Responsi 7 STA543 Analisis Data Kategorik
Model Regresi Logit Multinomial
setwd("D:\\Kuliah S2 IPB\\Bahan Kuliah\\Semester 2 SSD 2020\\STA543 ADK\\Responsi\\R\\UTS\\")Pendahuluan
Regresi logistik biner digunakan untuk memodelkan hubungan antara peubah respon yang terdiri dari dua kategori dengan satu atau lebih peubah penjelas. Peubah penjelasnya bisa berupa data kontinu atau kategorik. Sedangkan regresi logistik multinomial digunakan untuk memodelkan hubungan antara peubah respon lebih dari dua kategori dengan satu atau lebih peubah penjelas. Peubah penjelasnya bisa berupa data kontinu atau kategorik. Peubah responnya berskala nominal (tidak ada tingkatan).
Soal 1
Input Data
##=====================##
# INPUT DATA
##=====================##
size <- factor(rep(c("<=2.3",">2.3"),40))
food <-factor(rep(c("Fish","Inver","Rept","Bird","Other"),rep(16,5)))
gender<-rep(factor(rep(c("Male","Female"),rep(2,2))),20)
lake<-rep(factor(rep(c("Han","Okl","Tra","Geo"),rep(4,4))),5)
counts<-c(7,4,16,3,2,13,3,0,3,8,2,0,13,9,3,8,
1,0,3,0,2,7,9,1,7,6,4,1,10,0,9,1,
0,0,2,1,0,6,1,0,1,6,1,0,0,0,1,0,
0,1,2,2,0,0,0,1,0,3,1,0,2,1,0,0,
5,2,3,3,1,0,2,0,1,5,4,0,2,2,1,1)Penentuan Referensi
# Referensi
size <- relevel(size, ref=">2.3")
food <- relevel(food, ref="Fish")
gender <- relevel(gender, ref="Female")
lake <- relevel(lake, ref="Geo")Membuat Dataframe
# Membuat data frame
makan <- data.frame(lake, gender, size, food, counts)
datafood <- makan[rep(row.names(makan),counts),1:4]
# Cek Struktur dan ukuran data
View(datafood)
dim(datafood)## [1] 219 4
head(datafood)## lake gender size food
## 1 Han Male <=2.3 Fish
## 1.1 Han Male <=2.3 Fish
## 1.2 Han Male <=2.3 Fish
## 1.3 Han Male <=2.3 Fish
## 1.4 Han Male <=2.3 Fish
## 1.5 Han Male <=2.3 Fish
A. Lakukan pemodelan regresi logistik multinomial pada data tersebut dengan peubah responnya adalah tipe makanan utama alligator dan peubah bebasnya adalah Lake (L) dan Size (S). Bandingkan hasilnya dengan buku Agresti serta berikan interpretasi pada tiap nilai dugaan parameter model.
##=====================##
# MODEL REGRESI LOGISTIK MULTINOMIAL DENGAN PEUBAH BEBAS LAKE+SIZE
##=====================##
library("foreign")
library("nnet")
model_1 <- multinom(food ~ lake + size, data=datafood)## # weights: 30 (20 variable)
## initial value 352.466903
## iter 10 value 271.607785
## iter 20 value 270.046051
## final value 270.040140
## converged
summary(model_1)## Call:
## multinom(formula = food ~ lake + size, data = datafood)
##
## Coefficients:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3
## Bird -2.093358 0.6954256 -0.652622721 1.088098 -0.6306329
## Inver -1.549021 -1.6581178 0.937237973 1.122002 1.4581457
## Other -1.904343 0.8263115 0.005792737 1.516461 0.3315514
## Rept -3.314512 1.2428408 2.458913302 2.935262 -0.3512702
##
## Std. Errors:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3
## Bird 0.6622972 0.7813123 1.2020025 0.8417085 0.6424863
## Inver 0.4249185 0.6128466 0.4719035 0.4905122 0.3959418
## Other 0.5258313 0.5575446 0.7765655 0.6214371 0.4482504
## Rept 1.0530577 1.1854031 1.1181000 1.1163844 0.5800207
##
## Residual Deviance: 540.0803
## AIC: 580.0803
A. MEMBANDINGKAN OUTPUT R DENGAN OUTPUT SAS
Output SAS:
Berdasarkan kedua gambar di atas, dapat dilihat bahwa pemodelan regresi logistik multinomial baik menggunakan Program R maupunSAS memberikan hasil analisis yang sama.
A. INTERPRETASI KOEFISIEN REGRESI
# odds = exponensial parameter model
exp(summary(model_1)$coefficients)## (Intercept) lakeHan lakeOkl lakeTra size<=2.3
## Bird 0.12327247 2.0045620 0.5206784 2.968624 0.5322548
## Inver 0.21245592 0.1904972 2.5529204 3.070995 4.2979825
## Other 0.14892051 2.2848753 1.0058095 4.556075 1.3931278
## Rept 0.03635178 3.4654441 11.6920989 18.826431 0.7037936
Persamaan prediksi odds dimana alligator memilih memakan bird dibandingkan dengan fish
Persamaan prediksi odds dimana alligator memilih memakan bird dibandingkan dengan fish adalah:
Interpretasi: exp(−2.09)= 0.123.
Untuk alligator berukuran > 2.3 m di Lake George, odds alligator memakan bird dibandingkan alligator memakan fish adalah 0.123.
exp(−0.63)= 0.532.
Untuk alligator berukuran ≤ 2.3 m, odds alligator memakan bird dibandingkan fish adalah 0.532 kalinya odds alligator beukuran > 2.3 m.
exp(0.7)= 2.005.
