setwd("/Volumes/GoogleDrive/Mi unidad/Agrosavia/Colaboraciones/Laura/BD Estadística SGR Santander/data")
datos5<-read.table("veinteclos4.csv", header=T, sep=',')
datos5$gen<-as.factor(datos5$gen)
datos5$bloque<-as.factor(datos5$bloque)
datos5$semana<-as.factor(datos5$semana)
attach(datos5)
library(ggplot2)
library(emmeans)
#Gráfica altura
ggplot(datos5, aes(semana, alt, group = gen, colour = gen)) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Altura") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  ) 
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 76 rows containing non-finite values (stat_smooth).

# Gráfica diámetro patrón
ggplot(datos5, aes(semana, patrodia, group = gen, colour = gen)) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Diámetro del patrón") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  )  
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 80 rows containing non-finite values (stat_smooth).

# Gráfica área copa
ggplot(datos5, aes(semana, coparea, group = gen, colour = gen)) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Área de la copa") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  )
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 77 rows containing non-finite values (stat_smooth).

# Anova general
aov.alt<-aov(alt~semana+gen+bloque,na.action=na.exclude)
aov.patrodia<-aov(patrodia~semana+gen+bloque, na.action=na.exclude)
aov.coparea<-aov(coparea~semana+gen+bloque, na.action=na.exclude)
#Análisis para altura
library(nlme)
fit.compsym.alt <- gls(alt ~ semana+gen+bloque, data=datos5, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.alt <- gls(alt ~ semana+gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.alt <- gls(alt ~ semana+gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.alt, fit.ar1.alt, fit.ar1het.alt) #compares the models
##                 Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.alt     1 24 20892.66 21027.80 -10422.33                        
## fit.ar1.alt         2 24 20831.94 20967.08 -10391.97                        
## fit.ar1het.alt      3 28 20786.56 20944.23 -10365.28 2 vs 3 53.37371  <.0001
anova(fit.ar1.alt)
## Denom. DF: 2061 
##             numDF   F-value p-value
## (Intercept)     1 31594.600  <.0001
## semana          4   331.290  <.0001
## gen            15    18.393  <.0001
## bloque          2   171.668  <.0001
anova(fit.ar1het.alt)
## Denom. DF: 2061 
##             numDF   F-value p-value
## (Intercept)     1 30388.268  <.0001
## semana          4   332.365  <.0001
## gen            15    17.125  <.0001
## bloque          2   166.764  <.0001
# Análisis para diámetro del patrón
fit.compsym.patrodia <- gls(patrodia ~ semana+gen+bloque, data=datos5, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.patrodia <- gls(patrodia ~ semana+gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.patrodia <- gls(patrodia ~ semana+gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.patrodia, fit.ar1.patrodia, fit.ar1het.patrodia) #compares the models
##                      Model df      AIC      BIC    logLik   Test  L.Ratio
## fit.compsym.patrodia     1 24 15594.89 15729.98 -7773.444                
## fit.ar1.patrodia         2 24 15519.94 15655.03 -7735.969                
## fit.ar1het.patrodia      3 28 15367.01 15524.62 -7655.504 2 vs 3 160.9304
##                      p-value
## fit.compsym.patrodia        
## fit.ar1.patrodia            
## fit.ar1het.patrodia   <.0001
anova(fit.ar1.patrodia)
## Denom. DF: 2057 
##             numDF   F-value p-value
## (Intercept)     1 25118.035  <.0001
## semana          4   404.220  <.0001
## gen            15    14.090  <.0001
## bloque          2   216.511  <.0001
anova(fit.ar1het.patrodia)
## Denom. DF: 2057 
##             numDF   F-value p-value
## (Intercept)     1 25017.380  <.0001
## semana          4   424.272  <.0001
## gen            15    14.585  <.0001
## bloque          2   203.933  <.0001
# Análisis para área de la copa
fit.compsym.coparea <- gls(coparea ~ semana+gen+bloque, data=datos5, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.coparea <- gls(coparea ~ semana+gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.coparea <- gls(coparea ~ semana+gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.coparea, fit.ar1.coparea, fit.ar1het.coparea) #compares the models
