0.0011
##  TCS06 Abarco - CCN51 Roble          -0.08352 0.177 655  -0.473  1.0000
##  TCS06 Abarco - TCS01 Roble          -0.17340 0.178 655  -0.976  0.9997
##  TCS06 Abarco - TCS06 Roble          -0.55928 0.190 655  -2.947  0.1777
##  TCS06 Abarco - TCS13 Roble          -0.07989 0.176 655  -0.455  1.0000
##  TCS06 Abarco - TCS19 Roble          -0.51150 0.177 655  -2.897  0.2005
##  TCS06 Abarco - CCN51 Terminalia     -0.61507 0.176 655  -3.502  0.0367
##  TCS06 Abarco - TCS01 Terminalia     -0.39621 0.187 655  -2.122  0.7196
##  TCS06 Abarco - TCS06 Terminalia     -0.73524 0.177 655  -4.164  0.0032
##  TCS06 Abarco - TCS13 Terminalia      0.24834 0.181 655   1.375  0.9892
##  TCS06 Abarco - TCS19 Terminalia      0.07575 0.176 655   0.431  1.0000
##  TCS13 Abarco - TCS19 Abarco         -0.28443 0.174 655  -1.637  0.9500
##  TCS13 Abarco - CCN51 Roble           0.40888 0.175 655   2.340  0.5606
##  TCS13 Abarco - TCS01 Roble           0.31899 0.176 655   1.814  0.8918
##  TCS13 Abarco - TCS06 Roble          -0.06689 0.188 655  -0.356  1.0000
##  TCS13 Abarco - TCS13 Roble           0.41251 0.174 655   2.374  0.5353
##  TCS13 Abarco - TCS19 Roble          -0.01911 0.175 655  -0.109  1.0000
##  TCS13 Abarco - CCN51 Terminalia     -0.12268 0.174 655  -0.706  1.0000
##  TCS13 Abarco - TCS01 Terminalia      0.09618 0.185 655   0.520  1.0000
##  TCS13 Abarco - TCS06 Terminalia     -0.24285 0.175 655  -1.390  0.9880
##  TCS13 Abarco - TCS13 Terminalia      0.74074 0.179 655   4.144  0.0035
##  TCS13 Abarco - TCS19 Terminalia      0.56815 0.174 655   3.269  0.0751
##  TCS19 Abarco - CCN51 Roble           0.69330 0.175 655   3.968  0.0070
##  TCS19 Abarco - TCS01 Roble           0.60342 0.176 655   3.432  0.0458
##  TCS19 Abarco - TCS06 Roble           0.21754 0.188 655   1.157  0.9981
##  TCS19 Abarco - TCS13 Roble           0.69694 0.174 655   4.011  0.0059
##  TCS19 Abarco - TCS19 Roble           0.26532 0.175 655   1.519  0.9733
##  TCS19 Abarco - CCN51 Terminalia      0.16175 0.174 655   0.931  0.9998
##  TCS19 Abarco - TCS01 Terminalia      0.38061 0.185 655   2.058  0.7620
##  TCS19 Abarco - TCS06 Terminalia      0.04158 0.175 655   0.238  1.0000
##  TCS19 Abarco - TCS13 Terminalia      1.02517 0.179 655   5.735  <.0001
##  TCS19 Abarco - TCS19 Terminalia      0.85257 0.174 655   4.906  0.0001
##  CCN51 Roble - TCS01 Roble           -0.08988 0.177 655  -0.509  1.0000
##  CCN51 Roble - TCS06 Roble           -0.47576 0.189 655  -2.518  0.4286
##  CCN51 Roble - TCS13 Roble            0.00363 0.175 655   0.021  1.0000
##  CCN51 Roble - TCS19 Roble           -0.42799 0.176 655  -2.437  0.4883
##  CCN51 Roble - CCN51 Terminalia      -0.53155 0.175 655  -3.042  0.1402
##  CCN51 Roble - TCS01 Terminalia      -0.31269 0.186 655  -1.683  0.9378
##  CCN51 Roble - TCS06 Terminalia      -0.65172 0.176 655  -3.711  0.0181
##  CCN51 Roble - TCS13 Terminalia       0.33186 0.180 655   1.847  0.8778
##  CCN51 Roble - TCS19 Terminalia       0.15927 0.175 655   0.912  0.9999
##  TCS01 Roble - TCS06 Roble           -0.38588 0.190 655  -2.031  0.7791
##  TCS01 Roble - TCS13 Roble            0.09351 0.176 655   0.532  1.0000
##  TCS01 Roble - TCS19 Roble           -0.33811 0.177 655  -1.913  0.8460
##  TCS01 Roble - CCN51 Terminalia      -0.44167 0.176 655  -2.512  0.4330
##  TCS01 Roble - TCS01 