Untuk alligator di Lake Hancock, odds alligator memakan bird dibandingkan fish adalah 2.005 kalinya odds alligator di Lake George.
exp(−0.65)= 0.521.
Untuk alligator di Lake Oklawaha, odds alligator memakan bird dibandingkan fish adalah 0.521 kalinya odds alligator di Lake George.
exp(1.09)= 2.97.
Untuk alligator di Lake Trafford, odds alligator memakan bird dibandingkan fish adalah 2.97 kalinya odds alligator di Lake George.
Persamaan prediksi odds dimana alligator memilih memakan invertebrata dibandingkan dengan fish
Persamaan prediksi odds dimana alligator memilih memakan invertebrata dibandingkan dengan fish adalah:
Interpretasi: exp(-1.55)= 0.21.
Untuk alligator berukuran > 2.3 m di Lake George, odds alligator memakan invertebrata dibandingkan fish adalah 0.21.
exp(1.46)= 4.3.
Untuk alligator berukuran ≤ 2.3 m, odds alligator memakan invertebrata dibandingkan fish adalah 4.3 kalinya odds alligator beukuran > 2.3 m.
exp(−1.66)= 0.19.
Untuk alligator di Lake Hancock, odds alligator memakan invertebrata dibandingkan fish adalah 0.19 kalinya odds alligator di Lake George.
exp(0.94)= 2.55.
Untuk alligator di Lake Oklawaha, odds alligator memakan invertebrata dibandingkan fish adalah 2.55 kalinya odds alligator di Lake George.
exp(1.12)= 3.07.
Untuk alligator di Lake Trafford, odds alligator memakan invertebrata dibandingkan fish adalah 3.07 kalinya odds alligator di Lake George.
Persamaan prediksi odds dimana alligator memilih memakan others dibandingkan dengan fish
Persamaan prediksi odds dimana alligator memilih memakan others dibandingkan dengan fish adalah:
Interpretasi: exp(−1.9)= 0.15.
Untuk alligator berukuran > 2.3 m di Lake George, odds alligator memakan others dibandingkan fish adalah 0.15.
exp(0.33)= 1.39.
Untuk alligator berukuran ≤ 2.3 m, odds alligator memakan others dibandingkan fish adalah 1.39 kalinya odds alligator beukuran > 2.3 m.
exp(0.83)= 2.28.
Untuk alligator di Lake Hancock, odds alligator memakan others dibandingkan fish adalah 2.28 kalinya odds alligator di Lake George.
exp(0.01)= 1.01.
Untuk alligator di Lake Oklawaha, odds alligator memakan others dibandingkan fish adalah 1.01 kalinya odds alligator di Lake George.
exp(1.52)= 4.56.
Untuk alligator di Lake Trafford, odds alligator memakan others dibandingkan fish adalah 4.56 kalinya odds alligator di Lake George.
Persamaan prediksi odds dimana alligator memilih memakan reptile dibandingkan dengan fish
maan prediksi odds dimana alligator memilih memakan reptile dibandingkan dengan fish adalah:
Interpretasi:
exp(−3.31)= 0.036.
Untuk alligator berukuran > 2.3 m di Lake George, odds alligator memakan reptile dibandingkan fish adalah 0.036.
exp(−0.35)= 0.7.
Untuk alligator berukuran ≤ 2.3 m, odds alligator memakan reptile dibandingkan fish adalah 0.7 kalinya odds alligator beukuran > 2.3 m.
exp(1.24)= 3.47.
Untuk alligator di Lake Hancock, odds alligator memakan reptile dibandingkan fish adalah 3.47 kalinya odds alligator di Lake George.
exp(2.46)= 11.7.
Untuk alligator di Lake Oklawaha, odds alligator memakan reptile dibandingkan fish adalah 11.7 kalinya odds alligator di Lake George.
exp(2.94)= 18.83.
Untuk alligator di Lake Trafford, odds alligator memakan reptile dibandingkan fish adalah 18.83 kalinya odds alligator di Lake George.
B. Lakukan pemodelan seperti pada poin (a) di atas, tetapi peubah bebasnya adalah Lake (L), Size (S), dan Gender (G). Peubah mana saja (L, S, G) yang berpengaruh nyata? Gunakan uji Deviance untuk 𝛼 = 0.05.
##=====================##
# MODEL REGRESI LOGISTIK MULTINOMIAL DENGAN PEUBAH BEBAS LAKE+SIZE+GENDER
##=====================##
model_2 <- multinom(food ~ lake + size + gender, data=datafood)## # weights: 35 (24 variable)
## initial value 352.466903
## iter 10 value 270.967533
## iter 20 value 268.934907
## final value 268.932740
## converged
summary(model_2)## Call:
## multinom(formula = food ~ lake + size + gender, data = datafood)
##
## Coefficients:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird -1.701750 0.5751767 -0.55073594 1.236877 -0.7302898 -0.6064571
## Inver -1.167210 -1.7805263 0.91314471 1.155786 1.3362563 -0.4629756
## Other -1.721273 0.7665622 0.02600333 1.557716 0.2905663 -0.2525879
## Rept -2.858940 1.1294537 2.53024455 3.061047 -0.5570885 -0.6276206
##
## Std. Errors:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird 0.7690488 0.7952037 1.2099728 0.8660879 0.6522819 0.6888490
## Inver 0.5337511 0.6232106 0.4761165 0.4927850 0.4111930 0.3955225
## Other 0.6313811 0.5685499 0.7777727 0.6256727 0.4599253 0.4663465
## Rept 1.1456331 1.1928006 1.1221172 1.1297303 0.6466081 0.6852751
##
## Residual Deviance: 537.8655
## AIC: 585.8655
# derajat bebas
abs(model_1$edf-model_2$edf)## [1] 4
# Mencari Chi Square tabel df=4 alpa=5%
qchisq(0.05, 4, lower.tail=FALSE)## [1] 9.487729
##=====================##
# MODEL REGRESI LOGISTIK MULTINOMIAL DENGAN PEUBAH BEBAS LAKE+GENDER
##=====================##
model_3 <- multinom(food ~ lake + gender, data=datafood)## # weights: 30 (20 variable)
## initial value 352.466903
## iter 10 value 279.421076
## iter 20 value 277.733691
## final value 277.732884
## converged
summary(model_3)## Call:
## multinom(formula = food ~ lake + gender, data = datafood)
##
## Coefficients:
## (Intercept) lakeHan lakeOkl lakeTra genderMale
## Bird -2.12320607 0.4818741 -0.47393004 1.2811363 -0.4245404
## Inver 0.01048504 -1.7605713 0.59314476 0.9609816 -0.8577619
## Other -1.51431307 0.7842964 -0.07500933 1.4829188 -0.2871253
## Rept -3.37256725 1.1400408 2.55949903 3.0361432 -0.1834060
##
## Std. Errors:
## (Intercept) lakeHan lakeOkl lakeTra genderMale
## Bird 0.7212115 0.7960695 1.1922056 0.8381776 0.6476502
## Inver 0.3584792 0.6187324 0.4425069 0.4722548 0.3694164
## Other 0.5318941 0.5701319 0.7661014 0.6158038 0.4542938
## Rept 1.0863463 1.1945082 1.1088625 1.1134113 0.5873043
##
## Residual Deviance: 555.4658
## AIC: 595.4658
# derajat bebas
abs(model_3$edf-model_2$edf)## [1] 4
# Mencari Chi Square tabel df=4 alpa=5%
qchisq(0.05, 4, lower.tail=FALSE)## [1] 9.487729
##=====================##
# MODEL REGRESI LOGISTIK MULTINOMIAL DENGAN PEUBAH BEBAS LAKE+GENDER
##=====================##
model_4 <- multinom(food ~ size + gender, data=datafood)## # weights: 20 (12 variable)
## initial value 352.466903
## iter 10 value 294.669539
## final value 294.091727
## converged
summary(model_4)## Call:
## multinom(formula = food ~ size + gender, data = datafood)
##
## Coefficients:
## (Intercept) size<=2.3 genderMale
## Bird -1.2790620 -0.7533726 -0.61466393
## Inver -0.9638861 0.9210878 -0.09004848
## Other -1.0905582 0.2328891 -0.19634008
## Rept -1.2170166 -0.8681379 -0.03140815
##
## Std. Errors:
## (Intercept) size<=2.3 genderMale
## Bird 0.5806349 0.6439387 0.6337949
## Inver 0.4001729 0.3730328 0.3538182
## Other 0.4584432 0.4373966 0.4378935
## Rept 0.5455407 0.5629537 0.5693974
##
## Residual Deviance: 588.1835
## AIC: 612.1835
# derajat bebas
abs(model_4$edf-model_2$edf)## [1] 12
# Mencari Chi Square tabel df=12 alpa=5%
qchisq(0.05, 12, lower.tail=FALSE)## [1] 21.02607
Berdasarkan hasil pengujian di atas dapat disimpulkan bahwa peubah yang berpengaruh nyata terhadap tipe makanan utama Alligator adalah peubah Lake dan peubah Size.
C. Diketahui seekor alligator berasal dari danau Trafford, berukuran pendek dan berkelamin jantan
##=====================##
# POIN C
##=====================##
#predict reglog
new=data.frame(size=as.factor("<=2.3"),gender=as.factor("Male"),lake=as.factor("Tra"))
#model2
predict(model_2,newdata=new,"probs") ## Fish Bird Inver Other Rept
## 0.20881597 0.03446118 0.49438276 0.18417282 0.07816727
Berdasarkan output dari program R peluang yang paling besar adalah aliigator tersebut akan memakan Invertebrata.
D. Tentukan model terbaik dengan peubah bebasnya adalah Lake (L), Size (S), dan Gender (G) serta semua interaksinya (LS, LG, dan LSG). Gunakan uji Deviance untuk 𝛼 = 0.05.
##=====================##
# POIN D
##=====================##
# model Y~X1
model_1c1 <- multinom(food ~ lake,data=datafood)## # weights: 25 (16 variable)
## initial value 352.466903
## iter 10 value 281.030560
## iter 20 value 280.583926
## final value 280.583844
## converged
summary(model_1c1)## Call:
## multinom(formula = food ~ lake, data = datafood)
##
## Coefficients:
## (Intercept) lakeHan lakeOkl lakeTra
## Bird -2.3982809 0.6065505 -0.49188808 1.2197770
## Inver -0.5008393 -1.5137909 0.55488981 0.8263598
## Other -1.7048477 0.8686390 -0.08689071 1.4425750
## Rept -3.4962205 1.1937161 2.55175319 3.0107928
##
## Std. Errors:
## (Intercept) lakeHan lakeOkl lakeTra
## Bird 0.6031161 0.7727128 1.1912598 0.8310587
## Inver 0.2833774 0.6029744 0.4341550 0.4612870
## Other 0.4438217 0.5542879 0.7654142 0.6114775
## Rept 1.0148749 1.1817886 1.1083250 1.1099095
##
## Residual Deviance: 561.1677
## AIC: 593.1677
# model Y~X2
model_1c2 <- multinom(food ~ size,data=datafood)## # weights: 15 (8 variable)
## initial value 352.466903
## iter 10 value 294.670879
## final value 294.606678
## converged
summary(model_1c2)## Call:
## multinom(formula = food ~ size, data = datafood)
##
## Coefficients:
## (Intercept) size<=2.3
## Bird -1.727214 -0.5551882
## Inver -1.034070 0.9489120
## Other -1.241709 0.2943162
## Rept -1.241705 -0.8583649
##
## Std. Errors:
## (Intercept) size<=2.3
## Bird 0.3836949 0.6063277
## Inver 0.2910708 0.3568648
## Other 0.3148735 0.4149523
## Rept 0.3148729 0.5349960
##
## Residual Deviance: 589.2134
## AIC: 605.2134
# model Y~X3
model_1c3 <- multinom(food ~ gender,data=datafood)## # weights: 15 (8 variable)
## initial value 352.466903
## iter 10 value 301.192714
## final value 301.129428
## converged
summary(model_1c3)## Call:
## multinom(formula = food ~ gender, data = datafood)
##
## Coefficients:
## (Intercept) genderMale
## Bird -1.7635851 -0.3680370
## Inver -0.2231478 -0.3578812
## Other -0.9162928 -0.2708745
## Rept -1.7635569 0.2509570
##
## Std. Errors:
## (Intercept) genderMale
## Bird 0.4418570 0.5958549
## Inver 0.2535467 0.3339731
## Other 0.3162281 0.4153372
## Rept 0.4418517 0.5376858
##
## Residual Deviance: 602.2589
## AIC: 618.2589
# model Y~X1+X2+X3+X1X2
model_1c4 <- multinom(food ~ lake +size + gender + lake*size,
data=datafood)## # weights: 50 (36 variable)
## initial value 352.466903
## iter 10 value 265.274636
## iter 20 value 260.069949
## iter 30 value 258.937775
## iter 40 value 258.824166
## iter 50 value 258.819006
## final value 258.818962
## converged
summary(model_1c4)## Warning in sqrt(diag(vc)): NaNs produced
## Call:
## multinom(formula = food ~ lake + size + gender + lake * size,
## data = datafood)
##
## Coefficients:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird -2.442347 1.928711 0.6706186 2.282905 0.92900200 -0.84648228
## Inver -2.453306 -12.256978 2.7331906 3.111918 3.17363446 -0.81592590
## Other -1.688556 1.392344 -26.0432791 1.299438 0.07643898 -0.08264057
## Rept -28.472136 26.922121 28.6961637 29.221745 26.38883928 -1.07334267
## lakeHan:size<=2.3 lakeOkl:size<=2.3 lakeTra:size<=2.3
## Bird -2.6180164 -37.538905 -1.9359701
## Inver 10.0209021 -2.448568 -2.6137822
## Other -0.8062165 27.172630 0.3637365
## Rept -26.9993336 -27.961392 -27.5229971
##
## Std. Errors:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird 1.0695771 1.2468205 1.5193189 1.3106646 1.2892933 0.7430086
## Inver 1.0470055 0.3370560 1.1530087 1.1841238 1.0964497 0.4448919
## Other 0.6785145 0.8580021 0.4916661 0.8711876 0.8925871 0.4749617
## Rept 0.8453331 1.0511858 0.7479391 0.7710755 0.6558217 0.7692781
## lakeHan:size<=2.3 lakeOkl:size<=2.3 lakeTra:size<=2.3
## Bird 1.6535383 NaN 1.897784
## Inver 0.3370534 1.3660324 1.361887
## Other 1.1500995 0.4916661 1.258627
## Rept 1.1866462 1.2780398 1.085509
##
## Residual Deviance: 517.6379
## AIC: 589.6379
# model Y~X1+X2+X3+X1X2
model_1c4 <- multinom(food ~ lake +size + gender + lake*size,
data=datafood)## # weights: 50 (36 variable)
## initial value 352.466903
## iter 10 value 265.274636
## iter 20 value 260.069949
## iter 30 value 258.937775
## iter 40 value 258.824166
## iter 50 value 258.819006
## final value 258.818962
## converged
summary(model_1c4)## Warning in sqrt(diag(vc)): NaNs produced
## Call:
## multinom(formula = food ~ lake + size + gender + lake * size,
## data = datafood)
##
## Coefficients:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird -2.442347 1.928711 0.6706186 2.282905 0.92900200 -0.84648228
## Inver -2.453306 -12.256978 2.7331906 3.111918 3.17363446 -0.81592590
## Other -1.688556 1.392344 -26.0432791 1.299438 0.07643898 -0.08264057
## Rept -28.472136 26.922121 28.6961637 29.221745 26.38883928 -1.07334267
## lakeHan:size<=2.3 lakeOkl:size<=2.3 lakeTra:size<=2.3
## Bird -2.6180164 -37.538905 -1.9359701
## Inver 10.0209021 -2.448568 -2.6137822
## Other -0.8062165 27.172630 0.3637365
## Rept -26.9993336 -27.961392 -27.5229971
##
## Std. Errors:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird 1.0695771 1.2468205 1.5193189 1.3106646 1.2892933 0.7430086
## Inver 1.0470055 0.3370560 1.1530087 1.1841238 1.0964497 0.4448919
## Other 0.6785145 0.8580021 0.4916661 0.8711876 0.8925871 0.4749617
## Rept 0.8453331 1.0511858 0.7479391 0.7710755 0.6558217 0.7692781
## lakeHan:size<=2.3 lakeOkl:size<=2.3 lakeTra:size<=2.3
## Bird 1.6535383 NaN 1.897784
## Inver 0.3370534 1.3660324 1.361887
## Other 1.1500995 0.4916661 1.258627
## Rept 1.1866462 1.2780398 1.085509
##
## Residual Deviance: 517.6379
## AIC: 589.6379
# model Y~X1+X2+X3+X1X3
model_1c5 <- multinom(food ~ lake +size + gender +lake*gender,
data=datafood)## # weights: 50 (36 variable)
## initial value 352.466903
## iter 10 value 265.296842
## iter 20 value 259.530895
## iter 30 value 258.505815
## iter 40 value 258.481781
## iter 50 value 258.481314
## iter 50 value 258.481312
## iter 50 value 258.481312
## final value 258.481312
## converged
summary(model_1c5)## Call:
## multinom(formula = food ~ lake + size + gender + lake * gender,
## data = datafood)
##
## Coefficients:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird -16.263542 15.4631991 16.0110863 16.5768526 -1.1908325 14.87784409
## Inver -1.046837 -2.1160620 0.8808395 0.5136922 1.5215173 -0.94732194
## Other -1.681967 0.5689054 1.3192386 2.4229579 -0.0522542 0.01106523
## Rept -2.318943 0.6134287 1.3720043 1.7963644 -0.1881737 -14.50610070
## lakeHan:genderMale lakeOkl:genderMale lakeTra:genderMale
## Bird -15.8646026 -33.5355368 -16.335073
## Inver 0.5034982 0.3048162 1.093681
## Other 0.6840401 -2.3514491 -1.347638
## Rept -7.7570090 14.5535117 14.612770
##
## Std. Errors:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird 0.6627872 0.6452407 1.1230758 0.9794898 0.6863823 0.5932994
## Inver 0.5534699 0.7863163 0.8191284 0.9686761 0.4618276 0.6126551
## Other 0.7978770 0.9140771 1.2081530 1.1815357 0.4926099 0.9471840
## Rept 1.0821756 1.2371499 1.5813617 1.6465079 0.6981059 0.6905281
## lakeHan:genderMale lakeOkl:genderMale lakeTra:genderMale
## Bird 1.124843e+00 2.393237e-07 1.1965529
## Inver 1.369324e+00 1.085099e+00 1.1800008
## Other 1.167883e+00 1.731244e+00 1.4487918
## Rept 9.243461e-10 9.573608e-01 0.9861938
##
## Residual Deviance: 516.9626
## AIC: 588.9626
# model Y~X1+X2+X3+X2X3
model_1c6 <- multinom(food ~ lake + size + gender +size*gender,data=datafood)## # weights: 40 (28 variable)
## initial value 352.466903
## iter 10 value 269.657367
## iter 20 value 267.859275
## iter 30 value 267.849421
## iter 30 value 267.849420
## iter 30 value 267.849420
## final value 267.849420
## converged
summary(model_1c6)## Call:
## multinom(formula = food ~ lake + size + gender + size * gender,
## data = datafood)
##
## Coefficients:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird -1.610300 0.6067870 -0.4587223 1.325001 -0.9499501 -0.8219859
## Inver -1.101382 -1.7722719 0.9424647 1.184062 1.2416008 -0.5742209
## Other -1.485725 0.8147021 0.1679189 1.684913 -0.1051924 -0.6960225
## Rept -3.339082 0.9879282 2.2335485 2.778320 0.3511508 0.2037592
## size<=2.3:genderMale
## Bird 0.4491087
## Inver 0.1497835
## Other 0.6635604
## Rept -1.6862430
##
## Std. Errors:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird 0.8007333 0.8014123 1.2462166 0.9110709 0.9163585 0.9299201
## Inver 0.6924399 0.6288826 0.5021787 0.5131789 0.7569443 0.7911095
## Other 0.6865768 0.5726299 0.8064032 0.6559994 0.7136479 0.7714181
## Rept 1.3673993 1.2035947 1.1455785 1.1486470 1.1892358 1.1845946
## size<=2.3:genderMale
## Bird 1.3372394
## Inver 0.9344216
## Other 0.9506783
## Rept 1.6487195
##
## Residual Deviance: 535.6988
## AIC: 591.6988
# model Y~X1+X2+X3+X1X2+X1X3
model_1c7 <-multinom(food~lake+size+gender+lake*size+lake*gender, data=datafood)## # weights: 65 (48 variable)
