Analysis performed for PSU Clinical Education Team (Kelly Legacy, Janine DeBaets, Tracey Houle)
# Load preliminary data
df <- read.csv("CRA1_Tool_Class24.csv")
df <- select(df, -(Summative))
df$ID <- as.integer(df$ID)
df$Class.Graduating.Year. <- as.factor(df$Class.Graduating.Year.)
df[sapply(df, is.character)] <- lapply(df[sapply(df, is.character)],
as.factor)
df$Semester <- 2
df$Semester <- as.factor(df$Semester)
df$Sex <- as.factor(df$Sex)
# A function to order the factors
CRA_Score_Order <- function(variable) {
ordered(variable, levels = c("Not Yet at Beginner Level", "Beginner Level", "Developing Level", "Entry Level"))
}
# Reodering the factors
df[4:13] <- lapply(df[4:13], CRA_Score_Order)
df$Int_Commitment <- as.integer(df$Commitment.to.Learning)
df$Int_Interpersonal <- as.integer(df$Interpersonal.Skills)
df$Int_Communication <- as.integer(df$Communication.Skills)
df$Int_Time <- as.integer(df$Effective.Use.of.Time.and.Resources)
df$Int_Feedback <- as.integer(df$Use.of.Constructive.Feedback)
df$Int_Solving <- as.integer(df$Problem.Solving)
df$Int_Professionalism <- as.integer(df$Professionalism)
df$Int_Responsibility <- as.integer(df$Responsibility)
df$Int_Thinking <- as.integer(df$Critical.Thinking)
df$Int_Stress <- as.integer(df$Stress.Management)
df<-mutate(df, Total = Int_Commitment + Int_Interpersonal + Int_Communication + Int_Time + Int_Feedback + Int_Solving + Int_Professionalism + Int_Responsibility + Int_Thinking + Int_Stress)
Early exploration of the characteristics of the Clinical Readiness Tool developed by the Clinical Education Team at PSU
Purpose is really to just start getting familiar with the data.
summary(df)
## ID Class.Graduating.Year. Sex
## Min. : 1.00 2024:26 Female:17
## 1st Qu.: 7.25 Male : 9
## Median :13.50
## Mean :13.50
## 3rd Qu.:19.75
## Max. :26.00
## Commitment.to.Learning Interpersonal.Skills
## Not Yet at Beginner Level: 1 Not Yet at Beginner Level: 2
## Beginner Level :21 Beginner Level :22
## Developing Level : 4 Developing Level : 2
## Entry Level : 0 Entry Level : 0
##
##
## Communication.Skills Effective.Use.of.Time.and.Resources
## Not Yet at Beginner Level: 3 Not Yet at Beginner Level: 4
## Beginner Level :21 Beginner Level :19
## Developing Level : 2 Developing Level : 3
## Entry Level : 0 Entry Level : 0
##
##
## Use.of.Constructive.Feedback Problem.Solving
## Not Yet at Beginner Level: 3 Not Yet at Beginner Level: 4
## Beginner Level :23 Beginner Level :19
## Developing Level : 0 Developing Level : 3
## Entry Level : 0 Entry Level : 0
##
##
## Professionalism Responsibility
## Not Yet at Beginner Level: 2 Not Yet at Beginner Level: 2
## Beginner Level :20 Beginner Level :20
## Developing Level : 4 Developing Level : 4
## Entry Level : 0 Entry Level : 0
##
##
## Critical.Thinking Stress.Management Semester
## Not Yet at Beginner Level: 7 Not Yet at Beginner Level: 4 2:26
## Beginner Level :18 Beginner Level :22
## Developing Level : 1 Developing Level : 0
## Entry Level : 0 Entry Level : 0
##
##
## Int_Commitment Int_Interpersonal Int_Communication Int_Time
## Min. :1.000 Min. :1 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:2 1st Qu.:2.000 1st Qu.:2.000
## Median :2.000 Median :2 Median :2.000 Median :2.000
## Mean :2.115 Mean :2 Mean :1.962 Mean :1.962
## 3rd Qu.:2.000 3rd Qu.:2 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :3.000 Max. :3 Max. :3.000 Max. :3.000
## Int_Feedback Int_Solving Int_Professionalism Int_Responsibility
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
## Median :2.000 Median :2.000 Median :2.000 Median :2.000
## Mean :1.885 Mean :1.962 Mean :2.077 Mean :2.077
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :3.000 Max. :3.000 Max. :3.000
## Int_Thinking Int_Stress Total
## Min. :1.000 Min. :1.000 Min. :11.00
## 1st Qu.:1.250 1st Qu.:2.000 1st Qu.:19.00
## Median :2.000 Median :2.000 Median :20.00
## Mean :1.769 Mean :1.846 Mean :19.65
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:20.00
## Max. :3.000 Max. :2.000 Max. :27.00
This overview of the distributions on all the variables isn’t working Stress and Feedback right now - it may be that those have too limited of a distribution for this approach to work. So below there are separate histograms on those two variables.
