setwd("/Volumes/GoogleDrive/Mi unidad/Agrosavia/Colaboraciones/Laura/BD Estadística SGR Santander/data")
datos4<-read.table("parcel18.csv", header=T, sep=',')
datos4$gen<-as.factor(datos4$gen)
datos4$forestal<-as.factor(datos4$forestal)
datos4$bloque<-as.factor(datos4$bloque)
attach(datos4)
library(ggplot2)
library(emmeans)
#Gráfica diámetro
ggplot(datos4, aes(semana, diam, group = gen, colour = gen)) +
  facet_grid(~forestal) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Diámetro") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  ) 
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 483 rows containing non-finite values (stat_smooth).

# Gráfica altura
ggplot(datos4, aes(semana, alt, group = gen, colour = gen)) +
  facet_grid(~forestal) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Altura") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  )  
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 501 rows containing non-finite values (stat_smooth).

# Anova general
aov.diam<-aov(diam~semana+forestal+gen+bloque+forestal*gen, na.action=na.exclude)
aov.alt<-aov(alt~semana+forestal+gen+bloque+forestal*gen, na.action=na.exclude)
#Análisis para diámetro
library(nlme)
fit.compsym.diam <- gls(diam ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.diam <- gls(diam ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.diam <- gls(diam ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.diam, fit.ar1.diam, fit.ar1het.diam) #compares the models
##                  Model df      AIC      BIC    logLik   Test L.Ratio p-value
## fit.compsym.diam     1 20 8823.839 8944.026 -4391.919                       
## fit.ar1.diam         2 20 8683.043 8803.231 -4321.522                       
## fit.ar1het.diam      3 32 7770.285 7962.585 -3853.143 2 vs 3 936.758  <.0001
anova(fit.ar1.diam)
## Denom. DF: 3009 
##              numDF   F-value p-value
## (Intercept)      1 24076.340  <.0001
## semana           1  5610.753  <.0001
## forestal         2     3.448  0.0319
## gen              4    11.897  <.0001
## bloque           2   145.325  <.0001
## forestal:gen     8    12.107  <.0001
anova(fit.ar1het.diam)
## Denom. DF: 3009 
##              numDF   F-value p-value
## (Intercept)      1 15839.518  <.0001
## semana           1  6592.155  <.0001
## forestal         2     1.877  0.1532
## gen              4     5.008  0.0005
## bloque           2    87.169  <.0001
## forestal:gen     8     7.601  <.0001
# Análisis para altura
fit.compsym.alt <- gls(alt ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.alt <- gls(alt ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.alt <- gls(alt ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.alt, fit.ar1.alt, fit.ar1het.alt) #compares the models
##                 Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.alt     1 20 29900.00 30020.06 -14930.00                        
## fit.ar1.alt         2 20 29720.54 29840.61 -14840.27                        
## fit.ar1het.alt      3 32 28689.94 28882.05 -14312.97 2 vs 3 1054.597  <.0001
anova(fit.ar1.alt)
## Denom. DF: 2991 
##              numDF   F-value p-value
## (Intercept)      1 26435.999  <.0001
## semana           1  4326.269  <.0001
## forestal         2     1.877  0.1533
## gen              4    26.941  <.0001
## bloque           2   119.434  <.0001
## forestal:gen     8    10.118  <.0001
anova(fit.ar1het.alt)
## Denom. DF: 2991 
##              numDF   F-value p-value
## (Intercept)      1 23331.698  <.0001
## semana           1  6236.115  <.0001
## forestal         2     0.730  0.4822
## gen              4     9.499  <.0001
## bloque           2    41.302  <.0001
## forestal:gen     8     2.070  0.0353
#Tukey diámetro
library(multcompView)
interac.tuk.diam<-TukeyHSD(aov.diam, "forestal:gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
fores.tuk.diam<-TukeyHSD(aov.diam, "forestal", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
gen.tuk.diam<-TukeyHSD(aov.diam, "gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
#Tukey altura
interac.tuk.alt<-TukeyHSD(aov.alt, "forestal:gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
fores.tuk.alt<-TukeyHSD(aov.alt, "forestal", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
gen.tuk.alt<-TukeyHSD(aov.alt, "gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
#Etiquetas Tukey diámetro
#Genotipos
generate_label_df_gen_diam <- function(gen.tuk.diam, variable){
  Tukey.levels <- gen.tuk.diam[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.diam <- generate_label_df_gen_diam(gen.tuk.diam, "gen")
