setwd("/Volumes/GoogleDrive/Mi unidad/Agrosavia/Colaboraciones/Laura/BD Estadística SGR Santander/data")
datos4<-read.table("sanjose.csv", header=T, sep=',')
datos4$gen<-as.factor(datos4$gen)
datos4$forestal<-as.factor(datos4$forestal)
datos4$bloque<-as.factor(datos4$bloque)
attach(datos4)
library(ggplot2)
library(emmeans)
#Gráfica diámetro
ggplot(datos4, aes(semana, diam, group = gen, colour = gen)) +
  facet_grid(~forestal) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Diámetro") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  ) 
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 324 rows containing non-finite values (stat_smooth).

# Gráfica altura
ggplot(datos4, aes(semana, alt, group = gen, colour = gen)) +
  facet_grid(~forestal) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Altura") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  )  
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 323 rows containing non-finite values (stat_smooth).

# Anova general
aov.diam<-aov(diam~semana+forestal+gen+bloque+forestal*gen, na.action=na.exclude)
aov.alt<-aov(alt~semana+forestal+gen+bloque+forestal*gen, na.action=na.exclude)
#Análisis para diámetro
library(nlme)
fit.compsym.diam <- gls(diam ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.diam <- gls(diam ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.diam <- gls(diam ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.diam, fit.ar1.diam, fit.ar1het.diam) #compares the models
##                  Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.diam     1 20 8163.675 8284.892 -4061.838                        
## fit.ar1.diam         2 20 7792.005 7913.222 -3876.002                        
## fit.ar1het.diam      3 32 7457.409 7651.356 -3696.705 2 vs 3 358.5956  <.0001
anova(fit.ar1.diam)
## Denom. DF: 3168 
##              numDF   F-value p-value
## (Intercept)      1 28540.519  <.0001
## semana           1  2628.904  <.0001
## forestal         2    61.403  <.0001
## gen              4    14.295  <.0001
## bloque           2   318.469  <.0001
## forestal:gen     8     2.886  0.0033
anova(fit.ar1het.diam)
## Denom. DF: 3168 
##              numDF   F-value p-value
## (Intercept)      1 26225.351  <.0001
## semana           1  3035.116  <.0001
## forestal         2    38.642  <.0001
## gen              4     6.158  0.0001
## bloque           2   207.556  <.0001
## forestal:gen     8     1.771  0.0779
# Análisis para altura
fit.compsym.alt <- gls(alt ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.alt <- gls(alt ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.alt <- gls(alt ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.alt, fit.ar1.alt, fit.ar1het.alt) #compares the models
##                 Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.alt     1 20 31358.14 31479.36 -15659.07                        
## fit.ar1.alt         2 20 31038.88 31160.11 -15499.44                        
## fit.ar1het.alt      3 32 30620.78 30814.73 -15278.39 2 vs 3 442.1059  <.0001
anova(fit.ar1.alt)
## Denom. DF: 3169 
##              numDF   F-value p-value
## (Intercept)      1 28030.656  <.0001
## semana           1  2715.291  <.0001
## forestal         2    32.928  <.0001
## gen              4    12.439  <.0001
## bloque           2   185.253  <.0001
## forestal:gen     8     2.013  0.0413
anova(fit.ar1het.alt)
## Denom. DF: 3169 
##              numDF   F-value p-value
## (Intercept)      1 27898.592  <.0001
## semana           1  3632.329  <.0001
## forestal         2    20.631  <.0001
## gen              4     9.074  <.0001
## bloque           2   114.012  <.0001
## forestal:gen     8     1.087  0.3686
#Tukey diámetro
library(multcompView)
interac.tuk.diam<-TukeyHSD(aov.diam, "forestal:gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
fores.tuk.diam<-TukeyHSD(aov.diam, "forestal", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
gen.tuk.diam<-TukeyHSD(aov.diam, "gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
#Tukey altura
interac.tuk.alt<-TukeyHSD(aov.alt, "forestal:gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
fores.tuk.alt<-TukeyHSD(aov.alt, "forestal", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
gen.tuk.alt<-TukeyHSD(aov.alt, "gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