##                     Model df      AIC      BIC    logLik   Test  L.Ratio
## fit.compsym.coparea     1 24 1350.424 1485.555 -651.2118                
## fit.ar1.coparea         2 24 1255.607 1390.738 -603.8036                
## fit.ar1het.coparea      3 28 1110.890 1268.543 -527.4450 2 vs 3 152.7172
##                     p-value
## fit.compsym.coparea        
## fit.ar1.coparea            
## fit.ar1het.coparea   <.0001
anova(fit.ar1.coparea)
## Denom. DF: 2060 
##             numDF   F-value p-value
## (Intercept)     1 16905.398  <.0001
## semana          4   254.961  <.0001
## gen            15    15.784  <.0001
## bloque          2   144.792  <.0001
anova(fit.ar1het.coparea)
## Denom. DF: 2060 
##             numDF   F-value p-value
## (Intercept)     1 16555.224  <.0001
## semana          4   260.732  <.0001
## gen            15    15.275  <.0001
## bloque          2   140.240  <.0001
#Tukey altura
library(multcompView)
gen.tuk.alt<-TukeyHSD(aov.alt, "gen", ordered = TRUE)
#Tukey diámetro del patrón
gen.tuk.patrodia<-TukeyHSD(aov.patrodia, "gen", ordered = TRUE)
#Tukey área de la copa
gen.tuk.coparea<-TukeyHSD(aov.coparea, "gen", ordered = TRUE)
#Etiquetas Tukey altura
#Genotipos
generate_label_df_gen_alt <- function(gen.tuk.alt, variable){
  Tukey.levels <- gen.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.alt <- generate_label_df_gen_alt(gen.tuk.alt, "gen")
labels.gen.alt
##       Letters treatment
## TCS02       b     TCS02
## TCS03    acde     TCS03
## TCS04      ac     TCS04
## TCS05     def     TCS05
## TCS08      ab     TCS08
## TCS10    cdef     TCS10
## TCS11     efg     TCS11
## TCS12    cdef     TCS12
## TCS20       h     TCS20
## TCS43    acde     TCS43
## TCS44    acde     TCS44
## TCS45     acd     TCS45
## TCS46      fg     TCS46
## TCS47    acde     TCS47
## TCS48       g     TCS48
## TCS49    acde     TCS49
#Etiquetas Tukey diámetro del patrón
#Genotipos
generate_label_df_gen_patrodia <- function(gen.tuk.patrodia, variable){
  Tukey.levels <- gen.tuk.patrodia[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.patrodia <- generate_label_df_gen_patrodia(gen.tuk.patrodia, "gen")
labels.gen.patrodia
##       Letters treatment
## TCS02     abc     TCS02
## TCS03     fgh     TCS03
## TCS04      ab     TCS04
## TCS05    fghi     TCS05
## TCS08       b     TCS08
## TCS10    cdef     TCS10
## TCS11     ghi     TCS11
## TCS12     ghi     TCS12
## TCS20       i     TCS20
## TCS43    defg     TCS43
## TCS44    efgh     TCS44
## TCS45    abcd     TCS45
## TCS46    cdef     TCS46
## TCS47    acde     TCS47
## TCS48      hi     TCS48
## TCS49    defg     TCS49
#Etiquetas Tukey área de la copa
#Genotipos
generate_label_df_gen_coparea <- function(gen.tuk.coparea, variable){
  Tukey.levels <- gen.tuk.coparea[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.coparea <- generate_label_df_gen_coparea(gen.tuk.coparea, "gen")
labels.gen.coparea
##       Letters treatment
## TCS02      ab     TCS02
## TCS03     cde     TCS03
## TCS04      ab     TCS04
## TCS05     def     TCS05
## TCS08       b     TCS08
## TCS10     cde     TCS10
## TCS11     def     TCS11
## TCS12      ef     TCS12
## TCS20       f     TCS20
## TCS43      ac     TCS43
## TCS44       f     TCS44
## TCS45     def     TCS45
## TCS46      ef     TCS46
## TCS47     cde     TCS47
## TCS48     def     TCS48
## TCS49      cd     TCS49
## Gráficas contrastes de medias Altura
#Gen
contrast <- emmeans(aov.alt, ~gen)
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.gen <- emmeans(aov.alt, pairwise ~ gen)
medias.gen
## $emmeans
##  gen   emmean   SE   df lower.CL upper.CL
##  TCS02    143 3.18 2061      136      149
##  TCS03    166 3.20 2061      160      173
##  TCS04    158 3.22 2061      152      165
##  TCS05    174 3.18 2061      168      181
##  TCS08    147 4.04 2061      139      155
##  TCS10    172 3.18 2061      166      178
##  TCS11    177 3.18 2061      171      183
##  TCS12    172 3.18 2061      165      178
##  TCS20    215 3.18 2061      208      221
##  TCS43    167 3.46 2061      160      174
##  TCS44    167 3.20 2061      161      173
##  TCS45    161 3.18 2061      155      167
##  TCS46    186 3.18 2061      179      192
##  TCS47    165 3.18 2061      159      172
##  TCS48    191 3.20 2061      185      197
##  TCS49    166 3.18 2061      160      172
## 
## Results are averaged over the levels of: semana, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE   df t.ratio p.value
##  TCS02 - TCS03  -23.629 4.51 2061  -5.238  <.0001
##  TCS02 - TCS04  -15.816 4.53 2061  -3.493  0.0409
##  TCS02 - TCS05  -31.748 4.50 2061  -7.051  <.0001
##  TCS02 - TCS08   -4.414 5.15 2061  -0.858  1.0000
##  TCS02 - TCS10  -29.593 4.50 2061  -6.572  <.0001
##  TCS02 - TCS11  -34.156 4.50 2061  -7.586  <.0001
##  TCS02 - TCS12  -28.993 4.50 2061  -6.439  <.0001
##  TCS02 - TCS20  -72.015 4.50 2061 -15.994  <.0001
##  TCS02 - TCS43  -24.407 4.70 2061  -5.194  <.0001
##  TCS02 - TCS44  -24.368 4.51 2061  -5.402  <.0001
##  TCS02 - TCS45  -18.178 4.50 2061  -4.037  0.0057
##  TCS02 - TCS46  -43.059 4.50 2061  -9.563  <.0001
##  TCS02 - TCS47  -22.704 4.50 2061  -5.042  0.0001
##  TCS02 - TCS48  -48.498 4.51 2061 -10.751  <.0001
##  TCS02 - TCS49  -23.452 4.50 2061  -5.208  <.0001
##  TCS03 - TCS04    7.813 4.54 2061   1.722  0.9411
##  TCS03 - TCS05   -8.119 4.51 2061  -1.800  0.9167
##  TCS03 - TCS08   19.215 5.15 2061   3.729  0.0182
##  TCS03 - TCS10   -5.963 4.51 2061  -1.322  0.9951
##  TCS03 - TCS11  -10.526 4.51 2061  -2.333  0.5986
##  TCS03 - TCS12   -5.363 4.51 2061  -1.189  0.9985
##  TCS03 - TCS20  -48.385 4.51 2061 -10.726  <.0001
##  TCS03 - TCS43   -0.778 4.71 2061  -0.165  1.0000
##  TCS03 - TCS44   -0.739 4.52 2061  -0.164  1.0000
##  TCS03 - TCS45    5.452 4.51 2061   1.208  0.9982
##  TCS03 - TCS46  -19.430 4.51 2061  -4.307  0.0019
##  TCS03 - TCS47    0.926 4.51 2061   0.205  1.0000
##  TCS03 - TCS48  -24.868 4.52 2061  -5.502  <.0001
##  TCS03 - TCS49    0.178 4.51 2061   0.039  1.0000
##  TCS04 - TCS05  -15.932 4.53 2061  -3.518  0.0376
##  TCS04 - TCS08   11.402 5.17 2061   2.207  0.6926
##  TCS04 - TCS10  -13.776 4.53 2061  -3.042  0.1524
##  TCS04 - TCS11  -18.339 4.53 2061  -4.050  0.0054
##  TCS04 - TCS12  -13.176 4.53 2061  -2.910  0.2109
##  TCS04 - TCS20  -56.199 4.53 2061 -12.410  <.0001
##  TCS04 - TCS43   -8.591 4.72 2061  -1.819  0.9097
##  TCS04 - TCS44   -8.552 4.54 2061  -1.885  0.8828
##  TCS04 - TCS45   -2.361 4.53 2061  -0.521  1.0000
##  TCS04 - TCS46  -27.243 4.53 2061  -6.016  <.0001
##  TCS04 - TCS47   -6.887 4.53 2061  -1.521  0.9802
##  TCS04 - TCS48  -32.682 4.54 2061  -7.204  <.0001
##  TCS04 - TCS49   -7.636 4.53 2061  -1.686  0.9505
##  TCS05 - TCS08   27.334 5.15 2061   5.313  <.0001
##  TCS05 - TCS10    2.156 4.50 2061   0.479  1.0000
##  TCS05 - TCS11   -2.407 4.50 2061  -0.535  1.0000
##  TCS05 - TCS12    2.756 4.50 2061   0.612  1.0000
##  TCS05 - TCS20  -40.267 4.50 2061  -8.943  <.0001
##  TCS05 - TCS43    7.341 4.70 2061   1.562  0.9746
##  TCS05 - TCS44    7.380 4.51 2061   1.636  0.9618
##  TCS05 - TCS45   13.570 4.50 2061   3.014  0.1638
##  TCS05 - TCS46  -11.311 4.50 2061  -2.512  0.4629
##  TCS05 - TCS47    9.044 4.50 2061   2.009  0.8206
##  TCS05 - TCS48  -16.750 4.51 2061  -3.713  0.0193
##  TCS05 - TCS49    8.296 4.50 2061   1.843  0.9007
##  TCS08 - TCS10  -25.179 5.15 2061  -4.894  0.0001
##  TCS08 - TCS11  -29.742 5.15 2061  -5.781  <.0001
##  TCS08 - TCS12  -24.579 5.15 2061  -4.777  0.0002
##  TCS08 - TCS20  -67.601 5.15 2061 -13.139  <.0001
##  TCS08 - TCS43  -19.993 5.31 2061  -3.762  0.0162
##  TCS08 - TCS44  -19.954 5.15 2061  -3.873  0.0107
##  TCS08 - TCS45  -13.764 5.15 2061  -2.675  0.3474
##  TCS08 - TCS46  -38.645 5.15 2061  -7.511  <.0001
##  TCS08 - TCS47  -18.290 5.15 2061  -3.555  0.0333
##  TCS08 - TCS48  -44.084 5.15 2061  -8.555  <.0001
##  TCS08 - TCS49  -19.038 5.15 2061  -3.700  0.0202
##  TCS10 - TCS11   -4.563 4.50 2061  -1.013  0.9998
##  TCS10 - TCS12    0.600 4.50 2061   0.133  1.0000
##  TCS10 - TCS20  -42.422 4.50 2061  -9.421  <.0001
##  TCS10 - TCS43    5.185 4.70 2061   1.104  0.9994
##  TCS10 - TCS44    5.224 4.51 2061   1.158  0.9989
##  TCS10 - TCS45   11.415 4.50 2061   2.535  0.4459
##  TCS10 - TCS46  -13.467 4.50 2061  -2.991  0.1735
##  TCS10 - TCS47    6.889 4.50 2061   1.530  0.9791
##  TCS10 - TCS48  -18.905 4.51 2061  -4.191  0.0030
##  TCS10 - TCS49    6.141 4.50 2061   1.364  0.9933
##  TCS11 - TCS12    5.163 4.50 2061   1.147  0.9990
##  TCS11 - TCS20  -37.859 4.50 2061  -8.408  <.0001
##  TCS11 - TCS43    9.748 4.70 2061   