dfNumeric <- df[,15:25]
hist.data.frame(dfNumeric, nclass = 4)
hist(df$Int_Stress)
hist(df$Int_Feedback)
dfMatrix <- as.matrix(as.data.frame(lapply(dfNumeric, as.numeric)))
rcorr(dfMatrix, type = "spearman")
## Int_Commitment Int_Interpersonal Int_Communication Int_Time
## Int_Commitment 1.00 0.24 0.45 0.54
## Int_Interpersonal 0.24 1.00 0.68 0.57
## Int_Communication 0.45 0.68 1.00 0.67
## Int_Time 0.54 0.57 0.67 1.00
## Int_Feedback 0.07 0.31 0.25 0.44
## Int_Solving 0.72 0.38 0.49 0.56
## Int_Professionalism 0.35 0.82 0.75 0.79
## Int_Responsibility 0.35 0.82 0.75 0.79
## Int_Thinking 0.46 0.41 0.64 0.54
## Int_Stress 0.12 0.54 0.46 0.38
## Total 0.63 0.62 0.68 0.75
## Int_Feedback Int_Solving Int_Professionalism
## Int_Commitment 0.07 0.72 0.35
## Int_Interpersonal 0.31 0.38 0.82
## Int_Communication 0.25 0.49 0.75
## Int_Time 0.44 0.56 0.79
## Int_Feedback 1.00 0.22 0.31
## Int_Solving 0.22 1.00 0.48
## Int_Professionalism 0.31 0.48 1.00
## Int_Responsibility 0.31 0.48 1.00
## Int_Thinking 0.32 0.70 0.54
## Int_Stress 0.18 0.17 0.50
## Total 0.25 0.74 0.76
## Int_Responsibility Int_Thinking Int_Stress Total
## Int_Commitment 0.35 0.46 0.12 0.63
## Int_Interpersonal 0.82 0.41 0.54 0.62
## Int_Communication 0.75 0.64 0.46 0.68
## Int_Time 0.79 0.54 0.38 0.75
## Int_Feedback 0.31 0.32 0.18 0.25
## Int_Solving 0.48 0.70 0.17 0.74
## Int_Professionalism 1.00 0.54 0.50 0.76
## Int_Responsibility 1.00 0.54 0.50 0.76
## Int_Thinking 0.54 1.00 0.23 0.81
## Int_Stress 0.50 0.23 1.00 0.50
## Total 0.76 0.81 0.50 1.00
##
## n= 26
##
##
## P
## Int_Commitment Int_Interpersonal Int_Communication Int_Time
## Int_Commitment 0.2409 0.0225 0.0044
## Int_Interpersonal 0.2409 0.0002 0.0023
## Int_Communication 0.0225 0.0002 0.0002
## Int_Time 0.0044 0.0023 0.0002
## Int_Feedback 0.7332 0.1272 0.2270 0.0232
## Int_Solving 0.0000 0.0569 0.0107 0.0027
## Int_Professionalism 0.0763 0.0000 0.0000 0.0000
## Int_Responsibility 0.0763 0.0000 0.0000 0.0000
## Int_Thinking 0.0175 0.0398 0.0004 0.0043
## Int_Stress 0.5449 0.0041 0.0194 0.0531
## Total 0.0005 0.0007 0.0001 0.0000
## Int_Feedback Int_Solving Int_Professionalism
## Int_Commitment 0.7332 0.0000 0.0763
## Int_Interpersonal 0.1272 0.0569 0.0000
## Int_Communication 0.2270 0.0107 0.0000
## Int_Time 0.0232 0.0027 0.0000
## Int_Feedback 0.2879 0.1293
## Int_Solving 0.2879 0.0127
## Int_Professionalism 0.1293 0.0127
## Int_Responsibility 0.1293 0.0127 0.0000
## Int_Thinking 0.1126 0.0000 0.0045
## Int_Stress 0.3798 0.3966 0.0089
## Total 0.2207 0.0000 0.0000
## Int_Responsibility Int_Thinking Int_Stress Total
## Int_Commitment 0.0763 0.0175 0.5449 0.0005
## Int_Interpersonal 0.0000 0.0398 0.0041 0.0007
## Int_Communication 0.0000 0.0004 0.0194 0.0001
## Int_Time 0.0000 0.0043 0.0531 0.0000
## Int_Feedback 0.1293 0.1126 0.3798 0.2207
## Int_Solving 0.0127 0.0000 0.3966 0.0000
## Int_Professionalism 0.0000 0.0045 0.0089 0.0000
## Int_Responsibility 0.0045 0.0089 0.0000
## Int_Thinking 0.0045 0.2599 0.0000
## Int_Stress 0.0089 0.2599 0.0095
## Total 0.0000 0.0000 0.0095
d<-cor(dfNumeric)
corrplot(d, method = 'ellipse', type = 'upper')
hist(df$Total)
I did not do this because it would require a bit more work go get this data
Add variables to the data: