This script examines whether the vocabulary and grammar sections of the CDI can be distinguished as separate dimensions1.
Open the libraries.
options(max.print=500)
library(wordbankr) # WB data
library(tidyverse) # tidy
library(mirt) # IRT models
library(psych) # some psychometric stuff (tests of dimensionality)
library(Gifi)# some more psychometric stuff (tests of dimensionality)
library(knitr) # some formatting, tables, etc
library(lordif) # differential item functioning.
library(sirt) # additional IRT functions
Inst <- get_instrument_data(language="English (American)", form="WS")
Admin <- get_administration_data(language="English (American)", form="WS")
N_total = nrow(Admin) # making sure things add up later
N_long = nrow(filter(Admin, longitudinal==TRUE)) # making sure things add up later
Item <- get_item_data(language="English (American)", form = "WS")
Complex <- Admin %>%
full_join(.,Inst, by="data_id") %>%
full_join(., Item, by="num_item_id") %>%
filter(longitudinal==FALSE) %>%
filter(type == "combine" | # to drop non-combiners
type == "complexity" # to calculate complexity scores.
) %>%
mutate(
out = ifelse(value=="complex" | value=="sometimes" | value=="produces", yes=1,
no = ifelse(value=="often", yes=2, no =0))
)
N_complexity_items = nrow(filter(Item, type == "combine" |
type == "complexity"))
nrow(Complex) == (N_total - N_long)*N_complexity_items
## [1] TRUE
Complex$complexity_category <- ifelse(Complex$complexity_category == "", yes=Complex$type, no=Complex$complexity_category)
Complex_short_with_ids_all <- Complex %>%
dplyr::select(data_id, value, out, complexity_category, num_item_id) %>%
mutate(
label = str_c(complexity_category, num_item_id)
) %>%
pivot_wider(id_cols=data_id, names_from = "label", values_from="out") %>%
dplyr::select(starts_with(c("data_id", "combine", "morphology", "syntax")))
Complex_short_with_ids <- Complex_short_with_ids_all %>%
drop_na()
N_NA <- nrow(Complex_short_with_ids_all) - nrow(Complex_short_with_ids)
Complex_short_grammatical <- Complex_short_with_ids %>%
filter(combine760 > 0) %>%
dplyr::select(starts_with(c("morphology", "syntax"))) # need to get rid of participant names for IRT models.
N_nog <- nrow(filter(Complex_short_with_ids, combine760 == 0))
nrow(Complex_short_grammatical) == N_total - N_long - N_NA - N_nog
## [1] TRUE
Vocab <- Admin %>%
full_join(.,Inst, by="data_id") %>%
full_join(., Item, by="num_item_id") %>%
filter(longitudinal==FALSE) %>% # remove longitudinal data set
filter(type == "word"
) %>%
mutate(
out = ifelse(value=="produces", yes=1, no =0)
)
N_vocab = nrow(filter(Item, type == "word"))
nrow(Vocab) == (N_total - N_long)*N_vocab
## [1] TRUE
Vocab_short_with_ids_all <- Vocab %>%
filter(lexical_category == "nouns" | lexical_category == "predicates") %>%
dplyr::select(data_id, value, out, definition) %>%
pivot_wider(id_cols=data_id, names_from = "definition", values_from="out")
Vocab_short_with_ids <- Vocab_short_with_ids_all %>%
drop_na() # drop participants with missing data
N_NA_Vocab = nrow(Vocab_short_with_ids_all) - nrow(Vocab_short_with_ids)
Vocab_short <- Vocab_short_with_ids %>%
dplyr::select(-"data_id") # dataset for IRT can't have IDs
nrow(Vocab_short_with_ids) == N_total - N_long - N_NA_Vocab # Looks good
## [1] TRUE
##Combine
full <- full_join(
Complex_short_with_ids, Vocab_short_with_ids, by="data_id"
) %>%
filter(combine760 > 0) %>%
dplyr::select(-c("data_id", "combine760")) %>%
drop_na() # one participant with missing vocab, but full grammar.
full_tetra <- tetrachoric(full)
## For i = 147 j = 95 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 153 j = 95 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 168 j = 95 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 177 j = 95 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 177 j = 96 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 177 j = 113 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 177 j = 124 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 197 j = 95 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 203 j = 113 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 203 j = 146 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 203 j = 150 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 205 j = 95 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 206 j = 124 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 227 j = 203 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 230 j = 95 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 235 j = 95 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 262 j = 95 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 291 j = 226 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 291 j = 289 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 321 j = 95 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 424 j = 95 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 485 j = 482 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## For i = 496 j = 482 A cell entry of 0 was replaced with correct = 0.5. Check your data!
## Warning in cor.smooth(mat): Matrix was not positive definite, smoothing was done
rho <- full_tetra$rho
fa.parallel(rho, fa="fa", fm="minres", cor="poly", n.obs = 2187)
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined.
## Chi square is based upon observed residuals.
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined for the null model either.
## The Chi square is thus based upon observed correlations.
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Parallel analysis suggests that the number of factors = 22 and the number of components = NA
vss(rho, fa="fa", fm="minres", cor="poly", n.obs = 2187)
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined.
## Chi square is based upon observed residuals.
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined for the null model either.
## The Chi square is thus based upon observed correlations.
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined.
## Chi square is based upon observed residuals.
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined for the null model either.
## The Chi square is thus based upon observed correlations.
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined.
## Chi square is based upon observed residuals.
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined for the null model either.
## The Chi square is thus based upon observed correlations.
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined.
## Chi square is based upon observed residuals.
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined for the null model either.
## The Chi square is thus based upon observed correlations.
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined.
## Chi square is based upon observed residuals.
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined for the null model either.
## The Chi square is thus based upon observed correlations.
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined.
## Chi square is based upon observed residuals.
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined for the null model either.
## The Chi square is thus based upon observed correlations.
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined.