2.075  0.7814
##  TCS11 - TCS44    9.787 4.51 2061   2.170  0.7187
##  TCS11 - TCS45   15.978 4.50 2061   3.548  0.0340
##  TCS11 - TCS46   -8.904 4.50 2061  -1.977  0.8378
##  TCS11 - TCS47   11.452 4.50 2061   2.543  0.4398
##  TCS11 - TCS48  -14.342 4.51 2061  -3.179  0.1056
##  TCS11 - TCS49   10.704 4.50 2061   2.377  0.5652
##  TCS12 - TCS20  -43.022 4.50 2061  -9.555  <.0001
##  TCS12 - TCS43    4.585 4.70 2061   0.976  0.9999
##  TCS12 - TCS44    4.624 4.51 2061   1.025  0.9997
##  TCS12 - TCS45   10.815 4.50 2061   2.402  0.5464
##  TCS12 - TCS46  -14.067 4.50 2061  -3.124  0.1229
##  TCS12 - TCS47    6.289 4.50 2061   1.397  0.9914
##  TCS12 - TCS48  -19.505 4.51 2061  -4.324  0.0017
##  TCS12 - TCS49    5.541 4.50 2061   1.231  0.9978
##  TCS20 - TCS43   47.608 4.70 2061  10.132  <.0001
##  TCS20 - TCS44   47.646 4.51 2061  10.562  <.0001
##  TCS20 - TCS45   53.837 4.50 2061  11.957  <.0001
##  TCS20 - TCS46   28.956 4.50 2061   6.431  <.0001
##  TCS20 - TCS47   49.311 4.50 2061  10.951  <.0001
##  TCS20 - TCS48   23.517 4.51 2061   5.213  <.0001
##  TCS20 - TCS49   48.563 4.50 2061  10.785  <.0001
##  TCS43 - TCS44    0.039 4.71 2061   0.008  1.0000
##  TCS43 - TCS45    6.230 4.70 2061   1.326  0.9950
##  TCS43 - TCS46  -18.652 4.70 2061  -3.969  0.0074
##  TCS43 - TCS47    1.704 4.70 2061   0.363  1.0000
##  TCS43 - TCS48  -24.091 4.71 2061  -5.118  <.0001
##  TCS43 - TCS49    0.955 4.70 2061   0.203  1.0000
##  TCS44 - TCS45    6.191 4.51 2061   1.372  0.9928
##  TCS44 - TCS46  -18.691 4.51 2061  -4.143  0.0037
##  TCS44 - TCS47    1.665 4.51 2061   0.369  1.0000
##  TCS44 - TCS48  -24.130 4.52 2061  -5.339  <.0001
##  TCS44 - TCS49    0.916 4.51 2061   0.203  1.0000
##  TCS45 - TCS46  -24.881 4.50 2061  -5.526  <.0001
##  TCS45 - TCS47   -4.526 4.50 2061  -1.005  0.9998
##  TCS45 - TCS48  -30.320 4.51 2061  -6.721  <.0001
##  TCS45 - TCS49   -5.274 4.50 2061  -1.171  0.9987
##  TCS46 - TCS47   20.356 4.50 2061   4.521  0.0007
##  TCS46 - TCS48   -5.439 4.51 2061  -1.206  0.9982
##  TCS46 - TCS49   19.607 4.50 2061   4.355  0.0015
##  TCS47 - TCS48  -25.794 4.51 2061  -5.718  <.0001
##  TCS47 - TCS49   -0.748 4.50 2061  -0.166  1.0000
##  TCS48 - TCS49   25.046 4.51 2061   5.552  <.0001
## 
## Results are averaged over the levels of: semana, bloque 
## P value adjustment: tukey method for comparing a family of 16 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean   SE   df lower.CL upper.CL .group   
##  TCS20    215 3.18 2061      208      221  A       
##  TCS48    191 3.20 2061      185      197   B      
##  TCS46    186 3.18 2061      179      192   BC     
##  TCS11    177 3.18 2061      171      183   BCD    
##  TCS05    174 3.18 2061      168      181    CDE   
##  TCS10    172 3.18 2061      166      178    CDEF  
##  TCS12    172 3.18 2061      165      178    CDEF  
##  TCS43    167 3.46 2061      160      174     DEF  
##  TCS44    167 3.20 2061      161      173     DEF  
##  TCS03    166 3.20 2061      160      173     DEF  
##  TCS49    166 3.18 2061      160      172     DEF  
##  TCS47    165 3.18 2061      159      172     DEF  
##  TCS45    161 3.18 2061      155      167      EFG 
##  TCS04    158 3.22 2061      152      165       FG 
##  TCS08    147 4.04 2061      139      155        GH
##  TCS02    143 3.18 2061      136      149         H
## 
## Results are averaged over the levels of: semana, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 16 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
## Gráficas contrastes de medias diámetro del patrón
#Gen
contrast <- emmeans(aov.patrodia, ~gen)
plot(contrast, comparisons = TRUE, xlab ="Diámetro del patrón")

medias.gen <- emmeans(aov.patrodia, pairwise ~ gen)
medias.gen