Terminalia      -0.22281 0.187 655  -1.192  0.9974
##  TCS01 Roble - TCS06 Terminalia      -0.56184 0.177 655  -3.179  0.0972
##  TCS01 Roble - TCS13 Terminalia       0.42174 0.181 655   2.334  0.5656
##  TCS01 Roble - TCS19 Terminalia       0.24915 0.176 655   1.417  0.9857
##  TCS06 Roble - TCS13 Roble            0.47939 0.188 655   2.550  0.4063
##  TCS06 Roble - TCS19 Roble            0.04777 0.189 655   0.253  1.0000
##  TCS06 Roble - CCN51 Terminalia      -0.05579 0.188 655  -0.297  1.0000
##  TCS06 Roble - TCS01 Terminalia       0.16307 0.198 655   0.823  1.0000
##  TCS06 Roble - TCS06 Terminalia      -0.17596 0.189 655  -0.931  0.9998
##  TCS06 Roble - TCS13 Terminalia       0.80762 0.193 655   4.190  0.0029
##  TCS06 Roble - TCS19 Terminalia       0.63503 0.188 655   3.378  0.0543
##  TCS13 Roble - TCS19 Roble           -0.43162 0.175 655  -2.470  0.4634
##  TCS13 Roble - CCN51 Terminalia      -0.53518 0.174 655  -3.080  0.1272
##  TCS13 Roble - TCS01 Terminalia      -0.31632 0.185 655  -1.711  0.9295
##  TCS13 Roble - TCS06 Terminalia      -0.65535 0.175 655  -3.751  0.0157
##  TCS13 Roble - TCS13 Terminalia       0.32823 0.179 655   1.836  0.8826
##  TCS13 Roble - TCS19 Terminalia       0.15564 0.174 655   0.896  0.9999
##  TCS19 Roble - CCN51 Terminalia      -0.10356 0.175 655  -0.593  1.0000
##  TCS19 Roble - TCS01 Terminalia       0.11530 0.186 655   0.620  1.0000
##  TCS19 Roble - TCS06 Terminalia      -0.22374 0.176 655  -1.274  0.9949
##  TCS19 Roble - TCS13 Terminalia       0.75985 0.180 655   4.229  0.0025
##  TCS19 Roble - TCS19 Terminalia       0.58726 0.175 655   3.361  0.0571
##  CCN51 Terminalia - TCS01 Terminalia  0.21886 0.185 655   1.184  0.9976
##  CCN51 Terminalia - TCS06 Terminalia -0.12017 0.175 655  -0.688  1.0000
##  CCN51 Terminalia - TCS13 Terminalia  0.86341 0.179 655   4.830  0.0002
##  CCN51 Terminalia - TCS19 Terminalia  0.69082 0.174 655   3.975  0.0068
##  TCS01 Terminalia - TCS06 Terminalia -0.33903 0.186 655  -1.825  0.8876
##  TCS01 Terminalia - TCS13 Terminalia  0.64455 0.190 655   3.398  0.0510
##  TCS01 Terminalia - TCS19 Terminalia  0.47196 0.185 655   2.552  0.4046
##  TCS06 Terminalia - TCS13 Terminalia  0.98358 0.180 655   5.475  <.0001
##  TCS06 Terminalia - TCS19 Terminalia  0.81099 0.175 655   4.642  0.0004
##  TCS13 Terminalia - TCS19 Terminalia -0.17259 0.179 655  -0.965  0.9998
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 15 estimates
cld_forestal_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal_gen
##  gen   forestal   emmean    SE  df lower.CL upper.CL .group 
##  TCS19 Abarco       4.68 0.123 655     4.44     4.93  A     
##  TCS06 Terminalia   4.64 0.124 655     4.40     4.89  AB    
##  CCN51 Terminalia   4.52 0.123 655     4.28     4.76  ABC   
##  TCS06 Roble        4.47 0.142 655     4.19     4.75  ABCDE 
##  CCN51 Abarco       4.46 0.123 655     4.22     4.70  ABCD  
##  TCS19 Roble        4.42 0.124 655     4.18     4.66  ABCDE 
##  TCS13 Abarco       4.40 0.123 655     4.16     4.64  ABCDE 
##  TCS01 Terminalia   4.30 0.138 655     4.03     4.58  ABCDEF
##  TCS01 Roble        4.08 0.126 655     3.83     4.33   BCDEF
##  CCN51 Roble        3.99 0.124 655     3.75     4.24    CDEF
##  TCS13 Roble        3.99 0.123 655     3.75     4.23    CDEF
##  TCS01 Abarco       3.98 0.123 655     3.74     4.22    CDEF
##  TCS06 Abarco       3.91 0.126 655     3.66     4.15     DEF
##  TCS19 Terminalia   3.83 0.123 655     3.59     4.07      EF
##  TCS13 Terminalia   3.66 0.130 655     3.40     3.91       F
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 15 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