## Chi square is based upon observed residuals.
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined for the null model either.
## The Chi square is thus based upon observed correlations.
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined.
## Chi square is based upon observed residuals.
## The determinant of the smoothed correlation was zero.
## This means the objective function is not defined for the null model either.
## The Chi square is thus based upon observed correlations.
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
##
## Very Simple Structure
## Call: vss(x = rho, fm = "minres", n.obs = 2187, cor = "poly", fa = "fa")
## VSS complexity 1 achieves a maximimum of 1 with 1 factors
## VSS complexity 2 achieves a maximimum of 1 with 2 factors
##
## The Velicer MAP achieves a minimum of 0 with 8 factors
## BIC achieves a minimum of -719118.7 with 8 factors
## Sample Size adjusted BIC achieves a minimum of -311609.2 with 8 factors
##
## Statistics by number of factors
## vss1 vss2 map dof chisq prob sqresid fit RMSEA BIC SABIC complex
## 1 1.00 0.00 0.0103 131840 991350 0 493 1 0.055 -22537 396337 1.0
## 2 0.47 1.00 0.0066 131326 605072 0 301 1 0.041 -404863 12378 1.8
## 3 0.35 0.84 0.0056 130813 487647 0 242 1 0.035 -518342 -102731 2.4
## 4 0.29 0.72 0.0049 130301 405258 0 202 1 0.031 -596794 -182810 2.9
## 5 0.27 0.70 0.0041 129790 339688 0 169 1 0.027 -658435 -246074 3.1
## 6 0.28 0.72 0.0039 129280 309960 0 154 1 0.025 -684240 -273500 3.2
## 7 0.28 0.72 0.0037 128771 287944 0 143 1 0.024 -702342 -293219 3.3
## 8 0.28 0.72 0.0035 128263 267261 0 133 1 0.022 -719119 -311609 3.3
## eChisq SRMR eCRMS eBIC
## 1 901585 0.039 0.040 -112302
## 2 504995 0.030 0.030 -504939
## 3 389686 0.026 0.026 -616304
## 4 309520 0.023 0.023 -692532
## 5 246391 0.021 0.021 -751732
## 6 219575 0.019 0.020 -774625
## 7 200639 0.019 0.019 -789647
## 8 182481 0.018 0.018 -803898
m1 <- mirt(full, 1, "2PL")
##
Iteration: 1, Log-Lik: -431726.127, Max-Change: 2.47582
Iteration: 2, Log-Lik: -413209.854, Max-Change: 0.62342
Iteration: 3, Log-Lik: -411852.805, Max-Change: 0.41947
Iteration: 4, Log-Lik: -411617.221, Max-Change: 0.39023
Iteration: 5, Log-Lik: -411311.595, Max-Change: 0.16290
Iteration: 6, Log-Lik: -411085.937, Max-Change: 0.09963
Iteration: 7, Log-Lik: -410913.493, Max-Change: 0.04408
Iteration: 8, Log-Lik: -410771.139, Max-Change: 0.03733
Iteration: 9, Log-Lik: -410644.852, Max-Change: 0.03910
Iteration: 10, Log-Lik: -410539.751, Max-Change: 0.03341
Iteration: 11, Log-Lik: -410440.300, Max-Change: 0.03284
Iteration: 12, Log-Lik: -410348.890, Max-Change: 0.03135
Iteration: 13, Log-Lik: -410265.164, Max-Change: 0.03150
Iteration: 14, Log-Lik: -410187.664, Max-Change: 0.02975
Iteration: 15, Log-Lik: -410116.135, Max-Change: 0.03033
Iteration: 16, Log-Lik: -410049.432, Max-Change: 0.02937
Iteration: 17, Log-Lik: -409988.094, Max-Change: 0.02833
Iteration: 18, Log-Lik: -409931.110, Max-Change: 0.02717
Iteration: 19, Log-Lik: -409878.502, Max-Change: 0.02656
Iteration: 20, Log-Lik: -409829.547, Max-Change: 0.03697
Iteration: 21, Log-Lik: -409787.684, Max-Change: 0.06665
Iteration: 22, Log-Lik: -409747.543, Max-Change: 0.04088
Iteration: 23, Log-Lik: -409712.692, Max-Change: 0.05191
Iteration: 24, Log-Lik: -409676.834, Max-Change: 0.03679
Iteration: 25, Log-Lik: -409638.532, Max-Change: 0.02540
Iteration: 26, Log-Lik: -409602.667, Max-Change: 0.02379
Iteration: 27, Log-Lik: -409568.840, Max-Change: 0.02311
Iteration: 28, Log-Lik: -409537.078, Max-Change: 0.04110
Iteration: 29, Log-Lik: -409509.755, Max-Change: 0.08295
Iteration: 30, Log-Lik: -409485.716, Max-Change: 0.09534
Iteration: 31, Log-Lik: -409464.490, Max-Change: 0.12987
Iteration: 32, Log-Lik: -409443.700, Max-Change: 0.14632
Iteration: 33, Log-Lik: -409425.085, Max-Change: 0.17484
Iteration: 34, Log-Lik: -409406.856, Max-Change: 0.20722
Iteration: 35, Log-Lik: -409390.436, Max-Change: 0.21880
Iteration: 36, Log-Lik: -409374.433, Max-Change: 0.22359
Iteration: 37, Log-Lik: -409359.626, Max-Change: 0.27153
Iteration: 38, Log-Lik: -409345.093, Max-Change: 0.15973
Iteration: 39, Log-Lik: -409326.637, Max-Change: 0.01647
Iteration: 40, Log-Lik: -409309.733, Max-Change: 0.05400
Iteration: 41, Log-Lik: -409293.719, Max-Change: 0.13653