#Etiquetas Tukey diámetro
#Genotipos
generate_label_df_gen_diam <- function(gen.tuk.diam, variable){
  Tukey.levels <- gen.tuk.diam[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.diam <- generate_label_df_gen_diam(gen.tuk.diam, "gen")
labels.gen.diam
##       Letters treatment
## CCN51       a     CCN51
## TCS01       b     TCS01
## TCS06       a     TCS06
## TCS13       c     TCS13
## TCS19       a     TCS19
# Forestal
generate_label_df_forestal_diam <- function(fores.tuk.diam, variable){
  Tukey.levels <- fores.tuk.diam[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.forestal.diam <- generate_label_df_forestal_diam(fores.tuk.diam, "forestal")
labels.forestal.diam
##            Letters  treatment
## Abarco           a     Abarco
## Roble            a      Roble
## Terminalia       a Terminalia
# Interacción Forestal:Genotipo
generate_label_df_interac_diam <- function(interac.tuk.diam, variable){
  Tukey.levels <- interac.tuk.diam[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.diam <- generate_label_df_interac_diam(interac.tuk.diam, "forestal:gen")
labels.interac.diam
##                  Letters        treatment
## Abarco:CCN51          cd     Abarco:CCN51
## Abarco:TCS01          ef     Abarco:TCS01
## Abarco:TCS06         acd     Abarco:TCS06
## Abarco:TCS13           f     Abarco:TCS13
## Abarco:TCS19          cd     Abarco:TCS19
## Roble:CCN51           ac      Roble:CCN51
## Roble:TCS01          acd      Roble:TCS01
## Roble:TCS06           ab      Roble:TCS06
## Roble:TCS13           de      Roble:TCS13
## Roble:TCS19           ac      Roble:TCS19
## Terminalia:CCN51       b Terminalia:CCN51
## Terminalia:TCS01      ab Terminalia:TCS01
## Terminalia:TCS06      ab Terminalia:TCS06
## Terminalia:TCS13     acd Terminalia:TCS13
## Terminalia:TCS19      ab Terminalia:TCS19
#Etiquetas Tukey altura
#Genotipos
generate_label_df_gen_alt <- function(gen.tuk.alt, variable){
  Tukey.levels <- gen.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.alt <- generate_label_df_gen_alt(gen.tuk.alt, "gen")
labels.gen.alt
##       Letters treatment
## CCN51      ab     CCN51
## TCS01       b     TCS01
## TCS06       a     TCS06
## TCS13       b     TCS13
## TCS19       c     TCS19
# Forestal
generate_label_df_forestal_alt <- function(fores.tuk.alt, variable){
  Tukey.levels <- fores.tuk.alt[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.forestal.alt <- generate_label_df_forestal_alt(fores.tuk.alt, "forestal")
labels.forestal.alt
##            Letters  treatment
## Abarco           a     Abarco
## Roble            a      Roble
## Terminalia       a Terminalia
# Interacción Forestal:Genotipo
generate_label_df_interac_alt <- function(interac.tuk.alt, variable){
  Tukey.levels <- interac.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.alt <- generate_label_df_interac_alt(interac.tuk.alt, "forestal:gen")
labels.interac.alt
##                  Letters        treatment
## Abarco:CCN51          de     Abarco:CCN51
## Abarco:TCS01           e     Abarco:TCS01
## Abarco:TCS06          cd     Abarco:TCS06
## Abarco:TCS13           e     Abarco:TCS13
## Abarco:TCS19         abc     Abarco:TCS19
## Roble:CCN51           ac      Roble:CCN51
## Roble:TCS01           cd      Roble:TCS01
## Roble:TCS06          abc      Roble:TCS06
## Roble:TCS13           cd      Roble:TCS13
## Roble:TCS19           ab      Roble:TCS19
## Terminalia:CCN51      ac Terminalia:CCN51
## Terminalia:TCS01      ac Terminalia:TCS01
## Terminalia:TCS06      ac Terminalia:TCS06
## Terminalia:TCS13      ac Terminalia:TCS13
## Terminalia:TCS19       b Terminalia:TCS19
## Gráficas contrastes de medias diametro
#Gen
contrast <- emmeans(aov.diam, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.gen <- emmeans(aov.diam, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean     SE   df lower.CL upper.CL
##  CCN51   3.44 0.0337 3168     3.38     3.51
##  TCS01   3.69 0.0335 3168     3.62     3.75
##  TCS06   3.44 0.0348 3168     3.37     3.51
##  TCS13   3.88 0.0339 3168     3.82     3.95
##  TCS19   3.53 0.0341 3168     3.46     3.60
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate     SE   df t.ratio p.value