## $emmeans
##  gen   emmean    SE   df lower.CL upper.CL
##  TCS02   38.7 0.901 2057     36.9     40.5
##  TCS03   45.8 0.890 2057     44.1     47.6
##  TCS04   36.8 0.897 2057     35.1     38.6
##  TCS05   46.1 0.887 2057     44.4     47.9
##  TCS08   33.9 1.126 2057     31.7     36.1
##  TCS10   42.0 0.887 2057     40.3     43.7
##  TCS11   47.3 0.887 2057     45.5     49.0
##  TCS12   46.7 0.887 2057     45.0     48.4
##  TCS20   50.3 0.887 2057     48.6     52.0
##  TCS43   42.7 0.963 2057     40.8     44.6
##  TCS44   45.2 0.890 2057     43.5     47.0
##  TCS45   40.0 0.887 2057     38.3     41.8
##  TCS46   41.9 0.887 2057     40.2     43.6
##  TCS47   41.0 0.887 2057     39.2     42.7
##  TCS48   48.8 0.890 2057     47.0     50.5
##  TCS49   43.4 0.887 2057     41.6     45.1
## 
## Results are averaged over the levels of: semana, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE   df t.ratio p.value
##  TCS02 - TCS03   -7.144 1.27 2057  -5.641  <.0001
##  TCS02 - TCS04    1.861 1.27 2057   1.464  0.9863
##  TCS02 - TCS05   -7.445 1.26 2057  -5.890  <.0001
##  TCS02 - TCS08    4.840 1.44 2057   3.356  0.0630
##  TCS02 - TCS10   -3.308 1.26 2057  -2.617  0.3870
##  TCS02 - TCS11   -8.576 1.26 2057  -6.784  <.0001
##  TCS02 - TCS12   -7.999 1.26 2057  -6.328  <.0001
##  TCS02 - TCS20  -11.590 1.26 2057  -9.168  <.0001
##  TCS02 - TCS43   -3.997 1.32 2057  -3.031  0.1567
##  TCS02 - TCS44   -6.536 1.27 2057  -5.161  <.0001
##  TCS02 - TCS45   -1.332 1.26 2057  -1.054  0.9996
##  TCS02 - TCS46   -3.201 1.26 2057  -2.532  0.4480
##  TCS02 - TCS47   -2.280 1.26 2057  -1.803  0.9154
##  TCS02 - TCS48  -10.069 1.27 2057  -7.950  <.0001
##  TCS02 - TCS49   -4.678 1.26 2057  -3.701  0.0201
##  TCS03 - TCS04    9.005 1.26 2057   7.124  <.0001
##  TCS03 - TCS05   -0.301 1.26 2057  -0.240  1.0000
##  TCS03 - TCS08   11.984 1.44 2057   8.348  <.0001
##  TCS03 - TCS10    3.836 1.26 2057   3.052  0.1487
##  TCS03 - TCS11   -1.432 1.26 2057  -1.140  0.9991
##  TCS03 - TCS12   -0.855 1.26 2057  -0.680  1.0000
##  TCS03 - TCS20   -4.446 1.26 2057  -3.537  0.0353
##  TCS03 - TCS43    3.147 1.31 2057   2.399  0.5482
##  TCS03 - TCS44    0.608 1.26 2057   0.483  1.0000
##  TCS03 - TCS45    5.812 1.26 2057   4.624  0.0004
##  TCS03 - TCS46    3.943 1.26 2057   3.137  0.1187
##  TCS03 - TCS47    4.864 1.26 2057   3.870  0.0108
##  TCS03 - TCS48   -2.925 1.26 2057  -2.323  0.6067
##  TCS03 - TCS49    2.466 1.26 2057   1.962  0.8459
##  TCS04 - TCS05   -9.306 1.26 2057  -7.376  <.0001
##  TCS04 - TCS08    2.979 1.44 2057   2.069  0.7845
##  TCS04 - TCS10   -5.169 1.26 2057  -4.097  0.0044
##  TCS04 - TCS11  -10.437 1.26 2057  -8.273  <.0001
##  TCS04 - TCS12   -9.860 1.26 2057  -7.815  <.0001
##  TCS04 - TCS20  -13.451 1.26 2057 -10.662  <.0001
##  TCS04 - TCS43   -5.858 1.32 2057  -4.452  0.0010
##  TCS04 - TCS44   -8.397 1.26 2057  -6.644  <.0001
##  TCS04 - TCS45   -3.193 1.26 2057  -2.531  0.4490
##  TCS04 - TCS46   -5.062 1.26 2057  -4.012  0.0063
##  TCS04 - TCS47   -4.141 1.26 2057  -3.282  0.0787
##  TCS04 - TCS48  -11.930 1.26 2057  -9.438  <.0001
##  TCS04 - TCS49   -6.539 1.26 2057  -5.183  <.0001
##  TCS05 - TCS08   12.286 1.43 2057   8.571  <.0001
##  TCS05 - TCS10    4.137 1.25 2057   3.298  0.0751
##  TCS05 - TCS11   -1.131 1.25 2057  -0.902  0.9999
##  TCS05 - TCS12   -0.554 1.25 2057  -0.441  1.0000
##  TCS05 - TCS20   -4.145 1.25 2057  -3.304  0.0738
##  TCS05 - TCS43    3.448 1.31 2057   2.634  0.3753
##  TCS05 - TCS44    0.909 1.26 2057   0.723  1.0000
##  TCS05 - TCS45    6.113 1.25 2057   4.873  0.0001
##  TCS05 - TCS46    4.244 1.25 2057   3.383  0.0580
##  TCS05 - TCS47    5.166 1.25 2057   4.118  0.0041
##  TCS05 - TCS48   -2.623 1.26 2057  -2.087  0.7735
##  TCS05 - TCS49    2.767 1.25 2057   2.206  0.6931
##  TCS08 - TCS10   -8.149 1.43 2057  -5.685  <.0001
##  TCS08 - TCS11  -13.417 1.43 2057  -9.360  <.0001
##  TCS08 - TCS12  -12.839 1.43 2057  -8.957  <.0001
##  TCS08 - TCS20  -16.430 1.43 2057 -11.462  <.0001
##  TCS08 - TCS43   -8.838 1.48 2057  -5.969  <.0001
##  TCS08 - TCS44  -11.377 1.44 2057  -7.925  <.0001
##  TCS08 - TCS45   -6.172 1.43 2057  -4.306  0.0019
##  TCS08 - TCS46   -8.042 1.43 2057  -5.610  <.0001
##  TCS08 - TCS47   -7.120 1.43 2057  -4.967  0.0001
##  TCS08 - TCS48  -14.909 1.44 2057 -10.385  <.0001
##  TCS08 - TCS49   -9.519 1.43 2057  -6.640  <.0001
##  TCS10 - TCS11   -5.268 1.25 2057  -4.199  0.0029
##  TCS10 - TCS12   -4.691 1.25 2057  -3.739  0.0176
##  TCS10 - TCS20   -8.282 1.25 2057  -6.602  <.0001
##  TCS10 - TCS43   -0.689 1.31 2057  -0.526  1.0000
##  TCS10 - TCS44   -3.228 1.26 2057  -2.568  0.4217
##  TCS10 - TCS45    1.976 1.25 2057   1.575  0.9726
##  TCS10 - TCS46    0.107 1.25 2057   0.085  1.0000
##  TCS10 - TCS47    1.029 1.25 2057   0.820  1.0000
##  TCS10 - TCS48   -6.760 1.26 2057  -5.379  <.0001
##  TCS10 - TCS49   -1.370 