Iteration: 42, Log-Lik: -409279.975, Max-Change: 0.22528
Iteration: 43, Log-Lik: -409267.621, Max-Change: 0.28774
Iteration: 44, Log-Lik: -409255.569, Max-Change: 0.32913
Iteration: 45, Log-Lik: -409243.921, Max-Change: 0.29623
Iteration: 46, Log-Lik: -409232.459, Max-Change: 0.29597
Iteration: 47, Log-Lik: -409221.311, Max-Change: 0.29101
Iteration: 48, Log-Lik: -409210.617, Max-Change: 0.28325
Iteration: 49, Log-Lik: -409200.200, Max-Change: 0.25655
Iteration: 50, Log-Lik: -409190.199, Max-Change: 0.23962
Iteration: 51, Log-Lik: -409180.542, Max-Change: 0.26149
Iteration: 52, Log-Lik: -409171.442, Max-Change: 0.27319
Iteration: 53, Log-Lik: -409162.733, Max-Change: 0.28434
Iteration: 54, Log-Lik: -409154.517, Max-Change: 0.28962
Iteration: 55, Log-Lik: -409146.702, Max-Change: 0.29790
Iteration: 56, Log-Lik: -409139.388, Max-Change: 0.29554
Iteration: 57, Log-Lik: -409132.454, Max-Change: 0.33503
Iteration: 58, Log-Lik: -409125.087, Max-Change: 0.28257
Iteration: 59, Log-Lik: -409118.403, Max-Change: 0.28574
Iteration: 60, Log-Lik: -409111.625, Max-Change: 0.31758
Iteration: 61, Log-Lik: -409105.564, Max-Change: 0.15891
Iteration: 62, Log-Lik: -409098.397, Max-Change: 0.08739
Iteration: 63, Log-Lik: -409092.202, Max-Change: 0.22700
Iteration: 64, Log-Lik: -409086.963, Max-Change: 0.20162
Iteration: 65, Log-Lik: -409080.961, Max-Change: 0.17782
Iteration: 66, Log-Lik: -409076.200, Max-Change: 0.12593
Iteration: 67, Log-Lik: -409070.822, Max-Change: 0.03162
Iteration: 68, Log-Lik: -409066.044, Max-Change: 0.10040
Iteration: 69, Log-Lik: -409061.648, Max-Change: 0.13978
Iteration: 70, Log-Lik: -409056.650, Max-Change: 0.14577
Iteration: 71, Log-Lik: -409052.768, Max-Change: 0.21247
Iteration: 72, Log-Lik: -409049.204, Max-Change: 0.19430
Iteration: 73, Log-Lik: -409047.256, Max-Change: 0.01077
Iteration: 74, Log-Lik: -409043.414, Max-Change: 0.02041
Iteration: 75, Log-Lik: -409039.850, Max-Change: 0.01494
Iteration: 76, Log-Lik: -409035.024, Max-Change: 0.01603
Iteration: 77, Log-Lik: -409031.682, Max-Change: 0.01025
Iteration: 78, Log-Lik: -409028.564, Max-Change: 0.01575
Iteration: 79, Log-Lik: -409021.302, Max-Change: 0.09140
Iteration: 80, Log-Lik: -409018.381, Max-Change: 0.10997
Iteration: 81, Log-Lik: -409016.296, Max-Change: 0.10970
Iteration: 82, Log-Lik: -409015.012, Max-Change: 0.00944
Iteration: 83, Log-Lik: -409012.578, Max-Change: 0.01009
Iteration: 84, Log-Lik: -409010.334, Max-Change: 0.02111
Iteration: 85, Log-Lik: -409005.597, Max-Change: 0.10325
Iteration: 86, Log-Lik: -409003.694, Max-Change: 0.10124
Iteration: 87, Log-Lik: -409002.181, Max-Change: 0.09242
Iteration: 88, Log-Lik: -409001.298, Max-Change: 0.00782
Iteration: 89, Log-Lik: -408999.525, Max-Change: 0.00820
Iteration: 90, Log-Lik: -408997.845, Max-Change: 0.00673
Iteration: 91, Log-Lik: -408994.453, Max-Change: 0.00685
Iteration: 92, Log-Lik: -408992.821, Max-Change: 0.00693
Iteration: 93, Log-Lik: -408991.499, Max-Change: 0.00654
Iteration: 94, Log-Lik: -408987.322, Max-Change: 0.01789
Iteration: 95, Log-Lik: -408986.119, Max-Change: 0.00549
Iteration: 96, Log-Lik: -408985.135, Max-Change: 0.00635
Iteration: 97, Log-Lik: -408982.201, Max-Change: 0.01402
Iteration: 98, Log-Lik: -408981.365, Max-Change: 0.00501
Iteration: 99, Log-Lik: -408980.632, Max-Change: 0.00372
Iteration: 100, Log-Lik: -408978.528, Max-Change: 0.00394
Iteration: 101, Log-Lik: -408977.959, Max-Change: 0.00422
Iteration: 102, Log-Lik: -408977.436, Max-Change: 0.00324
Iteration: 103, Log-Lik: -408975.546, Max-Change: 0.00391
Iteration: 104, Log-Lik: -408975.133, Max-Change: 0.00273
Iteration: 105, Log-Lik: -408974.783, Max-Change: 0.00339
Iteration: 106, Log-Lik: -408973.348, Max-Change: 0.00372
Iteration: 107, Log-Lik: -408973.069, Max-Change: 0.01024
Iteration: 108, Log-Lik: -408972.772, Max-Change: 0.00268
Iteration: 109, Log-Lik: -408972.236, Max-Change: 0.00641
Iteration: 110, Log-Lik: -408972.076, Max-Change: 0.00529
Iteration: 111, Log-Lik: -408971.870, Max-Change: 0.00225
Iteration: 112, Log-Lik: -408971.397, Max-Change: 0.00439
Iteration: 113, Log-Lik: -408971.222, Max-Change: 0.00219
Iteration: 114, Log-Lik: -408971.024, Max-Change: 0.00256
Iteration: 115, Log-Lik: -408970.781, Max-Change: 0.00127