##  CCN51 - TCS01 -0.24456 0.0476 3168  -5.143  <.0001
##  CCN51 - TCS06  0.00461 0.0484 3168   0.095  1.0000
##  CCN51 - TCS13 -0.43814 0.0478 3168  -9.165  <.0001
##  CCN51 - TCS19 -0.08448 0.0479 3168  -1.764  0.3952
##  TCS01 - TCS06  0.24917 0.0484 3168   5.154  <.0001
##  TCS01 - TCS13 -0.19358 0.0477 3168  -4.058  0.0005
##  TCS01 - TCS19  0.16008 0.0478 3168   3.348  0.0073
##  TCS06 - TCS13 -0.44275 0.0486 3168  -9.110  <.0001
##  TCS06 - TCS19 -0.08910 0.0487 3168  -1.830  0.3565
##  TCS13 - TCS19  0.35366 0.0481 3168   7.358  <.0001
## 
## Results are averaged over the levels of: forestal, bloque 
## P value adjustment: tukey method for comparing a family of 5 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean     SE   df lower.CL upper.CL .group
##  TCS13   3.88 0.0339 3168     3.82     3.95  A    
##  TCS01   3.69 0.0335 3168     3.62     3.75   B   
##  TCS19   3.53 0.0341 3168     3.46     3.60    C  
##  CCN51   3.44 0.0337 3168     3.38     3.51    C  
##  TCS06   3.44 0.0348 3168     3.37     3.51    C  
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 5 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal
contrast <- emmeans(aov.diam, ~forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.forestal <- emmeans(aov.diam, pairwise ~ forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal
## $emmeans
##  forestal   emmean     SE   df lower.CL upper.CL
##  Abarco       3.86 0.0258 3168     3.81     3.91
##  Roble        3.56 0.0266 3168     3.51     3.61
##  Terminalia   3.37 0.0267 3168     3.32     3.42
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast            estimate     SE   df t.ratio p.value
##  Abarco - Roble         0.302 0.0370 3168   8.148  <.0001
##  Abarco - Terminalia    0.490 0.0371 3168  13.197  <.0001
##  Roble - Terminalia     0.188 0.0377 3168   4.994  <.0001
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_forestal <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal
##  forestal   emmean     SE   df lower.CL upper.CL .group
##  Abarco       3.86 0.0258 3168     3.81     3.91  A    
##  Roble        3.56 0.0266 3168     3.51     3.61   B   
##  Terminalia   3.37 0.0267 3168     3.32     3.42    C  
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal*Gen
contrast <- emmeans(aov.diam, ~gen*forestal)
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.forestal.gen <- emmeans(aov.diam, pairwise ~ gen*forestal)
medias.forestal.gen
## $emmeans
##  gen   forestal   emmean     SE   df lower.CL upper.CL
##  CCN51 Abarco       3.72 0.0567 3168     3.61     3.83
##  TCS01 Abarco       4.06 0.0564 3168     3.95     4.17
##  TCS06 Abarco       3.62 0.0590 3168     3.50     3.73
##  TCS13 Abarco       4.20 0.0576 3168     4.09     4.32
##  TCS19 Abarco       3.70 0.0583 3168     3.59     3.82
##  CCN51 Roble        3.48 0.0589 3168     3.37     3.60
##  TCS01 Roble        3.59 0.0591 3168     3.48     3.71
##  TCS06 Roble        3.33 0.0619 3168     3.21     3.45
##  TCS13 Roble        3.86 0.0583 3168     3.74     3.97
##  TCS19 Roble        3.53 0.0588 3168     3.42     3.65
##  CCN51 Terminalia   3.13 0.0595 3168     3.02     3.25
##  TCS01 Terminalia   3.41 0.0587 3168     3.30     3.53
##  TCS06 Terminalia   3.37 0.0599 3168     3.26     3.49
##  TCS13 Terminalia   3.59 0.0603 3168     3.47     3.70
##  TCS19 Terminalia   3.35 0.0599 3168     3.23     3.47
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                            estimate     SE   df t.ratio p.value
##  CCN51 Abarco - TCS01 Abarco          -0.3428 0.0799 3168  -4.287  0.0017
##  CCN51 Abarco - TCS06 Abarco           0.1024 0.0818 3168   1.251  0.9959
##  CCN51 Abarco - TCS13 Abarco          -0.4852 0.0808 3168  -6.009  <.0001
##  CCN51 Abarco - TCS19 Abarco           0.0166 0.0813 3168   0.204  1.0000
##  CCN51 Abarco - CCN51 Roble            0.2375 0.0817 3168   2.906  0.1940
##  CCN51 Abarco - TCS01 Roble            0.1257 0.0818 3168   1.535  0.9711
##  CCN51 Abarco - TCS06 Roble            0.3904 0.0839 3168   4.653  0.0003
##  CCN51 Abarco - TCS13 Roble           -0.1394 0.0813 3168  -1.713  0.9293
##  CCN51 Abarco - TCS19 Roble            0.1843 0.0816 3168   2.258  0.6220
##  CCN51 Abarco - CCN51 Terminalia       0.5858 0.0821 3168   7.131  <.0001
##  CCN51 Abarco - TCS01 Terminalia       0.3066 0.0816 3168   3.757  0.0145
##  CCN51 Abarco - TCS06 Terminalia       0.3443 0.0824 3168   4.176  0.0028
##  CCN51 Abarco - TCS13 