1.25 2057  -1.092  0.9994
##  TCS11 - TCS12    0.577 1.25 2057   0.460  1.0000
##  TCS11 - TCS20   -3.014 1.25 2057  -2.402  0.5461
##  TCS11 - TCS43    4.579 1.31 2057   3.498  0.0402
##  TCS11 - TCS44    2.040 1.26 2057   1.623  0.9643
##  TCS11 - TCS45    7.244 1.25 2057   5.775  <.0001
##  TCS11 - TCS46    5.375 1.25 2057   4.285  0.0020
##  TCS11 - TCS47    6.297 1.25 2057   5.019  0.0001
##  TCS11 - TCS48   -1.492 1.26 2057  -1.187  0.9985
##  TCS11 - TCS49    3.898 1.25 2057   3.107  0.1286
##  TCS12 - TCS20   -3.591 1.25 2057  -2.862  0.2350
##  TCS12 - TCS43    4.002 1.31 2057   3.057  0.1469
##  TCS12 - TCS44    1.463 1.26 2057   1.164  0.9988
##  TCS12 - TCS45    6.667 1.25 2057   5.314  <.0001
##  TCS12 - TCS46    4.798 1.25 2057   3.824  0.0128
##  TCS12 - TCS47    5.719 1.25 2057   4.559  0.0006
##  TCS12 - TCS48   -2.070 1.26 2057  -1.647  0.9595
##  TCS12 - TCS49    3.321 1.25 2057   2.647  0.3662
##  TCS20 - TCS43    7.593 1.31 2057   5.800  <.0001
##  TCS20 - TCS44    5.054 1.26 2057   4.021  0.0060
##  TCS20 - TCS45   10.258 1.25 2057   8.177  <.0001
##  TCS20 - TCS46    8.389 1.25 2057   6.687  <.0001
##  TCS20 - TCS47    9.310 1.25 2057   7.422  <.0001
##  TCS20 - TCS48    1.521 1.26 2057   1.210  0.9981
##  TCS20 - TCS49    6.912 1.25 2057   5.510  <.0001
##  TCS43 - TCS44   -2.539 1.31 2057  -1.936  0.8591
##  TCS43 - TCS45    2.665 1.31 2057   2.036  0.8048
##  TCS43 - TCS46    0.796 1.31 2057   0.608  1.0000
##  TCS43 - TCS47    1.718 1.31 2057   1.312  0.9955
##  TCS43 - TCS48   -6.071 1.31 2057  -4.629  0.0004
##  TCS43 - TCS49   -0.681 1.31 2057  -0.520  1.0000
##  TCS44 - TCS45    5.204 1.26 2057   4.141  0.0037
##  TCS44 - TCS46    3.335 1.26 2057   2.653  0.3619
##  TCS44 - TCS47    4.256 1.26 2057   3.387  0.0573
##  TCS44 - TCS48   -3.532 1.26 2057  -2.805  0.2665
##  TCS44 - TCS49    1.858 1.26 2057   1.478  0.9849
##  TCS45 - TCS46   -1.869 1.25 2057  -1.490  0.9837
##  TCS45 - TCS47   -0.948 1.25 2057  -0.755  1.0000
##  TCS45 - TCS48   -8.737 1.26 2057  -6.951  <.0001
##  TCS45 - TCS49   -3.346 1.25 2057  -2.667  0.3525
##  TCS46 - TCS47    0.921 1.25 2057   0.735  1.0000
##  TCS46 - TCS48   -6.867 1.26 2057  -5.464  <.0001
##  TCS46 - TCS49   -1.477 1.25 2057  -1.177  0.9986
##  TCS47 - TCS48   -7.789 1.26 2057  -6.197  <.0001
##  TCS47 - TCS49   -2.399 1.25 2057  -1.912  0.8706
##  TCS48 - TCS49    5.390 1.26 2057   4.289  0.0020
## 
## Results are averaged over the levels of: semana, bloque 
## P value adjustment: tukey method for comparing a family of 16 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean    SE   df lower.CL upper.CL .group     
##  TCS20   50.3 0.887 2057     48.6     52.0  A         
##  TCS48   48.8 0.890 2057     47.0     50.5  AB        
##  TCS11   47.3 0.887 2057     45.5     49.0  ABC       
##  TCS12   46.7 0.887 2057     45.0     48.4  ABCD      
##  TCS05   46.1 0.887 2057     44.4     47.9  ABCDE     
##  TCS03   45.8 0.890 2057     44.1     47.6   BCDE     
##  TCS44   45.2 0.890 2057     43.5     47.0   BCDEF    
##  TCS49   43.4 0.887 2057     41.6     45.1    CDEFG   
##  TCS43   42.7 0.963 2057     40.8     44.6     DEFGH  
##  TCS10   42.0 0.887 2057     40.3     43.7      EFGH  
##  TCS46   41.9 0.887 2057     40.2     43.6      EFGH  
##  TCS47   41.0 0.887 2057     39.2     42.7       FGHI 
##  TCS45   40.0 0.887 2057     38.3     41.8        GHI 
##  TCS02   38.7 0.901 2057     36.9     40.5         HIJ
##  TCS04   36.8 0.897 2057     35.1     38.6          IJ
##  TCS08   33.9 1.126 2057     31.7     36.1           J
## 
## Results are averaged over the levels of: semana, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 16 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
## Gráficas contrastes de medias área de la copa
#Gen
contrast <- emmeans(aov.coparea, ~gen)
plot(contrast, comparisons = TRUE, xlab ="Área de la copa")

medias.gen <- emmeans(aov.coparea, pairwise ~ gen)
medias.gen