## initial value 352.466903
## iter 10 value 263.550767
## iter 20 value 252.470318
## iter 30 value 249.416728
## iter 40 value 249.182771
## iter 50 value 249.171406
## iter 60 value 249.171094
## final value 249.171077
## converged
summary(model_1c7)## Warning in sqrt(diag(vc)): NaNs produced
## Call:
## multinom(formula = food ~ lake + size + gender + lake * size +
## lake * gender, data = datafood)
##
## Coefficients:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird -26.545198 26.052061 28.139480 27.156201 0.35746095 24.32889436
## Inver -2.325022 -11.825325 3.343036 2.464092 3.39642459 -1.34474341
## Other -1.723879 1.046963 -24.458241 2.707398 0.06578482 -0.01984412
## Rept -23.134727 21.806167 23.280548 23.102673 21.98323898 -20.17051634
## lakeHan:size<=2.3 lakeOkl:size<=2.3 lakeTra:size<=2.3 lakeHan:genderMale
## Bird -2.0599485 -41.07881 -1.8707416 -25.3707049
## Inver 9.1294547 -3.19803 -2.5823130 0.9185007
## Other -0.7054789 25.78133 -0.3803866 0.6513613
## Rept -22.6845546 -23.42510 -22.7124870 -6.5400092
## lakeOkl:genderMale lakeTra:genderMale
## Bird -49.7462758 -25.988068
## Inver -0.2158311 1.066904
## Other -0.4355696 -1.489857
## Rept 19.2273535 19.910052
##
## Std. Errors:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird 0.7760831 0.958557 1.6265326 1.492307 1.2943109 0.8719357
## Inver 1.0551636 487.518218 1.5826690 1.569481 1.1416983 0.7209299
## Other 0.8169634 1.077639 0.6805341 1.564129 0.9248934 0.9809570
## Rept 0.8301478 1.142391 1.6281559 1.528664 0.8301478 0.8056223
## lakeHan:size<=2.3 lakeOkl:size<=2.3 lakeTra:size<=2.3 lakeHan:genderMale
## Bird 1.653312 NaN 2.189651 1.305838e+00
## Inver 487.518527 1.5483507 1.422054 1.423678e+00
## Other 1.175912 0.6805341 1.434644 1.195075e+00
## Rept 1.309035 1.5503497 1.188362 2.081841e-10
## lakeOkl:genderMale lakeTra:genderMale
## Bird NaN 1.525571
## Inver 1.336203 1.281557
## Other 1.786260 1.589410
## Rept 1.339247 1.204804
##
## Residual Deviance: 498.3422
## AIC: 594.3422
# model Y~X1+X2+X3+X1X2+X2X3
model_1c8 <-multinom(food~lake+size+gender+lake*size+size*gender,data=datafood)## # weights: 55 (40 variable)
## initial value 352.466903
## iter 10 value 264.007344
## iter 20 value 258.635097
## iter 30 value 257.471456
## iter 40 value 257.268765
## iter 50 value 257.260181
## iter 60 value 257.260007
## iter 60 value 257.260005
## iter 60 value 257.260005
## final value 257.260005
## converged
summary(model_1c8)## Call:
## multinom(formula = food ~ lake + size + gender + lake * size +
## size * gender, data = datafood)
##
## Coefficients:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird -2.374902 1.905770 0.7777711 2.380109 0.78737738 -1.00313562
## Inver -2.089062 -12.450905 3.7710436 4.210933 2.65814738 -2.34599930
## Other -1.684653 1.390753 -22.9574759 1.301454 0.04589109 -0.08759659
## Rept -26.119021 24.440030 25.9644059 26.459374 24.29284507 -0.63691750
## lakeHan:size<=2.3 lakeOkl:size<=2.3 lakeTra:size<=2.3
## Bird -2.5432412 -32.94969 -2.0141052
## Inver 10.3127719 -3.39441 -3.6750412
## Other -0.7904554 24.10091 0.3663241
## Rept -24.6885868 -25.43077 -24.8435013
## size<=2.3:genderMale
## Bird 0.25393402
## Inver 1.75745447
## Other 0.03952345
## Rept -1.13638396
##
## Std. Errors:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird 1.1116398 1.2505257 1.6186528 1.4283751 1.470820 1.1460683
## Inver 1.0663058 0.3359278 1.5774330 1.6200467 1.167156 1.3417232
## Other 0.7843509 0.8599831 0.4963547 0.9195573 1.090735 0.8394745
## Rept 1.1177932 1.0621017 0.9635959 0.9918237 1.145486 1.5602027
## lakeHan:size<=2.3 lakeOkl:size<=2.3 lakeTra:size<=2.3
## Bird 1.6767817 1.073912e-13 1.957890
## Inver 0.3359258 1.713893e+00 1.743582
## Other 1.1615493 4.963547e-01 1.283286
## Rept 1.2443446 1.359291e+00 1.229240
## size<=2.3:genderMale
## Bird 1.533010
## Inver 1.425687
## Other 1.019876
## Rept 1.957142
##
## Residual Deviance: 514.52
## AIC: 594.52
# model Y~X1+X2+X3+X1X3+X2X3
model_1c9 <-multinom(food~lake+size+gender+lake*gender+size*gender,data=datafood)## # weights: 55 (40 variable)
## initial value 352.466903
## iter 10 value 264.575413
## iter 20 value 258.989840
## iter 30 value 257.785301
## iter 40 value 257.722664
## iter 50 value 257.721130
## final value 257.721117
## converged
summary(model_1c9)## Call:
## multinom(formula = food ~ lake + size + gender + lake * gender +
## size * gender, data = datafood)
##
## Coefficients:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird -16.2454250 15.6026638 16.1814396 16.8103429 -1.4910019 14.7243894
## Inver -0.9882986 -2.1039274 0.8933136 0.5292055 1.4356770 -0.9763839
## Other -1.5457745 0.6835996 1.4561166 2.5972179 -0.3942057 -0.2679747
## Rept -2.6795341 0.3888810 1.1089359 1.4747671 0.5445618 -13.0797407
## lakeHan:genderMale lakeOkl:genderMale lakeTra:genderMale
## Bird -16.0142292 -32.7287883 -16.454575
## Inver 0.5012999 0.2534458 1.043671
## Other 0.5702386 -2.3683123 -1.427343
## Rept -6.8055922 13.7953320 13.964518
## size<=2.3:genderMale
## Bird 0.60936071
## Inver 0.06734568
## Other 0.55921244
## Rept -1.40622285
##
## Std. Errors:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird 0.7021724 0.6592361 1.1454332 1.0305022 0.9622487 0.7992739
## Inver 0.6928949 0.8027431 0.8333448 0.9877422 0.7899435 0.9277684
## Other 0.8223479 0.9407293 1.2384019 1.2313676 0.7728513 1.0714394
## Rept 1.2585713 1.2622550 1.6052792 1.6755239 1.2195085 0.9643344
## lakeHan:genderMale lakeOkl:genderMale lakeTra:genderMale
## Bird 1.129073e+00 5.670007e-07 1.206149
## Inver 1.379981e+00 1.082868e+00 1.178162
## Other 1.189446e+00 1.736694e+00 1.464333
## Rept 3.891958e-09 1.001575e+00 1.058997
## size<=2.3:genderMale
## Bird 1.3510612
## Inver 0.9707251
## Other 0.9933454
## Rept 1.6718032
##
## Residual Deviance: 515.4422
## AIC: 595.4422
# model Y~X1+X2+X3+X1X2+X1X3+X2X3
model_1c10 <-multinom(food~lake+size+gender+lake*size+lake*gender+size*gender, data=datafood)## # weights: 70 (52 variable)
## initial value 352.466903
## iter 10 value 261.806815
## iter 20 value 249.874155
## iter 30 value 245.251330
## iter 40 value 244.794341
## iter 50 value 244.772299
## iter 60 value 244.771293
## final value 244.771286
## converged
summary(model_1c10)## Call:
## multinom(formula = food ~ lake + size + gender + lake * size +
## lake * gender + size * gender, data = datafood)
##
## Coefficients:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird -29.680243 29.103199 68.77201 39.611336 13.866329 27.422556
## Inver -2.006630 -14.493190 41.09846 40.176780 2.933473 -39.756994
## Other -1.560861 1.181926 -38.81781 3.731800 -0.534904 -0.333421
## Rept -34.044627 32.774394 21.58248 2.350668 32.774659 -14.981245
## lakeHan:size<=2.3 lakeOkl:size<=2.3 lakeTra:size<=2.3 lakeHan:genderMale
## Bird -15.3329775 -79.63494 -24.490655 -28.0806124
## Inver 11.9281761 -40.92665 -40.410530 0.7598849
## Other -0.5527564 40.50818 -0.942941 0.4179860
## Rept -33.5480948 -21.41115 -1.774053 -14.3102392
## lakeOkl:genderMale lakeTra:genderMale size<=2.3:genderMale
## Bird -88.1781781 -38.334497 -13.4362543
## Inver 0.0461318 1.299149 38.6120194
## Other -0.8036763 -2.307518 0.8491819
## Rept 26.6702270 46.387523 -31.8115065
##
## Std. Errors:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird 0.7070832 0.8084083 1.4658431 0.5917075 0.5509420 0.7777457
## Inver 1.0638255 0.4393419 1.0245550 1.2212504 1.2249471 0.9993125
## Other 0.8276239 1.0697093 0.7768042 2.0107535 1.2926849 1.0971195
## Rept 0.7485178 0.9206041 0.7360161 0.9455311 0.7553727 0.4517334
## lakeHan:size<=2.3 lakeOkl:size<=2.3 lakeTra:size<=2.3 lakeHan:genderMale
## Bird 0.8905558 5.432772e-11 0.7160007 1.237839e+00
## Inver 0.4393416 9.390471e-01 0.9931620 1.433917e+00
## Other 1.2294201 7.768042e-01 1.6393334 1.283608e+00
## Rept 1.0822488 9.218556e-01 0.8925133 4.926739e-13
## lakeOkl:genderMale lakeTra:genderMale size<=2.3:genderMale
## Bird 3.296180e-08 0.8287452 1.0419266
## Inver 1.413217e+00 1.3337518 0.9072072
## Other 1.997547e+00 1.9339587 1.1962097
## Rept 4.255527e-01 0.5428352 0.9846263
##
## Residual Deviance: 489.5426
## AIC: 593.5426
# model
Y~X1+X2+X3+X1X2+X1X3+X2X3+X1X2X3## Y ~ X1 + X2 + X3 + X1X2 + X1X3 + X2X3 + X1X2X3
model_1c11 <-multinom(food~lake+size+gender+lake*size+lake*gender+size*gender+lake*size*gender,
data=datafood)## # weights: 85 (64 variable)
## initial value 352.466903
## iter 10 value 260.145098
## iter 20 value 247.220833
## iter 30 value 244.162621
## iter 40 value 243.815027
## iter 50 value 243.801406
## iter 60 value 243.800899
## iter 60 value 243.800898
## iter 60 value 243.800898
## final value 243.800898
## converged
summary(model_1c11)## Call:
## multinom(formula = food ~ lake + size + gender + lake * size +
## lake * gender + size * gender + lake * size * gender, data = datafood)
##
## Coefficients:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird -23.659137 23.253776 45.302701 18.666966 -5.1636921 21.461986
## Inver -2.079465 -12.135591 23.723299 41.083525 3.1778456 -32.399336
## Other -2.079548 2.079581 -19.265751 -6.158001 0.9806851 0.575526
## Rept -29.481972 28.383330 8.903792 8.739972 28.3828917 -9.045851
## lakeHan:size<=2.3 lakeOkl:size<=2.3 lakeTra:size<=2.3 lakeHan:genderMale
## Bird 3.489575 -44.628018 9.462975 -22.443051
## Inver 9.363311 -23.723138 -41.488498 -0.378315
## Other -2.654656 19.959036 7.950245 -1.268768
## Rept -29.363666 -8.903379 -8.333677 -13.270796
## lakeOkl:genderMale lakeTra:genderMale size<=2.3:genderMale
## Bird -68.65129 -17.450651 5.489023
## Inver 10.13646 -6.892404 31.038624
## Other -14.17904 7.192033 -1.348468
## Rept 28.85082 29.500163 -21.726694
## lakeHan:size<=2.3:genderMale lakeOkl:size<=2.3:genderMale
## Bird -29.234803 0.4598397
## Inver 1.466961 -9.8742203
## Other 3.379153 14.6644729
## Rept 4.422985 -19.9036846
## lakeTra:size<=2.3:genderMale
## Bird -44.1067826
## Inver 8.4069123
## Other -8.2112240
## Rept 0.8663284
##
## Std. Errors:
## (Intercept) lakeHan lakeOkl lakeTra size<=2.3 genderMale
## Bird 0.7076713 0.8055881 1.2170267 0.5899784 0.5605073 0.7643122
## Inver 1.0606630 0.4583132 0.6686450 0.6394553 1.2527514 0.6124146
## Other 1.0607033 1.3385692 0.7359783 0.9350246 1.5679312 1.3176434
## Rept 0.7713307 0.9140028 0.7471843 0.8686971 0.7713308 0.4213413
## lakeHan:size<=2.3 lakeOkl:size<=2.3 lakeTra:size<=2.3 lakeHan:genderMale
## Bird 0.9039139 9.842819e-12 0.7030400 1.229372e+00
## Inver 0.4583076 8.466216e-01 0.7271145 7.348490e-01
## Other 1.8764086 7.359783e-01 0.9350246 1.775630e+00
## Rept 1.0804467 9.296716e-01 0.9101667 9.906137e-10
## lakeOkl:genderMale lakeTra:genderMale size<=2.3:genderMale
## Bird 4.851911e-10 0.8268938 1.0437480
## Inver 6.900638e-01 0.7756274 0.7546887
## Other 1.029998e+00 0.9350246 1.9095632
## Rept 4.222621e-01 0.4827984 0.5984610
## lakeHan:size<=2.3:genderMale lakeOkl:size<=2.3:genderMale
## Bird 9.598235e-11 9.920193e-15
## Inver 7.348490e-01 9.390853e-01
## Other 2.408691e+00 1.029998e+00
## Rept 9.081705e-18 4.538504e-10
## lakeTra:size<=2.3:genderMale
## Bird 1.471557e-14
## Inver 8.139676e-01
## Other 1.352559e+00
## Rept 5.984610e-01
##
## Residual Deviance: 487.6018
## AIC: 615.6018
# Melihat deviance, derajat bebas dan AIC
# Model Y~X1
model_1c1$deviance## [1] 561.1677
model_1c1$edf## [1] 16
model_1c1$AIC## [1] 593.1677
# Model Y~X2
model_1c2$deviance## [1] 589.2134
model_1c2$edf## [1] 8
model_1c2$AIC## [1] 605.2134
# Model Y~X3
model_1c3$deviance## [1] 602.2589
model_1c3$edf## [1] 8
model_1c3$AIC## [1] 618.2589
# Model Y~X1+X2
model_1$deviance## [1] 540.0803
model_1$edf## [1] 20
model_1$AIC## [1] 580.0803
# Model Y~X1+X3
model_3$deviance## [1] 555.4658
model_3$edf## [1] 20
model_3$AIC## [1] 595.4658
# Model Y~X2+X3
model_4$deviance## [1] 588.1835
model_4$edf## [1] 12
model_4$AIC## [1] 612.1835
# Model Y~X1+X2+X3
model_2$deviance## [1] 537.8655
model_2$edf## [1] 24
model_2$AIC## [1] 585.8655
# Model Y~X1+X2+X3+X1X2
model_1c4$deviance## [1] 517.6379
model_1c4$edf## [1] 36
model_1c4$AIC## [1] 589.6379
# Model Y~X1+X2+X3+X1X3
model_1c5$deviance## [1] 516.9626
model_1c5$edf## [1] 36
model_1c5$AIC## [1] 588.9626
# Model Y~X1+X2+X3+X2X3
model_1c6$deviance## [1] 535.6988
model_1c6$edf## [1] 28
model_1c6$AIC## [1] 591.6988
# Model Y~X1+X2+X3+X1X2+X1X3
model_1c7$deviance## [1] 498.3422
model_1c7$edf## [1] 48
model_1c7$AIC## [1] 594.3422
# Model Y~X1+X2+X3+X1X2+X2X3
model_1c8$deviance## [1] 514.52
model_1c8$edf## [1] 40
model_1c8$AIC## [1] 594.52
# Model Y~X1+X2+X3+X1X3+X2X3
model_1c9$deviance## [1] 515.4422
model_1c9$edf## [1] 40
model_1c9$AIC## [1] 595.4422
# Model Y~X1+X2+X3+X1X2+X1X3+X2X3
model_1c10$deviance## [1] 489.5426
model_1c10$edf## [1] 52
model_1c10$AIC## [1] 593.5426
# Model Y~X1+X2+X3+X1X2+X1X3+X2X3+X1X2X3
model_1c11$deviance## [1] 487.6018
model_1c11$edf## [1] 64
model_1c11$AIC## [1] 615.6018
Ringkasan berdasarkan hasil output:
Ringkasan hasil uji deviance:
Berdasarkan pengujian poin (d) dan poin (b), dapat disimpulkan bahwa model terbaik adalah model dengan peubah bebas size dan lake (Model 4). Hal ini juga dapat dipastikan dengan nilai AIC yang lebih kecil dibandingkan dengan model lainnya.
Soal 2
A. Persamaan Prediksi untuk Log(phi1/phi2)
B. Dengan menggunakan kategori ya dan tidak, interpretasikan efek bersyarat gender menggunakanan Selang kepercayaan 95% untuk odds ratio
C. Tunjukan bahwa jika seseorang itu wanita dan putih maka Phi_cap_1= P_cap(Y=yes)=0,76
D
E
F
Mahasiswa Pascasarjana Statistika dan Sains Data, IPB University, reniamelia@apps.ipb.ac.id↩︎