Terminalia       0.1334 0.0828 3168   1.611  0.9565
##  CCN51 Abarco - TCS19 Terminalia       0.3689 0.0825 3168   4.473  0.0008
##  TCS01 Abarco - TCS06 Abarco           0.4451 0.0816 3168   5.452  <.0001
##  TCS01 Abarco - TCS13 Abarco          -0.1425 0.0806 3168  -1.768  0.9108
##  TCS01 Abarco - TCS19 Abarco           0.3593 0.0812 3168   4.428  0.0009
##  TCS01 Abarco - CCN51 Roble            0.5802 0.0815 3168   7.115  <.0001
##  TCS01 Abarco - TCS01 Roble            0.4684 0.0817 3168   5.735  <.0001
##  TCS01 Abarco - TCS06 Roble            0.7332 0.0837 3168   8.754  <.0001
##  TCS01 Abarco - TCS13 Roble            0.2034 0.0812 3168   2.506  0.4360
##  TCS01 Abarco - TCS19 Roble            0.5271 0.0815 3168   6.471  <.0001
##  TCS01 Abarco - CCN51 Terminalia       0.9285 0.0820 3168  11.327  <.0001
##  TCS01 Abarco - TCS01 Terminalia       0.6494 0.0814 3168   7.974  <.0001
##  TCS01 Abarco - TCS06 Terminalia       0.6870 0.0823 3168   8.351  <.0001
##  TCS01 Abarco - TCS13 Terminalia       0.4761 0.0826 3168   5.764  <.0001
##  TCS01 Abarco - TCS19 Terminalia       0.7116 0.0823 3168   8.648  <.0001
##  TCS06 Abarco - TCS13 Abarco          -0.5876 0.0824 3168  -7.128  <.0001
##  TCS06 Abarco - TCS19 Abarco          -0.0858 0.0830 3168  -1.034  0.9995
##  TCS06 Abarco - CCN51 Roble            0.1351 0.0834 3168   1.620  0.9545
##  TCS06 Abarco - TCS01 Roble            0.0233 0.0835 3168   0.279  1.0000
##  TCS06 Abarco - TCS06 Roble            0.2881 0.0855 3168   3.369  0.0541
##  TCS06 Abarco - TCS13 Roble           -0.2417 0.0830 3168  -2.912  0.1911
##  TCS06 Abarco - TCS19 Roble            0.0820 0.0833 3168   0.984  0.9997
##  TCS06 Abarco - CCN51 Terminalia       0.4834 0.0838 3168   5.770  <.0001
##  TCS06 Abarco - TCS01 Terminalia       0.2043 0.0833 3168   2.453  0.4753
##  TCS06 Abarco - TCS06 Terminalia       0.2419 0.0841 3168   2.877  0.2074
##  TCS06 Abarco - TCS13 Terminalia       0.0310 0.0844 3168   0.367  1.0000
##  TCS06 Abarco - TCS19 Terminalia       0.2665 0.0841 3168   3.170  0.0977
##  TCS13 Abarco - TCS19 Abarco           0.5018 0.0820 3168   6.123  <.0001
##  TCS13 Abarco - CCN51 Roble            0.7227 0.0823 3168   8.778  <.0001
##  TCS13 Abarco - TCS01 Roble            0.6109 0.0825 3168   7.406  <.0001
##  TCS13 Abarco - TCS06 Roble            0.8756 0.0845 3168  10.362  <.0001
##  TCS13 Abarco - TCS13 Roble            0.3459 0.0820 3168   4.220  0.0023
##  TCS13 Abarco - TCS19 Roble            0.6695 0.0822 3168   8.142  <.0001
##  TCS13 Abarco - CCN51 Terminalia       1.0710 0.0827 3168  12.944  <.0001
##  TCS13 Abarco - TCS01 Terminalia       0.7918 0.0822 3168   9.629  <.0001
##  TCS13 Abarco - TCS06 Terminalia       0.8295 0.0830 3168   9.988  <.0001
##  TCS13 Abarco - TCS13 Terminalia       0.6186 0.0834 3168   7.420  <.0001
##  TCS13 Abarco - TCS19 Terminalia       0.8541 0.0831 3168  10.284  <.0001
##  TCS19 Abarco - CCN51 Roble            0.2209 0.0829 3168   2.664  0.3274
##  TCS19 Abarco - TCS01 Roble            0.1091 0.0830 3168   1.314  0.9932
##  TCS19 Abarco - TCS06 Roble            0.3739 0.0851 3168   4.395  0.0011
##  TCS19 Abarco - TCS13 Roble           -0.1559 0.0825 3168  -1.890  0.8584
##  TCS19 Abarco - TCS19 Roble            0.1677 0.0828 3168   2.026  0.7831
##  TCS19 Abarco - CCN51 Terminalia       0.5692 0.0833 3168   6.830  <.0001
##  TCS19 Abarco - TCS01 Terminalia       0.2901 0.0828 3168   3.504  0.0351
##  TCS19 Abarco - TCS06 Terminalia       0.3277 0.0836 3168   3.919  0.0079
##  TCS19 Abarco - TCS13 Terminalia       0.1168 0.0839 3168   1.391  0.9882
##  TCS19 Abarco - TCS19 Terminalia       0.3523 0.0836 3168   4.212  0.0024
##  CCN51 Roble - TCS01 Roble            -0.1118 0.0834 3168  -1.340  0.9917
##  CCN51 Roble - TCS06 Roble             0.1530 0.0854 3168   1.791  0.9021
##  CCN51 Roble - TCS13 Roble            -0.3768 0.0829 3168  -4.545  0.0006
##  CCN51 Roble - TCS19 Roble            -0.0531 0.0832 3168  -0.639  1.0000
##  CCN51 Roble - CCN51 Terminalia        0.3483 0.0837 3168   4.162  0.0030
##  CCN51 Roble - TCS01 Terminalia        0.0692 0.0832 3168   0.832  1.0000
##  CCN51 Roble - TCS06 Terminalia        0.1068 0.0840 3168   1.272  0.9951
##  CCN51 Roble - TCS13 Terminalia       -0.1041 0.0843 3168  -1.235  0.9964
##  CCN51 Roble - TCS19 