## $emmeans
##  gen   emmean     SE   df lower.CL upper.CL
##  TCS02  0.889 0.0278 2060    0.835    0.944
##  TCS03  1.145 0.0279 2060    1.090    1.200
##  TCS04  0.941 0.0281 2060    0.886    0.996
##  TCS05  1.205 0.0278 2060    1.151    1.260
##  TCS08  0.767 0.0353 2060    0.698    0.836
##  TCS10  1.146 0.0278 2060    1.091    1.200
##  TCS11  1.204 0.0279 2060    1.149    1.259
##  TCS12  1.267 0.0278 2060    1.212    1.321
##  TCS20  1.299 0.0278 2060    1.244    1.353
##  TCS43  1.007 0.0302 2060    0.948    1.066
##  TCS44  1.293 0.0279 2060    1.238    1.348
##  TCS45  1.186 0.0278 2060    1.132    1.241
##  TCS46  1.257 0.0278 2060    1.202    1.311
##  TCS47  1.149 0.0278 2060    1.095    1.204
##  TCS48  1.234 0.0279 2060    1.179    1.289
##  TCS49  1.098 0.0278 2060    1.043    1.152
## 
## Results are averaged over the levels of: semana, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast       estimate     SE   df t.ratio p.value
##  TCS02 - TCS03 -0.255543 0.0394 2060  -6.488  <.0001
##  TCS02 - TCS04 -0.051351 0.0395 2060  -1.299  0.9960
##  TCS02 - TCS05 -0.315926 0.0393 2060  -8.036  <.0001
##  TCS02 - TCS08  0.122679 0.0449 2060   2.731  0.3114
##  TCS02 - TCS10 -0.256296 0.0393 2060  -6.519  <.0001
##  TCS02 - TCS11 -0.314785 0.0394 2060  -7.992  <.0001
##  TCS02 - TCS12 -0.377333 0.0393 2060  -9.598  <.0001
##  TCS02 - TCS20 -0.409111 0.0393 2060 -10.406  <.0001
##  TCS02 - TCS43 -0.117624 0.0410 2060  -2.867  0.2327
##  TCS02 - TCS44 -0.403705 0.0394 2060 -10.249  <.0001
##  TCS02 - TCS45 -0.296741 0.0393 2060  -7.548  <.0001
##  TCS02 - TCS46 -0.367407 0.0393 2060  -9.345  <.0001
##  TCS02 - TCS47 -0.259778 0.0393 2060  -6.608  <.0001
##  TCS02 - TCS48 -0.344540 0.0394 2060  -8.747  <.0001
##  TCS02 - TCS49 -0.208148 0.0393 2060  -5.294  <.0001
##  TCS03 - TCS04  0.204192 0.0396 2060   5.155  <.0001
##  TCS03 - TCS05 -0.060383 0.0394 2060  -1.533  0.9787
##  TCS03 - TCS08  0.378221 0.0450 2060   8.406  <.0001
##  TCS03 - TCS10 -0.000754 0.0394 2060  -0.019  1.0000
##  TCS03 - TCS11 -0.059242 0.0395 2060  -1.501  0.9825
##  TCS03 - TCS12 -0.121791 0.0394 2060  -3.092  0.1339
##  TCS03 - TCS20 -0.153568 0.0394 2060  -3.899  0.0097
##  TCS03 - TCS43  0.137919 0.0411 2060   3.356  0.0631
##  TCS03 - TCS44 -0.148162 0.0395 2060  -3.755  0.0166
##  TCS03 - TCS45 -0.041198 0.0394 2060  -1.046  0.9997
##  TCS03 - TCS46 -0.111865 0.0394 2060  -2.840  0.2471
##  TCS03 - TCS47 -0.004235 0.0394 2060  -0.108  1.0000
##  TCS03 - TCS48 -0.088997 0.0395 2060  -2.255  0.6572
##  TCS03 - TCS49  0.047395 0.0394 2060   1.203  0.9983
##  TCS04 - TCS05 -0.264575 0.0395 2060  -6.691  <.0001
##  TCS04 - TCS08  0.174030 0.0451 2060   3.857  0.0114
##  TCS04 - TCS10 -0.204945 0.0395 2060  -5.183  <.0001
##  TCS04 - TCS11 -0.263434 0.0396 2060  -6.650  <.0001
##  TCS04 - TCS12 -0.325982 0.0395 2060  -8.245  <.0001
##  TCS04 - TCS20 -0.357760 0.0395 2060  -9.048  <.0001
##  TCS04 - TCS43 -0.066272 0.0412 2060  -1.607  0.9673
##  TCS04 - TCS44 -0.352354 0.0396 2060  -8.895  <.0001
##  TCS04 - TCS45 -0.245390 0.0395 2060  -6.206  <.0001
##  TCS04 - TCS46 -0.316057 0.0395 2060  -7.994  <.0001
##  TCS04 - TCS47 -0.208427 0.0395 2060  -5.271  <.0001
##  TCS04 - TCS48 -0.293189 0.0396 2060  -7.402  <.0001
##  TCS04 - TCS49 -0.156797 0.0395 2060  -3.966  0.0075
##  TCS05 - TCS08  0.438605 0.0449 2060   9.763  <.0001
##  TCS05 - TCS10  0.059630 0.0393 2060   1.517  0.9807
##  TCS05 - TCS11  0.001141 0.0394 2060   0.029  1.0000
##  TCS05 - TCS12 -0.061407 0.0393 2060  -1.562  0.9747
##  TCS05 - TCS20 -0.093185 0.0393 2060  -2.370  0.5705
##  TCS05 - TCS43  0.198302 0.0410 2060   4.833  0.0002
##  TCS05 - TCS44 -0.087779 0.0394 2060  -2.229  0.6768
##  TCS05 - TCS45  0.019185 0.0393 2060   0.488  1.0000
##  TCS05 - TCS46 -0.051481 0.0393 2060  -1.309  0.9956
##  TCS05 - TCS47  0.056148 0.0393 2060   1.428  0.9892
##  TCS05 - TCS48 -0.028614 0.0394 2060  -0.726  1.0000
##  TCS05 - TCS49  0.107778 0.0393 2060   2.741  0.3048
##  TCS08 - TCS10 -0.378975 0.0449 2060  -8.436  <.0001
##  TCS08 - TCS11 -0.437464 0.0450 2060  -9.724  <.0001
##  TCS08 - TCS12 -0.500012 0.0449 2060 -11.130  <.0001
##  TCS08 - TCS20 -0.531790 0.0449 2060 -11.837  <.0001
##  TCS08 - TCS43 -0.240302 0.0464 2060  -5.178  <.0001
##  TCS08 - TCS44 -0.526384 0.0450 2060 -11.701  <.0001
##  TCS08 - TCS45 -0.419419 0.0449 2060  -9.336  <.0001
##  TCS08 - TCS46 -0.490086 0.0449 2060 -10.909  <.0001
##  TCS08 - TCS47 -0.382456 0.0449 2060  -8.513  <.0001
##  TCS08 - TCS48 -0.467219 0.0450 2060 -10.385  <.0001
##  TCS08 - TCS49 -0.330827 0.0449 2060  -7.364  <.0001
##  TCS10 - TCS11 -0.058489 0.0394 2060  -1.485  0.9842
##  