## Gráficas contrastes de medias altura
#Gen
contrast <- emmeans(aov.alt, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.gen <- emmeans(aov.alt, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean   SE  df lower.CL upper.CL
##  CCN51    193 2.60 655      188      198
##  TCS01    185 2.72 655      180      191
##  TCS06    199 2.76 655      194      204
##  TCS13    185 2.64 655      180      190
##  TCS19    182 2.60 655      177      187
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE  df t.ratio p.value
##  CCN51 - TCS01    7.897 3.77 655   2.097  0.2225
##  CCN51 - TCS06   -5.810 3.79 655  -1.531  0.5423
##  CCN51 - TCS13    7.826 3.71 655   2.111  0.2165
##  CCN51 - TCS19   11.300 3.68 655   3.072  0.0188
##  TCS01 - TCS06  -13.707 3.88 655  -3.536  0.0040
##  TCS01 - TCS13   -0.071 3.79 655  -0.019  1.0000
##  TCS01 - TCS19    3.403 3.77 655   0.904  0.8955
##  TCS06 - TCS13   13.636 3.82 655   3.568  0.0035
##  TCS06 - TCS19   17.110 3.79 655   4.510  0.0001
##  TCS13 - TCS19    3.474 3.71 655   0.937  0.8824
## 
## Results are averaged over the levels of: forestal, bloque 
## P value adjustment: tukey method for comparing a family of 5 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean   SE  df lower.CL upper.CL .group
##  TCS06    199 2.76 655      194      204  A    
##  CCN51    193 2.60 655      188      198  AB   
##  TCS13    185 2.64 655      180      190   BC  
##  TCS01    185 2.72 655      180      191   BC  
##  TCS19    182 2.60 655      177      187    C  
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 5 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal
contrast <- emmeans(aov.alt, ~forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.forestal <- emmeans(aov.alt, pairwise ~ forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal
## $emmeans
##  forestal   emmean   SE  df lower.CL upper.CL
##  Abarco        192 2.02 655      188      196
##  Roble         185 2.09 655      181      189
##  Terminalia    189 2.09 655      185      193
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast            estimate   SE  df t.ratio p.value
##  Abarco - Roble          6.96 2.91 655   2.396  0.0444
##  Abarco - Terminalia     3.15 2.90 655   1.084  0.5241
##  Roble - Terminalia     -3.81 2.95 655  -1.291  0.4006
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_forestal <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal
##  forestal   emmean   SE  df lower.CL upper.CL .group
##  Abarco        192 2.02 655      188      196  A    
##  Terminalia    189 2.09 655      185      193  AB   
##  Roble         185 2.09 655      181      189   B   
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal*Gen
contrast <- emmeans(aov.alt, ~gen*forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.forestal.gen <- emmeans(aov.alt, pairwise ~ gen*forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal.gen
## $emmeans
##  gen   forestal   emmean   SE  df lower.CL upper.CL
##  CCN51 Abarco        212 4.49 655      203      220
##  TCS01 Abarco        185 4.49 655      176      193
##  TCS06 Abarco        180 4.59 655      171      189
##  TCS13 Abarco        194 4.49 655      185      203
##  TCS19 Abarco        191 4.49 655      182      199
##  CCN51 Roble         170 4.54 655      161      179
##  TCS01 Roble         173 4.59 655      164      182
##  TCS06 Roble         206 5.20 655      196      216
##  TCS13 Roble         194 4.49 655      185      202
##  TCS19 Roble         184 4.54 655      175      193
##  CCN51 Terminalia    198 4.49 655      189      207
##  TCS01 Terminalia    198 5.05 655      188      208
##  TCS06 Terminalia    211 4.54 655      202      219
##  TCS13 Terminalia    168 4.74 655      159      177
##  TCS19 Terminalia    171 4.49 655      162      179
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate   SE  df t.ratio p.value
##  CCN51 Abarco - TCS01 Abarco          26.93640 6.35 655   4.243  0.0023
##  CCN51 Abarco - TCS06 Abarco          31.32756 6.42 655   4.882  0.0001
##  CCN51 Abarco - TCS13 Abarco          17.33122 6.35 655   2.730  0.2891
##  CCN51 Abarco - TCS19 Abarco          20.96155 6.35 655   3.302  0.0683
##  CCN51 Abarco - CCN51 Roble           41.93194 6.38 655   6.569  <.0001
##  CCN51 Abarco - TCS01 Roble           38.67897 6.42 655   6.022  <.0001
##  CCN51 Abarco - TCS06 Roble            5.53475 6.87 655   0.806  1.0000
##  CCN51 Abarco - TCS13 Roble           17.89140 6.35 655   2.818  0.2396
##  CCN51 Abarco - TCS19 Roble           27.32503 6.38 655   4.281  0.0020
##  CCN51 Abarco - CCN51 Terminalia      13.38179 6.35 655   2.108  0.7294
##  CCN51 Abarco - TCS01 Terminalia      13.38954 6.76 655   1.982  0.8085
##  CCN51 Abarco - TCS06 Terminalia       1.02082 6.38 655   0.160  1.0000
##  CCN51 Abarco - TCS13 Terminalia      43.56916 6.53 655   6.671  <.0001
##  CCN51 Abarco - TCS19 Terminalia      40.92743 6.35 655   6.447  <.0001
##  TCS01 Abarco - TCS06 Abarco           4.39116 6.42 655   0.684  1.0000
##  TCS01 Abarco - TCS13 Abarco          -9.60518 6.35 655  -1.513  0.9741
##  TCS01 Abarco - TCS19 Abarco          -5.97485 6.35 655  -0.941  0.9998
##  TCS01 Abarco - CCN51 Roble           14.99554 6.38 655   2.349  0.5537
##  TCS01 Abarco - TCS01 Roble           11.74257 6.42 655   1.828  0.8860
##  TCS01 Abarco - TCS06 Roble          -21.40165 6.87 655  -3.116  0.1156
##  TCS01 Abarco - TCS13 Roble           -9.04500 6.35 655  -1.425  0.9849
##  TCS01 Abarco - TCS19 Roble            0.38863 6.38 655   0.061  1.0000
##  TCS01 Abarco - CCN51 Terminalia     -13.55461 6.35 655  -2.135  0.7108
##  TCS01 Abarco - TCS01 Terminalia     -13.54686 6.76 655  -2.005  0.7948
##  TCS01 Abarco - TCS06 Terminalia     -25.91558 6.38 655  -4.060  0.0049
##  TCS01 Abarco - TCS13 Terminalia      16.63276 6.53 655   2.547  0.4084
##  TCS01 Abarco - TCS19 Terminalia      13.99102 6.35 655   2.204  0.6620
##  TCS06 Abarco - TCS13 Abarco         -13.99634 6.42 655  -2.181  0.6785
##  TCS06 Abarco - TCS19 Abarco         -10.36601 6.42 655  -1.615  0.9551
##  TCS06 Abarco - CCN51 Roble           10.60438 6.45 655   1.644  0.9483
##  TCS06 Abarco - TCS01 Roble            7.35141 6.49 655   1.133  0.9985
##  TCS06 Abarco - TCS06 Roble          -25.79280 6.93 655  -3.721  0.0174
##  TCS06 Abarco - TCS13 Roble          -13.43615 6.42 655  -2.094  0.7389
##  TCS06 Abarco - TCS19 Roble           -4.00253 6.45 655  -0.620  1.0000
##  TCS06 Abarco - CCN51 Terminalia     -17.94577 6.42 655  -2.796  0.2512
##  TCS06 Abarco - TCS01 Terminalia     -17.93802 6.82 655  -2.630  0.3516
##  TCS06 Abarco - TCS06 Terminalia     -30.30674 6.45 655  -4.698  0.0003
##  TCS06 Abarco - TCS13 Terminalia      12.24161 6.60 655   1.855  0.8740
##  TCS06 Abarco - TCS19 Terminalia       9.59987 6.42 655   1.496  0.9766
##  TCS13 Abarco - TCS19 Abarco           3.63033 6.35 655   0.572  1.0000
##  TCS13 Abarco - CCN51 Roble           24.60072 6.38 655   3.854  0.0108
##  TCS13 Abarco - TCS01 Roble           21.34775 6.42 655   3.324  0.0640
##  TCS13 Abarco - TCS06 Roble          -11.79646 6.87 655  -1.717  0.9274
##  TCS13 Abarco - TCS13 Roble            0.56019 6.35 655   0.088  1.0000
##  TCS13 Abarco - TCS19 Roble            9.99381 6.38 655   1.566  0.9653
##  TCS13 Abarco - CCN51 Terminalia      -3.94943 6.35 655  -0.622  1.0000
##  TCS13 Abarco - TCS01 Terminalia      -3.94168 6.76 655  -0.583  1.0000
##  TCS13 Abarco - TCS06 Terminalia     -16.31040 6.38 655  -2.555  0.4024
##  TCS13 Abarco - TCS13 Terminalia      26.23795 6.53 655   4.018  0.0058
##  TCS13 Abarco - TCS19 Terminalia      23.59621 6.35 655   3.717  0.0177
##  TCS19 Abarco - CCN51 Roble           20.97039 6.38 655   3.285  0.0717
##  TCS19 Abarco - TCS01 Roble           17.71742 6.42 655   2.758  0.2724
##  TCS19 Abarco - TCS06 Roble          -15.42680 6.87 655  -2.246  0.6312
##  TCS19 Abarco - TCS13 Roble           -3.07015 6.35 655  -0.484  1.0000
##  TCS19 Abarco - TCS19 Roble            6.36348 6.38 655   0.997  0.9996
##  TCS19 Abarco - CCN51 Terminalia      -7.57976 6.35 655  -1.194  0.9974
##  TCS19 Abarco - TCS01 Terminalia      -7.57201 6.76 655  -1.121  0.9987
##  TCS19 Abarco - TCS06 Terminalia     -19.94073 6.38 655  -3.124  0.1131
##  TCS19 Abarco - TCS13 Terminalia      22.60761 6.53 655   3.462  0.0417
##  TCS19 Abarco - TCS19 Terminalia      19.96587 6.35 655   3.145  0.1068
##  CCN51 Roble - TCS01 Roble            -3.25297 6.46 655  -0.504  1.0000
##  CCN51 Roble - TCS06 Roble           -36.39719 6.90 655  -5.273  <.0001
##  CCN51 Roble - TCS13 Roble           -24.04054 6.38 655  -3.766  0.0148
##  CCN51 Roble - TCS19 Roble           -14.60691 6.42 655  -2.276  0.6087
##  CCN51 Roble - CCN51 Terminalia      -28.55015 6.38 655  -4.473  0.0009
##  CCN51 Roble - TCS01 Terminalia      -28.54240 6.79 655  -4.204  0.0027
##  CCN51 Roble - TCS06 Terminalia      -40.91112 6.42 655  -6.376  <.0001
##  CCN51 Roble - TCS13 Terminalia        1.63722 6.56 655   0.249  1.0000
##  CCN51 Roble - TCS19 Terminalia       -1.00452 6.38 655  -0.157  1.0000
##  TCS01 Roble - TCS06 Roble           -33.14422 6.94 655  -4.775  0.0002
##  TCS01 Roble - TCS13 Roble           -20.78757 6.42 655  -3.236  0.0827
##  TCS01 Roble - TCS19 Roble           -11.35394 6.46 655  -1.759  0.9135
##  TCS01 Roble - CCN51 Terminalia      -25.29718 6.42 655  -3.939  0.0078
##  TCS01 Roble - TCS01 Terminalia      -25.28943 6.83 655  -3.704  0.0185
##  TCS01 Roble - TCS06 Terminalia      -37.65815 6.46 655  -5.833  <.0001
##  TCS01 Roble - TCS13 Terminalia        4.89019 6.60 655   0.741  1.0000
##  TCS01 Roble - TCS19 Terminalia        2.24845 6.42 655   0.350  1.0000
##  TCS06 Roble - TCS13 Roble            