Terminalia        0.1314 0.0840 3168   1.565  0.9659
##  TCS01 Roble - TCS06 Roble             0.2648 0.0856 3168   3.095  0.1201
##  TCS01 Roble - TCS13 Roble            -0.2650 0.0830 3168  -3.193  0.0914
##  TCS01 Roble - TCS19 Roble             0.0587 0.0833 3168   0.704  1.0000
##  TCS01 Roble - CCN51 Terminalia        0.4601 0.0839 3168   5.486  <.0001
##  TCS01 Roble - TCS01 Terminalia        0.1810 0.0833 3168   2.173  0.6846
##  TCS01 Roble - TCS06 Terminalia        0.2186 0.0841 3168   2.599  0.3709
##  TCS01 Roble - TCS13 Terminalia        0.0077 0.0844 3168   0.091  1.0000
##  TCS01 Roble - TCS19 Terminalia        0.2432 0.0842 3168   2.890  0.2013
##  TCS06 Roble - TCS13 Roble            -0.5298 0.0851 3168  -6.228  <.0001
##  TCS06 Roble - TCS19 Roble            -0.2061 0.0853 3168  -2.415  0.5033
##  TCS06 Roble - CCN51 Terminalia        0.1953 0.0858 3168   2.276  0.6087
##  TCS06 Roble - TCS01 Terminalia       -0.0838 0.0853 3168  -0.982  0.9997
##  TCS06 Roble - TCS06 Terminalia       -0.0461 0.0861 3168  -0.536  1.0000
##  TCS06 Roble - TCS13 Terminalia       -0.2571 0.0864 3168  -2.975  0.1640
##  TCS06 Roble - TCS19 Terminalia       -0.0215 0.0861 3168  -0.250  1.0000
##  TCS13 Roble - TCS19 Roble             0.3237 0.0828 3168   3.908  0.0082
##  TCS13 Roble - CCN51 Terminalia        0.7251 0.0833 3168   8.701  <.0001
##  TCS13 Roble - TCS01 Terminalia        0.4460 0.0828 3168   5.387  <.0001
##  TCS13 Roble - TCS06 Terminalia        0.4836 0.0836 3168   5.784  <.0001
##  TCS13 Roble - TCS13 Terminalia        0.2727 0.0839 3168   3.249  0.0778
##  TCS13 Roble - TCS19 Terminalia        0.5082 0.0836 3168   6.076  <.0001
##  TCS19 Roble - CCN51 Terminalia        0.4014 0.0836 3168   4.803  0.0002
##  TCS19 Roble - TCS01 Terminalia        0.1223 0.0831 3168   1.472  0.9800
##  TCS19 Roble - TCS06 Terminalia        0.1600 0.0839 3168   1.907  0.8501
##  TCS19 Roble - TCS13 Terminalia       -0.0510 0.0842 3168  -0.605  1.0000
##  TCS19 Roble - TCS19 Terminalia        0.1846 0.0839 3168   2.200  0.6649
##  CCN51 Terminalia - TCS01 Terminalia  -0.2791 0.0836 3168  -3.339  0.0594
##  CCN51 Terminalia - TCS06 Terminalia  -0.2415 0.0844 3168  -2.862  0.2151
##  CCN51 Terminalia - TCS13 Terminalia  -0.4524 0.0847 3168  -5.341  <.0001
##  CCN51 Terminalia - TCS19 Terminalia  -0.2169 0.0844 3168  -2.570  0.3904
##  TCS01 Terminalia - TCS06 Terminalia   0.0376 0.0839 3168   0.449  1.0000
##  TCS01 Terminalia - TCS13 Terminalia  -0.1733 0.0842 3168  -2.058  0.7629
##  TCS01 Terminalia - TCS19 Terminalia   0.0622 0.0839 3168   0.742  1.0000
##  TCS06 Terminalia - TCS13 Terminalia  -0.2109 0.0850 3168  -2.482  0.4541
##  TCS06 Terminalia - TCS19 Terminalia   0.0246 0.0847 3168   0.291  1.0000
##  TCS13 Terminalia - TCS19 Terminalia   0.2355 0.0850 3168   2.771  0.2632
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 15 estimates
cld_forestal_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal_gen
##  gen   forestal   emmean     SE   df lower.CL upper.CL .group 
##  TCS13 Abarco       4.20 0.0576 3168     4.09     4.32  A     
##  TCS01 Abarco       4.06 0.0564 3168     3.95     4.17  AB    
##  TCS13 Roble        3.86 0.0583 3168     3.74     3.97   BC   
##  CCN51 Abarco       3.72 0.0567 3168     3.61     3.83    CD  
##  TCS19 Abarco       3.70 0.0583 3168     3.59     3.82    CD  
##  TCS06 Abarco       3.62 0.0590 3168     3.50     3.73    CDE 
##  TCS01 Roble        3.59 0.0591 3168     3.48     3.71    CDE 
##  TCS13 Terminalia   3.59 0.0603 3168     3.47     3.70    CDE 
##  TCS19 Roble        3.53 0.0588 3168     3.42     3.65     DE 
##  CCN51 Roble        3.48 0.0589 3168     3.37     3.60     DE 
##  TCS01 Terminalia   3.41 0.0587 3168     3.30     3.53      EF
##  TCS06 Terminalia   3.37 0.0599 3168     3.26     3.49      EF
##  TCS19 Terminalia   3.35 0.0599 3168     3.23     3.47      EF
##  TCS06 Roble        3.33 0.0619 3168     3.21     3.45      EF
##  CCN51 Terminalia   3.13 0.0595 3168     3.02     3.25       F
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 15 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
## Gráficas contrastes de medias altura
#Gen
contrast <- emmeans(aov.alt, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.gen <- emmeans(aov.alt, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean   SE   df lower.CL upper.CL