TCS10 - TCS12 -0.121037 0.0393 2060  -3.079  0.1387
##  TCS10 - TCS20 -0.152815 0.0393 2060  -3.887  0.0102
##  TCS10 - TCS43  0.138673 0.0410 2060   3.380  0.0586
##  TCS10 - TCS44 -0.147409 0.0394 2060  -3.742  0.0174
##  TCS10 - TCS45 -0.040444 0.0393 2060  -1.029  0.9997
##  TCS10 - TCS46 -0.111111 0.0393 2060  -2.826  0.2548
##  TCS10 - TCS47 -0.003481 0.0393 2060  -0.089  1.0000
##  TCS10 - TCS48 -0.088244 0.0394 2060  -2.240  0.6682
##  TCS10 - TCS49  0.048148 0.0393 2060   1.225  0.9979
##  TCS11 - TCS12 -0.062548 0.0394 2060  -1.588  0.9706
##  TCS11 - TCS20 -0.094326 0.0394 2060  -2.395  0.5518
##  TCS11 - TCS43  0.197161 0.0411 2060   4.798  0.0002
##  TCS11 - TCS44 -0.088920 0.0395 2060  -2.253  0.6586
##  TCS11 - TCS45  0.018044 0.0394 2060   0.458  1.0000
##  TCS11 - TCS46 -0.052623 0.0394 2060  -1.336  0.9946
##  TCS11 - TCS47  0.055007 0.0394 2060   1.397  0.9914
##  TCS11 - TCS48 -0.029755 0.0395 2060  -0.754  1.0000
##  TCS11 - TCS49  0.106637 0.0394 2060   2.707  0.3263
##  TCS12 - TCS20 -0.031778 0.0393 2060  -0.808  1.0000
##  TCS12 - TCS43  0.259710 0.0410 2060   6.330  <.0001
##  TCS12 - TCS44 -0.026372 0.0394 2060  -0.670  1.0000
##  TCS12 - TCS45  0.080593 0.0393 2060   2.050  0.7965
##  TCS12 - TCS46  0.009926 0.0393 2060   0.252  1.0000
##  TCS12 - TCS47  0.117556 0.0393 2060   2.990  0.1738
##  TCS12 - TCS48  0.032793 0.0394 2060   0.833  1.0000
##  TCS12 - TCS49  0.169185 0.0393 2060   4.303  0.0019
##  TCS20 - TCS43  0.291488 0.0410 2060   7.105  <.0001
##  TCS20 - TCS44  0.005406 0.0394 2060   0.137  1.0000
##  TCS20 - TCS45  0.112370 0.0393 2060   2.858  0.2373
##  TCS20 - TCS46  0.041704 0.0393 2060   1.061  0.9996
##  TCS20 - TCS47  0.149333 0.0393 2060   3.798  0.0142
##  TCS20 - TCS48  0.064571 0.0394 2060   1.639  0.9611
##  TCS20 - TCS49  0.200963 0.0393 2060   5.112  <.0001
##  TCS43 - TCS44 -0.286082 0.0411 2060  -6.960  <.0001
##  TCS43 - TCS45 -0.179117 0.0410 2060  -4.366  0.0014
##  TCS43 - TCS46 -0.249784 0.0410 2060  -6.088  <.0001
##  TCS43 - TCS47 -0.142154 0.0410 2060  -3.465  0.0448
##  TCS43 - TCS48 -0.226917 0.0411 2060  -5.521  <.0001
##  TCS43 - TCS49 -0.090525 0.0410 2060  -2.206  0.6927
##  TCS44 - TCS45  0.106964 0.0394 2060   2.716  0.3210
##  TCS44 - TCS46  0.036298 0.0394 2060   0.922  0.9999
##  TCS44 - TCS47  0.143927 0.0394 2060   3.654  0.0237
##  TCS44 - TCS48  0.059165 0.0395 2060   1.499  0.9827
##  TCS44 - TCS49  0.195557 0.0394 2060   4.965  0.0001
##  TCS45 - TCS46 -0.070667 0.0393 2060  -1.797  0.9175
##  TCS45 - TCS47  0.036963 0.0393 2060   0.940  0.9999
##  TCS45 - TCS48 -0.047800 0.0394 2060  -1.214  0.9981
##  TCS45 - TCS49  0.088593 0.0393 2060   2.253  0.6586
##  TCS46 - TCS47  0.107630 0.0393 2060   2.738  0.3071
##  TCS46 - TCS48  0.022867 0.0394 2060   0.581  1.0000
##  TCS46 - TCS49  0.159259 0.0393 2060   4.051  0.0054
##  TCS47 - TCS48 -0.084762 0.0394 2060  -2.152  0.7308
##  TCS47 - TCS49  0.051630 0.0393 2060   1.313  0.9955
##  TCS48 - TCS49  0.136392 0.0394 2060   3.463  0.0451
## 
## Results are averaged over the levels of: semana, bloque 
## P value adjustment: tukey method for comparing a family of 16 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean     SE   df lower.CL upper.CL .group 
##  TCS20  1.299 0.0278 2060    1.244    1.353  A     
##  TCS44  1.293 0.0279 2060    1.238    1.348  A     
##  TCS12  1.267 0.0278 2060    1.212    1.321  AB    
##  TCS46  1.257 0.0278 2060    1.202    1.311  AB    
##  TCS48  1.234 0.0279 2060    1.179    1.289  AB    
##  TCS05  1.205 0.0278 2060    1.151    1.260  ABC   
##  TCS11  1.204 0.0279 2060    1.149    1.259  ABC   
##  TCS45  1.186 0.0278 2060    1.132    1.241  ABC   
##  TCS47  1.149 0.0278 2060    1.095    1.204   BC   
##  TCS10  1.146 0.0278 2060    1.091    1.200   BCD  
##  TCS03  1.145 0.0279 2060    1.090    1.200   BCD  
##  TCS49  1.098 0.0278 2060    1.043    1.152    CD  
##  TCS43  1.007 0.0302 2060    0.948    1.066     DE 
##  TCS04  0.941 0.0281 2060    0.886    0.996      E 
##  TCS02  0.889 0.0278 2060    0.835    0.944      EF
##  TCS08  0.767 0.0353 2060    0.698    0.836       F
## 
## Results are averaged over the levels of: semana, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 16 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
detach(datos5)