12.35665 6.87 655   1.799  0.8982
##  TCS06 Roble - TCS19 Roble            21.79027 6.90 655   3.157  0.1033
##  TCS06 Roble - CCN51 Terminalia        7.84703 6.87 655   1.142  0.9984
##  TCS06 Roble - TCS01 Terminalia        7.85479 7.24 655   1.085  0.9991
##  TCS06 Roble - TCS06 Terminalia       -4.51393 6.90 655  -0.654  1.0000
##  TCS06 Roble - TCS13 Terminalia       38.03441 7.04 655   5.401  <.0001
##  TCS06 Roble - TCS19 Terminalia       35.39267 6.87 655   5.153  <.0001
##  TCS13 Roble - TCS19 Roble             9.43362 6.38 655   1.478  0.9790
##  TCS13 Roble - CCN51 Terminalia       -4.50962 6.35 655  -0.710  1.0000
##  TCS13 Roble - TCS01 Terminalia       -4.50186 6.76 655  -0.666  1.0000
##  TCS13 Roble - TCS06 Terminalia      -16.87058 6.38 655  -2.643  0.3431
##  TCS13 Roble - TCS13 Terminalia       25.67776 6.53 655   3.932  0.0080
##  TCS13 Roble - TCS19 Terminalia       23.03602 6.35 655   3.628  0.0240
##  TCS19 Roble - CCN51 Terminalia      -13.94324 6.38 655  -2.184  0.6760
##  TCS19 Roble - TCS01 Terminalia      -13.93549 6.79 655  -2.053  0.7656
##  TCS19 Roble - TCS06 Terminalia      -26.30421 6.42 655  -4.099  0.0042
##  TCS19 Roble - TCS13 Terminalia       16.24414 6.56 655   2.475  0.4602
##  TCS19 Roble - TCS19 Terminalia       13.60240 6.38 655   2.131  0.7136
##  CCN51 Terminalia - TCS01 Terminalia   0.00775 6.76 655   0.001  1.0000
##  CCN51 Terminalia - TCS06 Terminalia -12.36097 6.38 655  -1.937  0.8338
##  CCN51 Terminalia - TCS13 Terminalia  30.18738 6.53 655   4.622  0.0004
##  CCN51 Terminalia - TCS19 Terminalia  27.54564 6.35 655   4.339  0.0016
##  TCS01 Terminalia - TCS06 Terminalia -12.36872 6.79 655  -1.822  0.8887
##  TCS01 Terminalia - TCS13 Terminalia  30.17962 6.93 655   4.355  0.0015
##  TCS01 Terminalia - TCS19 Terminalia  27.53788 6.76 655   4.076  0.0046
##  TCS06 Terminalia - TCS13 Terminalia  42.54834 6.56 655   6.482  <.0001
##  TCS06 Terminalia - TCS19 Terminalia  39.90660 6.38 655   6.252  <.0001
##  TCS13 Terminalia - TCS19 Terminalia  -2.64174 6.53 655  -0.404  1.0000
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 15 estimates
cld_forestal_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal_gen
##  gen   forestal   emmean   SE  df lower.CL upper.CL .group 
##  CCN51 Abarco        212 4.49 655      203      220  A     
##  TCS06 Terminalia    211 4.54 655      202      219  A     
##  TCS06 Roble         206 5.20 655      196      216  AB    
##  CCN51 Terminalia    198 4.49 655      189      207  ABC   
##  TCS01 Terminalia    198 5.05 655      188      208  ABC   
##  TCS13 Abarco        194 4.49 655      185      203  ABCD  
##  TCS13 Roble         194 4.49 655      185      202  ABCD  
##  TCS19 Abarco        191 4.49 655      182      199  ABCDE 
##  TCS01 Abarco        185 4.49 655      176      193   BCDEF
##  TCS19 Roble         184 4.54 655      175      193   BCDEF
##  TCS06 Abarco        180 4.59 655      171      189    CDEF
##  TCS01 Roble         173 4.59 655      164      182     DEF
##  TCS19 Terminalia    171 4.49 655      162      179      EF
##  CCN51 Roble         170 4.54 655      161      179      EF
##  TCS13 Terminalia    168 4.74 655      159      177       F
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 15 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
detach(datos4)