##  CCN51    136 1.31 3169      133      139
##  TCS01    140 1.30 3169      138      143
##  TCS06    134 1.35 3169      131      136
##  TCS13    141 1.32 3169      138      144
##  TCS19    125 1.32 3169      122      127
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE   df t.ratio p.value
##  CCN51 - TCS01   -4.438 1.85 3169  -2.403  0.1146
##  CCN51 - TCS06    2.411 1.88 3169   1.282  0.7026
##  CCN51 - TCS13   -4.956 1.86 3169  -2.671  0.0585
##  CCN51 - TCS19   11.514 1.86 3169   6.190  <.0001
##  TCS01 - TCS06    6.848 1.88 3169   3.648  0.0025
##  TCS01 - TCS13   -0.518 1.85 3169  -0.280  0.9987
##  TCS01 - TCS19   15.952 1.86 3169   8.593  <.0001
##  TCS06 - TCS13   -7.366 1.89 3169  -3.905  0.0009
##  TCS06 - TCS19    9.104 1.89 3169   4.815  <.0001
##  TCS13 - TCS19   16.470 1.87 3169   8.828  <.0001
## 
## Results are averaged over the levels of: forestal, bloque 
## P value adjustment: tukey method for comparing a family of 5 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean   SE   df lower.CL upper.CL .group
##  TCS13    141 1.32 3169      138      144  A    
##  TCS01    140 1.30 3169      138      143  A    
##  CCN51    136 1.31 3169      133      139  AB   
##  TCS06    134 1.35 3169      131      136   B   
##  TCS19    125 1.32 3169      122      127    C  
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 5 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal
contrast <- emmeans(aov.alt, ~forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.forestal <- emmeans(aov.alt, pairwise ~ forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal
## $emmeans
##  forestal   emmean   SE   df lower.CL upper.CL
##  Abarco        143 1.00 3169      141      145
##  Roble         133 1.03 3169      131      135
##  Terminalia    129 1.04 3169      127      131
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast            estimate   SE   df t.ratio p.value
##  Abarco - Roble         10.27 1.44 3169   7.150  <.0001
##  Abarco - Terminalia    14.12 1.44 3169   9.803  <.0001
##  Roble - Terminalia      3.84 1.46 3169   2.629  0.0234
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_forestal <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal
##  forestal   emmean   SE   df lower.CL upper.CL .group
##  Abarco        143 1.00 3169      141      145  A    
##  Roble         133 1.03 3169      131      135   B   
##  Terminalia    129 1.04 3169      127      131    C  
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal*Gen
contrast <- emmeans(aov.alt, ~gen*forestal)
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.forestal.gen <- emmeans(aov.alt, pairwise ~ gen*forestal)
medias.forestal.gen
## $emmeans
##  gen   forestal   emmean   SE   df lower.CL upper.CL
##  CCN51 Abarco        145 2.20 3169      141      150
##  TCS01 Abarco        152 2.19 3169      147      156
##  TCS06 Abarco        139 2.29 3169      134      143
##  TCS13 Abarco        151 2.23 3169      147      155
##  TCS19 Abarco        130 2.27 3169      125      134
##  CCN51 Roble         133 2.29 3169      128      137
##  TCS01 Roble         138 2.29 3169      134      143
##  TCS06 Roble         129 2.40 3169      124      134
##  TCS13 Roble         139 2.27 3169      135      144
##  TCS19 Roble         126 2.28 3169      122      131
##  CCN51 Terminalia    130 2.31 3169      126      135
##  TCS01 Terminalia    132 2.28 3169      127      136
##  TCS06 Terminalia    133 2.33 3169      128      138
##  TCS13 Terminalia    133 2.34 3169      128      137
##  TCS19 Terminalia    118 2.33 3169      114      123
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                            estimate   SE   df t.ratio p.value