Iteration: 116, Log-Lik: -408970.671, Max-Change: 0.00191
Iteration: 117, Log-Lik: -408970.514, Max-Change: 0.00245
Iteration: 118, Log-Lik: -408970.216, Max-Change: 0.00305
Iteration: 119, Log-Lik: -408970.117, Max-Change: 0.00234
Iteration: 120, Log-Lik: -408970.047, Max-Change: 0.00453
Iteration: 121, Log-Lik: -408969.952, Max-Change: 0.00321
Iteration: 122, Log-Lik: -408969.881, Max-Change: 0.00432
Iteration: 123, Log-Lik: -408969.803, Max-Change: 0.00241
Iteration: 124, Log-Lik: -408969.720, Max-Change: 0.00381
Iteration: 125, Log-Lik: -408969.643, Max-Change: 0.00207
Iteration: 126, Log-Lik: -408969.581, Max-Change: 0.00118
Iteration: 127, Log-Lik: -408969.385, Max-Change: 0.00683
Iteration: 128, Log-Lik: -408969.287, Max-Change: 0.00108
Iteration: 129, Log-Lik: -408969.238, Max-Change: 0.00093
Iteration: 130, Log-Lik: -408969.077, Max-Change: 0.00116
Iteration: 131, Log-Lik: -408969.006, Max-Change: 0.00107
Iteration: 132, Log-Lik: -408968.946, Max-Change: 0.00115
Iteration: 133, Log-Lik: -408968.596, Max-Change: 0.00124
Iteration: 134, Log-Lik: -408968.538, Max-Change: 0.00126
Iteration: 135, Log-Lik: -408968.483, Max-Change: 0.00115
Iteration: 136, Log-Lik: -408968.229, Max-Change: 0.00205
Iteration: 137, Log-Lik: -408968.184, Max-Change: 0.00101
Iteration: 138, Log-Lik: -408968.141, Max-Change: 0.00121
Iteration: 139, Log-Lik: -408968.059, Max-Change: 0.00107
Iteration: 140, Log-Lik: -408968.023, Max-Change: 0.00133
Iteration: 141, Log-Lik: -408967.983, Max-Change: 0.00092
Iteration: 142, Log-Lik: -408967.893, Max-Change: 0.00185
Iteration: 143, Log-Lik: -408967.858, Max-Change: 0.00091
Iteration: 144, Log-Lik: -408967.822, Max-Change: 0.00110
Iteration: 145, Log-Lik: -408967.746, Max-Change: 0.00107
Iteration: 146, Log-Lik: -408967.715, Max-Change: 0.00130
Iteration: 147, Log-Lik: -408967.682, Max-Change: 0.00086
Iteration: 148, Log-Lik: -408967.609, Max-Change: 0.00177
Iteration: 149, Log-Lik: -408967.578, Max-Change: 0.00087
Iteration: 150, Log-Lik: -408967.548, Max-Change: 0.00104
Iteration: 151, Log-Lik: -408967.479, Max-Change: 0.00102
Iteration: 152, Log-Lik: -408967.451, Max-Change: 0.00126
Iteration: 153, Log-Lik: -408967.421, Max-Change: 0.00083
Iteration: 154, Log-Lik: -408967.354, Max-Change: 0.00177
Iteration: 155, Log-Lik: -408967.326, Max-Change: 0.00086
Iteration: 156, Log-Lik: -408967.296, Max-Change: 0.00104
Iteration: 157, Log-Lik: -408967.232, Max-Change: 0.00106
Iteration: 158, Log-Lik: -408967.205, Max-Change: 0.00132
Iteration: 159, Log-Lik: -408967.175, Max-Change: 0.00083
Iteration: 160, Log-Lik: -408967.113, Max-Change: 0.00191
Iteration: 161, Log-Lik: -408967.084, Max-Change: 0.00089
Iteration: 162, Log-Lik: -408967.054, Max-Change: 0.00109
Iteration: 163, Log-Lik: -408966.991, Max-Change: 0.00114
Iteration: 164, Log-Lik: -408966.963, Max-Change: 0.00141
Iteration: 165, Log-Lik: -408966.932, Max-Change: 0.00085
Iteration: 166, Log-Lik: -408966.867, Max-Change: 0.00204
Iteration: 167, Log-Lik: -408966.837, Max-Change: 0.00094
Iteration: 168, Log-Lik: -408966.805, Max-Change: 0.00113
Iteration: 169, Log-Lik: -408966.736, Max-Change: 0.00123
Iteration: 170, Log-Lik: -408966.705, Max-Change: 0.00151
Iteration: 171, Log-Lik: -408966.671, Max-Change: 0.00090
Iteration: 172, Log-Lik: -408966.596, Max-Change: 0.00222
Iteration: 173, Log-Lik: -408966.562, Max-Change: 0.00101
Iteration: 174, Log-Lik: -408966.526, Max-Change: 0.00122
Iteration: 175, Log-Lik: -408966.445, Max-Change: 0.00135
Iteration: 176, Log-Lik: -408966.409, Max-Change: 0.00165
Iteration: 177, Log-Lik: -408966.369, Max-Change: 0.00098
Iteration: 178, Log-Lik: -408966.278, Max-Change: 0.00247
Iteration: 179, Log-Lik: -408966.238, Max-Change: 0.00111
Iteration: 180, Log-Lik: -408966.194, Max-Change: 0.00135
Iteration: 181, Log-Lik: -408966.091, Max-Change: 0.00152
Iteration: 182, Log-Lik: -408966.047, Max-Change: 0.00186
Iteration: 183, Log-Lik: -408965.998, Max-Change: 0.00109
Iteration: 184, Log-Lik: -408965.879, Max-Change: 0.00284
Iteration: 185, Log-Lik: -408965.828, Max-Change: 0.00125
Iteration: 186, Log-Lik: -408965.772, Max-Change: 0.00153
Iteration: 187, Log-Lik: -408965.634, Max-Change: 0.00173
Iteration: 188, Log-Lik: -408965.576, Max-Change: 0.00214
Iteration: 189, Log-Lik: -408965.511, Max-Change: 0.00125
Iteration: 190, Log-Lik: -408965.347, Max-Change: 0.00334
Iteration: 191, Log-Lik: -408965.278, Max-Change: 0.00143
Iteration: 192, Log-Lik: -408965.203, Max-Change: 0.00178
Iteration: 193, Log-Lik: -408965.008, Max-Change: 0.00201
Iteration: 194, Log-Lik: -408964.928, Max-Change: 0.00253
Iteration: 195, Log-Lik: -408964.838, Max-Change: 0.00144
Iteration: 196, Log-Lik: -408964.602, Max-Change: 0.00401
Iteration: 197, Log-Lik: -408964.505, Max-Change: 0.00166
Iteration: 198, Log-Lik: -408964.400, Max-Change: 0.00210
Iteration: 199, Log-Lik: -408964.118, Max-Change: 0.00234
Iteration: 200, Log-Lik: -408964.006, Max-Change: 0.00635
Iteration: 201, Log-Lik: -408963.873, Max-Change: 0.00188
Iteration: 202, Log-Lik: -408963.758, Max-Change: 0.00189
Iteration: 203, Log-Lik: -408963.639, Max-Change: 0.00218
Iteration: 204, Log-Lik: -408963.485, Max-Change: 0.00270
Iteration: 205, Log-Lik: -408963.260, Max-Change: 0.00520
Iteration: 206, Log-Lik: -408963.147, Max-Change: 0.00210
Iteration: 207, Log-Lik: -408962.986, Max-Change: 0.00271
Iteration: 208, Log-Lik: -408962.731, Max-Change: 0.00369
Iteration: 209, Log-Lik: -408962.609, Max-Change: 0.00292
Iteration: 210, Log-Lik: -408962.423, Max-Change: 0.00284
Iteration: 211, Log-Lik: -408962.155, Max-Change: 0.00521
Iteration: 212, Log-Lik: -408962.024, Max-Change: 0.00212
Iteration: 213, Log-Lik: -408961.835, Max-Change: 0.00293
Iteration: 214, Log-Lik: -408961.542, Max-Change: 0.00348
Iteration: 215, Log-Lik: -408961.404, Max-Change: 0.00279
Iteration: 216, Log-Lik: -408961.198, Max-Change: 0.00301
Iteration: 217, Log-Lik: -408960.906, Max-Change: 0.00417
Iteration: 218, Log-Lik: -408960.766, Max-Change: 0.00245
Iteration: 219, Log-Lik: -408960.564, Max-Change: 0.00305
Iteration: 220, Log-Lik: -408960.273, Max-Change: 0.00397
Iteration: 221, Log-Lik: -408960.136, Max-Change: 0.00332
Iteration: 222, Log-Lik: -408959.932, Max-Change: 0.00305
Iteration: 223, Log-Lik: -408959.662, Max-Change: 0.00501
Iteration: 224, Log-Lik: -408959.532, Max-Change: 0.00289
Iteration: 225, Log-Lik: -408959.344, Max-Change: 0.00300
Iteration: 226, Log-Lik: -408959.097, Max-Change: 0.00409
Iteration: 227, Log-Lik: -408958.980, Max-Change: 0.00340
Iteration: 228, Log-Lik: -408958.808, Max-Change: 0.00284
Iteration: 229, Log-Lik: -408958.593, Max-Change: 0.00447
Iteration: 230, Log-Lik: -408958.490, Max-Change: 0.00261
Iteration: 231, Log-Lik: -408958.342, Max-Change: 0.00214
Iteration: 232, Log-Lik: -408958.124, Max-Change: 0.00269
Iteration: 233, Log-Lik: -408958.047, Max-Change: 0.00122
Iteration: 234, Log-Lik: -408957.947, Max-Change: 0.00137
Iteration: 235, Log-Lik: -408957.404, Max-Change: 0.00437
Iteration: 236, Log-Lik: -408957.333, Max-Change: 0.00072
Iteration: 237, Log-Lik: -408957.298, Max-Change: 0.00112
Iteration: 238, Log-Lik: -408957.246, Max-Change: 0.00089
Iteration: 239, Log-Lik: -408957.198, Max-Change: 0.00099
Iteration: 240, Log-Lik: -408957.152, Max-Change: 0.00084
Iteration: 241, Log-Lik: -408956.923, Max-Change: 0.00116
Iteration: 242, Log-Lik: -408956.896, Max-Change: 0.00103
Iteration: 243, Log-Lik: -408956.873, Max-Change: 0.00084
Iteration: 244, Log-Lik: -408956.817, Max-Change: 0.00081
Iteration: 245, Log-Lik: -408956.802, Max-Change: 0.00128
Iteration: 246, Log-Lik: -408956.796, Max-Change: 0.00145
Iteration: 247, Log-Lik: -408956.779, Max-Change: 0.00106
Iteration: 248, Log-Lik: -408956.775, Max-Change: 0.00111
Iteration: 249, Log-Lik: -408956.764, Max-Change: 0.00060
Iteration: 250, Log-Lik: -408956.763, Max-Change: 0.00048
Iteration: 251, Log-Lik: -408956.761, Max-Change: 0.00059
Iteration: 252, Log-Lik: -408956.751, Max-Change: 0.00152
Iteration: 253, Log-Lik: -408956.741, Max-Change: 0.00139
Iteration: 254, Log-Lik: -408956.729, Max-Change: 0.00060
Iteration: 255, Log-Lik: -408956.727, Max-Change: 0.00070
Iteration: 256, Log-Lik: -408956.719, Max-Change: 0.00248
Iteration: 257, Log-Lik: -408956.716, Max-Change: 0.00143
Iteration: 258, Log-Lik: -408956.712, Max-Change: 0.00138
Iteration: 259, Log-Lik: -408956.708, Max-Change: 0.00128
Iteration: 260, Log-Lik: -408956.704, Max-Change: 0.00130
Iteration: 261, Log-Lik: -408956.701, Max-Change: 0.00072
Iteration: 262, Log-Lik: -408956.701, Max-Change: 0.00056
Iteration: 263, Log-Lik: -408956.699, Max-Change: 0.00059
Iteration: 264, Log-Lik: -408956.696, Max-Change: 0.00034
Iteration: 265, Log-Lik: -408956.696, Max-Change: 0.00137
Iteration: 266, Log-Lik: -408956.694, Max-Change: 0.00078
Iteration: 267, Log-Lik: -408956.692, Max-Change: 0.00079
Iteration: 268, Log-Lik: -408956.689, Max-Change: 0.00070
Iteration: 269, Log-Lik: -408956.688, Max-Change: 0.00071
Iteration: 270, Log-Lik: -408956.686, Max-Change: 0.00039
Iteration: 271, Log-Lik: -408956.685, Max-Change: 0.00030
Iteration: 272, Log-Lik: -408956.684, Max-Change: 0.00035
Iteration: 273, Log-Lik: -408956.683, Max-Change: 0.00019
Iteration: 274, Log-Lik: -408956.682, Max-Change: 0.00075
Iteration: 275, Log-Lik: -408956.681, Max-Change: 0.00042
Iteration: 276, Log-Lik: -408956.680, Max-Change: 0.00045
Iteration: 277, Log-Lik: -408956.679, Max-Change: 0.00039
Iteration: 278, Log-Lik: -408956.678, Max-Change: 0.00010
saveRDS(m1, "combined_irt_output/m1.rds")
m1 <- readRDS("combined_irt_output/m1.rds")
Get factor scores
fscores <- fscores(m1, use_dentype_estimate=TRUE)[,1]
full2 <- data.frame(full)
##Confirmatory DETECT
dtct <- c(rep(1, 37), rep(2, 478))
conf <- conf.detect(full2, fscores, dtct)
## -----------------------------------------------------------
## Confirmatory DETECT Analysis
## Conditioning on 1 Score
## Bandwidth Scale: 1.1
## Pairwise Estimation of Conditional Covariances
## ...........................................................
## Nonparametric ICC estimation
## 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
## 55% 60% 65% 70% 75% 80% 85% 90% 95%
## ...........................................................
## Nonparametric Estimation of conditional covariances
## 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
## 55% 60% 65% 70% 75% 80% 85% 90% 95%
## -----------------------------------------------------------
## unweighted weighted
## DETECT 0.098 0.098
## ASSI 0.069 0.069
## RATIO 0.245 0.245
## MADCOV100 0.400 0.400
## MCOV100 0.065 0.065
Does not seem like the 2-dimensional structure implied by the distinction between lexical items and grammatical items is justified.
Exploratory detect to look for any other form of multidimensionality.
d1 <- expl.detect(full2, fscores, nclusters=2)
## Pairwise Estimation of Conditional Covariances
## ...........................................................
## Nonparametric ICC estimation
## 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
## 55% 60% 65% 70% 75% 80% 85% 90% 95%
## ...........................................................
## Nonparametric Estimation of conditional covariances
## 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
## 55% 60% 65% 70% 75% 80% 85% 90% 95%
## Pairwise Estimation of Conditional Covariances
## ...........................................................
## Nonparametric ICC estimation
## 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
## 55% 60% 65% 70% 75% 80% 85% 90% 95%
## ...........................................................
## Nonparametric Estimation of conditional covariances
## 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
## 55% 60% 65% 70% 75% 80% 85% 90% 95%
##
##
## DETECT (unweighted)
##
## Optimal Cluster Size is 2 (Maximum of DETECT Index)
##
## N.Cluster N.items N.est N.val size.cluster DETECT.est ASSI.est RATIO.est
## 1 2 515 1093 1094 190-325 0.209 0.303 0.493
## MADCOV100.est MCOV100.est DETECT.val ASSI.val RATIO.val MADCOV100.val
## 1 0.424 0.087 0.282 0.411 0.589 0.479
## MCOV100.val
## 1 0.09
options(max.print=2000)
d1
## $detect.unweighted
## DETECT.val ASSI.val RATIO.val MADCOV100.val MCOV100.val
## Cl2 0.2820284 0.4106003 0.5889576 0.4788604 0.08960701
##
## $detect.weighted
## DETECT.val ASSI.val RATIO.val MADCOV100.val MCOV100.val
## Cl2 0.2820284 0.4106003 0.5889576 0.4788604 0.08960701
##
## $clusterfit
##
## Call:
## stats::hclust(d = d, method = "ward.D")
##
## Cluster method : ward.D
## Number of objects: 515
##
##
## $itemcluster
## item cluster2
## 1 morphology761 1
## 2 morphology762 1
## 3 morphology763 1
## 4 morphology764 1
## 5 morphology765 1
## 6 morphology766 1
## 7 morphology767 1
## 8 morphology768 1
## 9 morphology769 1
## 10 morphology770 1
## 11 morphology771 1
## 12 morphology772 1
## 13 syntax773 1
## 14 syntax774 1
## 15 syntax775 1
## 16 syntax776 1
## 17 syntax777 1
## 18 syntax778 1
## 19 syntax779 1
## 20 syntax780 1
## 21 syntax781 1
## 22 syntax782 1
## 23 syntax783 1
## 24 syntax784 1
## 25 syntax785 1
## 26 syntax786 1
## 27 syntax787 1
## 28 syntax788 1
## 29 syntax789 1
## 30 syntax790 1
## 31 syntax791 1
## 32 syntax792 1
## 33 syntax793 1
## 34 syntax794 1
## 35 syntax795 1
## 36 syntax796 1
## 37 syntax797 1
## 38 alligator 2
## 39 animal 2
## 40 ant 2
## 41 bear 2
## 42 bee 2
## 43 bird 2
## 44 bug 2
## 45 bunny 2
## 46 butterfly 2
## 47 cat 2
## 48 chicken..animal. 2
## 49 cow 2
## 50 deer 2
## 51 dog 2
## 52 donkey 2
## 53 duck 2
## 54 elephant 2
## 55 fish..animal. 2
## 56 frog 2
## 57 giraffe 2
## 58 goose 2
## 59 hen 2
## 60 horse 2
## 61 kitty 2
## 62 lamb 2
## 63 lion 2
## 64 monkey 2
## 65 moose 2
## 66 mouse 2
## 67 owl 2
## 68 penguin 2
## 69 pig 2
## 70 pony 2
## 71 puppy 2
## 72 rooster 2
## 73 sheep 2
## 74 squirrel 2
## 75 teddybear 2
## 76 tiger 2
## 77 turkey 2
## 78 turtle 2
## 79 wolf 2
## 80 zebra 2
## 81 airplane 2
## 82 bicycle 2
## 83 boat 2
## 84 bus 2
## 85 car 2
## 86 firetruck 2
## 87 helicopter 2
## 88 motorcycle 2
## 89 sled 2
## 90 stroller 2
## 91 tractor 2
## 92 train 2
## 93 tricycle 2
## 94 truck 2
## 95 ball 2
## 96 balloon 2
## 97 bat 2
## 98 block 2
## 99 book 2
## 100 bubbles 2
## 101 chalk 2
## 102 crayon 2
## 103 doll 2
## 104 game 2
## 105 glue 2
## 106 pen 2
## 107 pencil 2
## 108 play.dough 2
## 109 present 2
## 110 puzzle 2
## 111 story 2
## 112 toy..object. 2
## 113 apple 2
## 114 applesauce 2
## 115 banana 2
## 116 beans 2
## 117 bread 2
## 118 butter 2
## 119 cake 2
## 120 candy 2
## 121 carrots 2
## 122 cereal 2
## 123 cheerios 2
## 124 cheese 2
## 125 chicken..food. 2
## 126 chocolate 2
## 127 coffee 2
## 128 coke 2
## 129 cookie 2
## 130 corn 2
## 131 cracker 2
## 132 donut 2
## 133 drink..beverage. 2
## 134 egg 2
## 135 fish..food. 2
## 136 food 2
## 137 french.fries 2
## 138 grapes 2
## 139 green.beans 2
## 140 gum 2
## 141 hamburger 2
## 142 ice 2
## 143 ice.cream 2
## 144 jello 2
## 145 jelly 2
## 146 juice 2
## 147 lollipop 2
## 148 meat 2
## 149 melon 2
## 150 milk 2
## 151 muffin 2
## 152 noodles 2
## 153 nuts 2
## 154 orange..food. 2
## 155 pancake 2
## 156 peas 2
## 157 peanut.butter 2
## 158 pickle 2
## 159 pizza 2
## 160 popcorn 2
## 161 popsicle 2
## 162 potato.chip 2
## 163 potato 2
## 164 pretzel 2
## 165 pudding 2
## 166 pumpkin 2
## 167 raisin 2
## 168 salt 2
## 169 sandwich 2
## 170 sauce 2
## 171 soda.pop 2
## 172 soup 2
## 173 spaghetti 2
## 174 strawberry 2
## 175 toast 2
## 176 tuna 2
## 177 vanilla 2
## 178 vitamins 2
## 179 water..beverage. 2
## 180 yogurt 2
## 181 beads 2
## 182 belt 2
## 183 bib 2
## 184 boots 2
## 185 button 2
## 186 coat 2
## 187 diaper 2
## 188 dress..object. 2
## 189 gloves 2
## 190 hat 2
## 191 jacket 2
## 192 jeans 2
## 193 mittens 2
## 194 necklace 2
## 195 pajamas 2
## 196 pants 2
## 197 scarf 2
## 198 shirt 2
## 199 shoe 2
## 200 shorts 2
## 201 slipper 2
## 202 sneaker 2
## 203 snowsuit 2
## 204 sock 2
## 205 sweater 2
## 206 tights 2
## 207 underpants 2
## 208 zipper 2
## 209 ankle 2
## 210 arm 2
## 211 belly.button 2
## 212 buttocks.bottom. 2
## 213 cheek 2
## 214 chin 2
## 215 ear 2
## 216 eye 2
## 217 face 2
## 218 finger 2
## 219 foot 2
## 220 hair 2
## 221 hand 2
## 222 head 2
## 223 knee 2
## 224 leg 2
## 225 lips 2
## 226 mouth 2
## 227 nose 2
## 228 owie.boo.boo 1
## 229 penis. 2
## 230 shoulder 2
## 231 toe 2
## 232 tongue 2
## 233 tooth 2
## 234 tummy 2
## 235 vagina. 2
## 236 basket 2
## 237 blanket 2
## 238 bottle 2
## 239 bowl 2
## 240 box 2
## 241 broom 2
## 242 brush 2
## 243 bucket 2
## 244 camera 2
## 245 can..object. 2
## 246 clock 2
## 247 comb 2
## 248 cup 2
## 249 dish 2
## 250 fork 2
## 251 garbage 2
## 252 glass 2
## 253 glasses 2
## 254 hammer 2
## 255 jar 2
## 256 keys 2
## 257 knife 2
## 258 lamp 2
## 259 light 2
## 260 medicine 2
## 261 money 2
## 262 mop 2
## 263 nail 2
## 264 napkin 2
## 265 paper 2
## 266 penny 2
## 267 picture 2
## 268 pillow 2
## 269 plant 2
## 270 plate 2
## 271 purse 2
## 272 radio 2
## 273 scissors 2
## 274 soap 2
## 275 spoon 2
## 276 tape 2
## 277 telephone 2
## 278 tissue.kleenex 2
## 279 toothbrush 2
## 280 towel 2
## 281 trash 2
## 282 tray 2
## 283 vacuum 2
## 284 walker 2
## 285 watch..object. 