##  CCN51 Abarco - TCS01 Abarco           -6.281 3.10 3169  -2.023  0.7846
##  CCN51 Abarco - TCS06 Abarco            6.578 3.18 3169   2.071  0.7546
##  CCN51 Abarco - TCS13 Abarco           -5.700 3.14 3169  -1.818  0.8912
##  CCN51 Abarco - TCS19 Abarco           15.844 3.16 3169   5.017  0.0001
##  CCN51 Abarco - CCN51 Roble            12.812 3.17 3169   4.038  0.0049
##  CCN51 Abarco - TCS01 Roble             7.310 3.18 3169   2.300  0.5904
##  CCN51 Abarco - TCS06 Roble            16.269 3.26 3169   4.993  0.0001
##  CCN51 Abarco - TCS13 Roble             6.081 3.16 3169   1.926  0.8404
##  CCN51 Abarco - TCS19 Roble            19.336 3.17 3169   6.101  <.0001
##  CCN51 Abarco - CCN51 Terminalia       15.124 3.19 3169   4.742  0.0002
##  CCN51 Abarco - TCS01 Terminalia       13.593 3.17 3169   4.289  0.0017
##  CCN51 Abarco - TCS06 Terminalia       12.321 3.20 3169   3.849  0.0103
##  CCN51 Abarco - TCS13 Terminalia       12.688 3.21 3169   3.953  0.0069
##  CCN51 Abarco - TCS19 Terminalia       27.300 3.20 3169   8.526  <.0001
##  TCS01 Abarco - TCS06 Abarco           12.859 3.17 3169   4.056  0.0046
##  TCS01 Abarco - TCS13 Abarco            0.580 3.13 3169   0.186  1.0000
##  TCS01 Abarco - TCS19 Abarco           22.125 3.15 3169   7.021  <.0001
##  TCS01 Abarco - CCN51 Roble            19.093 3.17 3169   6.030  <.0001
##  TCS01 Abarco - TCS01 Roble            13.591 3.17 3169   4.286  0.0018
##  TCS01 Abarco - TCS06 Roble            22.549 3.25 3169   6.934  <.0001
##  TCS01 Abarco - TCS13 Roble            12.362 3.15 3169   3.923  0.0078
##  TCS01 Abarco - TCS19 Roble            25.617 3.16 3169   8.100  <.0001
##  TCS01 Abarco - CCN51 Terminalia       21.405 3.18 3169   6.725  <.0001
##  TCS01 Abarco - TCS01 Terminalia       19.874 3.16 3169   6.284  <.0001
##  TCS01 Abarco - TCS06 Terminalia       18.602 3.19 3169   5.823  <.0001
##  TCS01 Abarco - TCS13 Terminalia       18.969 3.20 3169   5.922  <.0001
##  TCS01 Abarco - TCS19 Terminalia       33.580 3.20 3169  10.509  <.0001
##  TCS06 Abarco - TCS13 Abarco          -12.278 3.20 3169  -3.836  0.0108
##  TCS06 Abarco - TCS19 Abarco            9.266 3.22 3169   2.875  0.2086
##  TCS06 Abarco - CCN51 Roble             6.234 3.24 3169   1.926  0.8403
##  TCS06 Abarco - TCS01 Roble             0.732 3.24 3169   0.226  1.0000
##  TCS06 Abarco - TCS06 Roble             9.690 3.32 3169   2.918  0.1882
##  TCS06 Abarco - TCS13 Roble            -0.497 3.22 3169  -0.154  1.0000
##  TCS06 Abarco - TCS19 Roble            12.758 3.23 3169   3.945  0.0071
##  TCS06 Abarco - CCN51 Terminalia        8.546 3.25 3169   2.627  0.3518
##  TCS06 Abarco - TCS01 Terminalia        7.015 3.23 3169   2.169  0.6871
##  TCS06 Abarco - TCS06 Terminalia        5.743 3.26 3169   1.759  0.9140
##  TCS06 Abarco - TCS13 Terminalia        6.110 3.27 3169   1.867  0.8695
##  TCS06 Abarco - TCS19 Terminalia       20.721 3.27 3169   6.346  <.0001
##  TCS13 Abarco - TCS19 Abarco           21.544 3.18 3169   6.770  <.0001
##  TCS13 Abarco - CCN51 Roble            18.512 3.20 3169   5.791  <.0001
##  TCS13 Abarco - TCS01 Roble            13.011 3.20 3169   4.062  0.0045
##  TCS13 Abarco - TCS06 Roble            21.969 3.28 3169   6.695  <.0001
##  TCS13 Abarco - TCS13 Roble            11.781 3.18 3169   3.702  0.0177
##  TCS13 Abarco - TCS19 Roble            25.036 3.19 3169   7.841  <.0001
##  TCS13 Abarco - CCN51 Terminalia       20.825 3.21 3169   6.482  <.0001
##  TCS13 Abarco - TCS01 Terminalia       19.293 3.19 3169   6.042  <.0001
##  TCS13 Abarco - TCS06 Terminalia       18.021 3.22 3169   5.589  <.0001
##  TCS13 Abarco - TCS13 Terminalia       18.389 3.23 3169   5.688  <.0001
##  TCS13 Abarco - TCS19 Terminalia       33.000 3.22 3169  10.233  <.0001
##  TCS19 Abarco - CCN51 Roble            -3.032 3.22 3169  -0.942  0.9998
##  TCS19 Abarco - TCS01 Roble            -8.533 3.22 3169  -2.648  0.3380
##  TCS19 Abarco - TCS06 Roble             0.425 3.30 3169   0.129  1.0000
##  TCS19 Abarco - TCS13 Roble            -9.763 3.20 3169  -3.048  0.1360
##  TCS19 Abarco - TCS19 Roble             3.492 3.22 3169   1.086  0.9991
##  TCS19 Abarco - CCN51 Terminalia       -0.719 3.24 3169  -0.222  1.0000
##  TCS19 Abarco - TCS01 Terminalia       -2.251 3.21 3169  -0.700  1.0000
##  TCS19 Abarco - TCS06 Terminalia       -3.523 3.25 3169  -1.085  0.9991
##  TCS19 Abarco - TCS13 Terminalia       -3.156 3.26 3169  -0.969  0.9997
##  TCS19 Abarco - TCS19 Terminalia       11.456 3.25 3169   3.528  0.0324
##  CCN51 Roble - TCS01 Roble             -5.502 3.24 3169  -1.699  0.9339
##  CCN51 Roble - TCS06 Roble              3.457 3.32 3169   1.042  0.9994
##  CCN51 Roble - TCS13 Roble             -6.731 3.22 3169  -2.091  0.7412
##  CCN51 Roble - TCS19 Roble              6.524 3.23 3169   2.020  0.7866
##  CCN51 Roble - CCN51 Terminalia         2.312 3.25 3169   0.712  1.0000
##  CCN51 Roble - TCS01 Terminalia         0.781 3.23 3169   0.242  1.0000
##  CCN51 Roble - TCS06 Terminalia        -0.491 3.26 3169  -0.151  1.0000
##  CCN51 Roble - TCS13 Terminalia        -0.124 3.27 3169  -0.038  1.0000
##  CCN51 Roble - TCS19 Terminalia        14.488 3.26 3169   4.442  0.0009
##  TCS01 Roble - TCS06 Roble              8.958 3.32 3169   2.696  0.3073
##  TCS01 Roble - TCS13 Roble             -1.229 3.22 3169  -0.382  1.0000
##  TCS01 Roble - TCS19 Roble             12.026 3.24 3169   3.716  0.0168
##  TCS01 Roble - CCN51 Terminalia         7.814 3.26 3169   2.400  0.5152
##  TCS01 Roble - TCS01 Terminalia         6.282 3.23 3169   1.943  0.8313
##  TCS01 Roble - TCS06 Terminalia         5.011 3.27 3169   1.534  0.9713
##  TCS01 Roble - TCS13 Terminalia         5.378 3.28 3169   1.642  0.9493
##  TCS01 Roble - TCS19 Terminalia        19.989 3.27 3169   6.117  <.0001
##  TCS06 Roble - TCS13 Roble            -10.188 3.30 3169  -3.084  0.1235
##  TCS06 Roble - TCS19 Roble              3.067 3.31 3169   0.926  0.9999
##  TCS06 Roble - CCN51 Terminalia        -1.144 3.33 3169  -0.343  1.0000
##  TCS06 Roble - TCS01 Terminalia        -2.676 3.31 3169  -0.808  1.0000
##  TCS06 Roble - TCS06 Terminalia        -3.948 3.34 3169  -1.181  0.9977
##  TCS06 Roble - TCS13 Terminalia        -3.580 3.35 3169  -1.068  0.9992
##  TCS06 Roble - TCS19 Terminalia        11.031 3.34 3169   3.299  0.0670
##  TCS13 Roble - TCS19 Roble             13.255 3.22 3169   4.122  0.0035
##  TCS13 Roble - CCN51 Terminalia         9.044 3.24 3169   2.795  0.2500
##  TCS13 Roble - TCS01 Terminalia         7.512 3.21 3169   2.337  0.5628
##  TCS13 Roble - TCS06 Terminalia         6.240 3.25 3169   1.922  0.8423
##  TCS13 Roble - TCS13 Terminalia         6.607 3.26 3169   2.030  0.7806
##  TCS13 Roble - TCS19 Terminalia        21.219 3.25 3169   6.533  <.0001
##  TCS19 Roble - CCN51 Terminalia        -4.211 3.25 3169  -1.298  0.9940
##  TCS19 Roble - TCS01 Terminalia        -5.743 3.23 3169  -1.780  0.9062
##  TCS19 Roble - TCS06 Terminalia        -7.015 3.26 3169  -2.154  0.6982
##  TCS19 Roble - TCS13 Terminalia        -6.648 3.27 3169  -2.036  0.7768
##  TCS19 Roble - TCS19 Terminalia         7.964 3.26 3169   2.445  0.4812
##  CCN51 Terminalia - TCS01 Terminalia   -1.532 3.25 3169  -0.472  1.0000
##  CCN51 Terminalia - TCS06 Terminalia   -2.803 3.28 3169  -0.856  0.9999
##  CCN51 Terminalia - TCS13 Terminalia   -2.436 3.28 3169  -0.742  1.0000
##  CCN51 Terminalia - TCS19 Terminalia   12.175 3.28 3169   3.716  0.0168
##  TCS01 Terminalia - TCS06 Terminalia   -1.272 3.26 3169  -0.390  1.0000
##  TCS01 Terminalia - TCS13 Terminalia   -0.905 3.27 3169  -0.277  1.0000
##  TCS01 Terminalia - TCS19 Terminalia   13.707 3.26 3169   4.207  0.0025
##  TCS06 Terminalia - TCS13 Terminalia    0.367 3.30 3169   0.111  1.0000
##  TCS06 Terminalia - TCS19 Terminalia   14.979 3.29 3169   4.555  0.0005
##  TCS13 Terminalia - TCS19 Terminalia   14.611 3.30 3169   4.433  0.0009
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 15 estimates
cld_forestal_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal_gen
##  gen   forestal   emmean   SE   df lower.CL upper.CL .group
##  TCS01 Abarco        152 2.19 3169      147      156  A    
##  TCS13 Abarco        151 2.23 3169      147      155  A    
##  CCN51 Abarco        145 2.20 3169      141      150  AB   
##  TCS13 Roble         139 2.27 3169      135      144   BC  
##  TCS06 Abarco        139 2.29 3169      134      143   BC  
##  TCS01 Roble         138 2.29 3169      134      143   BC  
##  TCS06 Terminalia    133 2.33 3169      128      138    CD 
##  TCS13 Terminalia    133 2.34 3169      128      137    CD 
##  CCN51 Roble         133 2.29 3169      128      137    CD 
##  TCS01 Terminalia    132 2.28 3169      127      136    CD 
##  CCN51 Terminalia    130 2.31 3169      126      135    CD 
##  TCS19 Abarco        130 2.27 3169      125      134    CD 
##  TCS06 Roble         129 2.40 3169      124      134    CDE
##  TCS19 Roble         126 2.28 3169      122      131     DE
##  TCS19 Terminalia    118 2.33 3169      114      123      E
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 15 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
detach(datos4)