1
## 286 basement 2
## 287 bathroom 2
## 288 bathtub 2
## 289 bed 2
## 290 bedroom 2
## 291 bench 2
## 292 chair 2
## 293 closet 2
## 294 couch 2
## 295 crib 2
## 296 door 2
## 297 drawer 2
## 298 dryer 2
## 299 garage 2
## 300 high.chair 2
## 301 kitchen 2
## 302 living.room 2
## 303 oven 2
## 304 play.pen 2
## 305 porch 2
## 306 potty 2
## 307 rocking.chair 2
## 308 refrigerator 2
## 309 room 2
## 310 shower 2
## 311 sink 2
## 312 sofa 2
## 313 stairs 2
## 314 stove 2
## 315 table 2
## 316 TV 2
## 317 window 2
## 318 washing.machine 2
## 319 backyard 2
## 320 cloud 2
## 321 flag 2
## 322 flower 2
## 323 garden 2
## 324 grass 2
## 325 hose 2
## 326 ladder 2
## 327 lawn.mower 2
## 328 moon 2
## 329 pool 2
## 330 rain 2
## 331 rock 2
## 332 roof 2
## 333 sandbox 2
## 334 shovel 2
## 335 sidewalk 2
## 336 sky 2
## 337 slide..object. 2
## 338 snow 2
## 339 snowman 2
## 340 sprinkler 2
## 341 star 2
## 342 stick 2
## 343 stone 2
## 344 street 2
## 345 sun 2
## 346 swing..object. 2
## 347 tree 2
## 348 water..not.beverage. 2
## 349 wind 2
## 350 bite 1
## 351 blow 1
## 352 break. 1
## 353 bring 1
## 354 build 1
## 355 bump 1
## 356 buy 1
## 357 carry 1
## 358 catch 1
## 359 chase 1
## 360 clap 1
## 361 clean..action. 1
## 362 climb 1
## 363 close 1
## 364 cook 1
## 365 cover 1
## 366 cry 1
## 367 cut 1
## 368 dance 1
## 369 draw 1
## 370 drink..action. 2
## 371 drive 1
## 372 drop 1
## 373 dry..action. 1
## 374 dump 1
## 375 eat 1
## 376 fall 1
## 377 feed 1
## 378 find 1
## 379 finish 1
## 380 fit 1
## 381 fix 1
## 382 get 1
## 383 give 1
## 384 go 1
## 385 hate 1
## 386 have 1
## 387 hear 1
## 388 help 1
## 389 hide 1
## 390 hit 1
## 391 hold 1
## 392 hug 1
## 393 hurry 1
## 394 jump 1
## 395 kick 1
## 396 kiss 1
## 397 knock 1
## 398 lick 1
## 399 like 1
## 400 listen 1
## 401 look 1
## 402 love 1
## 403 make 1
## 404 open 1
## 405 paint 1
## 406 pick 1
## 407 play 1
## 408 pour 1
## 409 pretend 1
## 410 pull 1
## 411 push 1
## 412 put 1
## 413 read 1
## 414 ride 1
## 415 rip 1
## 416 run 1
## 417 say 1
## 418 see 1
## 419 shake 1
## 420 share 1
## 421 show 1
## 422 sing 1
## 423 sit 1
## 424 skate 1
## 425 sleep 1
## 426 slide..action. 2
## 427 smile 1
## 428 spill 1
## 429 splash 1
## 430 stand 1
## 431 stay 1
## 432 stop 1
## 433 sweep 2
## 434 swim 2
## 435 swing..action. 2
## 436 take 1
## 437 talk 1
## 438 taste 1
## 439 tear 1
## 440 think 1
## 441 throw 1
## 442 tickle 1
## 443 touch 1
## 444 wait 1
## 445 wake 1
## 446 walk 1
## 447 wash 1
## 448 watch..action. 1
## 449 wipe 1
## 450 wish 1
## 451 work..action. 1
## 452 write 1
## 453 all.gone 1
## 454 asleep 1
## 455 awake 1
## 456 bad 1
## 457 better 1
## 458 big 1
## 459 black 2
## 460 blue 2
## 461 broken 1
## 462 brown 2
## 463 careful 1
## 464 clean..description. 1
## 465 cold 1
## 466 cute 1
## 467 dark 1
## 468 dirty 1
## 469 dry..description. 1
## 470 empty 1
## 471 fast 1
## 472 fine 1
## 473 first 1
## 474 full 1
## 475 gentle 1
## 476 good 1
## 477 green 2
## 478 happy 1
## 479 hard 1
## 480 heavy 1
## 481 high 1
## 482 hot 1
## 483 hungry 1
## 484 hurt 1
## 485 last 1
## 486 little..description. 1
## 487 long 1
## 488 loud 1
## 489 mad 1
## 490 naughty 2
## 491 new 1
## 492 nice 1
## 493 noisy 1
## 494 old 1
## 495 orange..description. 2
## 496 poor 1
## 497 pretty 1
## 498 quiet 1
## 499 red 2
## 500 sad 1
## 501 scared 1
## 502 sick 1
## 503 sleepy 1
## 504 slow 1
## 505 soft 1
## 506 sticky 1
## 507 stuck 1
## 508 thirsty 1
## 509 tiny 1
## 510 tired 1
## 511 wet 1
## 512 white 2
## 513 windy 2
## 514 yellow 2
## 515 yucky 1
##
## attr(,"class")
## [1] "expl.detect"
This analysis considers all observations for which longitudinal==false
. There are still many observations with the same values of original_id
. Most of these appear to be participants who were tested at multiple time points as part of a data set that wasn’t exclusively longitudinal. However the help file for Wordbank indicates that this variable is not always reliable. We have therefore also run this analysis on a subset of these data withuut any duplicate original_ids)↩︎