labels.gen.diam
##       Letters treatment
## CCN51       a     CCN51
## TCS01       c     TCS01
## TCS06      ab     TCS06
## TCS13       c     TCS13
## TCS19       b     TCS19
# Forestal
generate_label_df_forestal_diam <- function(fores.tuk.diam, variable){
  Tukey.levels <- fores.tuk.diam[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.forestal.diam <- generate_label_df_forestal_diam(fores.tuk.diam, "forestal")
labels.forestal.diam
##            Letters  treatment
## Abarco           a     Abarco
## Roble            b      Roble
## Terminalia       c Terminalia
# Interacción Forestal:Genotipo
generate_label_df_interac_diam <- function(interac.tuk.diam, variable){
  Tukey.levels <- interac.tuk.diam[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.diam <- generate_label_df_interac_diam(interac.tuk.diam, "forestal:gen")
labels.interac.diam
##                  Letters        treatment
## Abarco:CCN51          ab     Abarco:CCN51
## Abarco:TCS01          fg     Abarco:TCS01
## Abarco:TCS06        acde     Abarco:TCS06
## Abarco:TCS13         efg     Abarco:TCS13
## Abarco:TCS19           b     Abarco:TCS19
## Roble:CCN51          def      Roble:CCN51
## Roble:TCS01          abc      Roble:TCS01
## Roble:TCS06        abcde      Roble:TCS06
## Roble:TCS13            g      Roble:TCS13
## Roble:TCS19         abcd      Roble:TCS19
## Terminalia:CCN51     cde Terminalia:CCN51
## Terminalia:TCS01     efg Terminalia:TCS01
## Terminalia:TCS06      ab Terminalia:TCS06
## Terminalia:TCS13    abcd Terminalia:TCS13
## Terminalia:TCS19    abcd Terminalia:TCS19
#Etiquetas Tukey altura
#Genotipos
generate_label_df_gen_alt <- function(gen.tuk.alt, variable){
  Tukey.levels <- gen.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.alt <- generate_label_df_gen_alt(gen.tuk.alt, "gen")
labels.gen.alt
##       Letters treatment
## CCN51      bc     CCN51
## TCS01       c     TCS01
## TCS06      ab     TCS06
## TCS13       a     TCS13
## TCS19       d     TCS19
# Forestal
generate_label_df_forestal_alt <- function(fores.tuk.alt, variable){
  Tukey.levels <- fores.tuk.alt[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.forestal.alt <- generate_label_df_forestal_alt(fores.tuk.alt, "forestal")
labels.forestal.alt
##            Letters  treatment
## Abarco           a     Abarco
## Roble            b      Roble
## Terminalia       c Terminalia
# Interacción Forestal:Genotipo
generate_label_df_interac_alt <- function(interac.tuk.alt, variable){
  Tukey.levels <- interac.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.alt <- generate_label_df_interac_alt(interac.tuk.alt, "forestal:gen")
labels.interac.alt
##                  Letters        treatment
## Abarco:CCN51       acdef     Abarco:CCN51
## Abarco:TCS01           h     Abarco:TCS01
## Abarco:TCS06         fgh     Abarco:TCS06
## Abarco:TCS13        defg     Abarco:TCS13
## Abarco:TCS19           b     Abarco:TCS19
## Roble:CCN51           gh      Roble:CCN51
## Roble:TCS01         acde      Roble:TCS01
## Roble:TCS06          efg      Roble:TCS06
## Roble:TCS13           gh      Roble:TCS13
## Roble:TCS19          abc      Roble:TCS19
## Terminalia:CCN51      gh Terminalia:CCN51
## Terminalia:TCS01      gh Terminalia:TCS01
## Terminalia:TCS06    cdef Terminalia:TCS06
## Terminalia:TCS13    abcd Terminalia:TCS13
## Terminalia:TCS19      ab Terminalia:TCS19
## Gráficas contrastes de medias diametro
#Gen
contrast <- emmeans(aov.diam, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.gen <- emmeans(aov.diam, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean     SE   df lower.CL upper.CL
##  CCN51   3.50 0.0420 3009     3.41     3.58
##  TCS01   3.75 0.0398 3009     3.67     3.83
##  TCS06   3.48 0.0398 3009     3.40     3.56
##  TCS13   3.72 0.0432 3009     3.64     3.81
##  TCS19   3.26 0.0445 3009     3.18     3.35
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate     SE   df t.ratio p.value
##  CCN51 - TCS01  -0.2551 0.0578 3009  -4.410  0.0001
##  CCN51 - TCS06   0.0183 0.0578 3009   0.316  0.9978
##  CCN51 - TCS13  -0.2246 0.0601 3009  -3.739  0.0018
##  CCN51 - TCS19   0.2332 0.0609 3009   3.831  0.0012
##  TCS01 - TCS06   0.2734 0.0563 3009   4.856  <.0001
##  TCS01 - TCS13   0.0305 0.0588 3009   0.518  0.9856
##  TCS01 - TCS19   0.4883 0.0597 3009   8.181  <.0001
##  TCS06 - TCS13  -0.2429 0.0588 3009  -4.134  0.0004
##  TCS06 - TCS19   0.2149 0.0596 3009   3.604  0.0029
##  TCS13 - TCS19   0.4578 0.0617 3009   7.417  <.0001
## 
## Results are averaged over the levels of: forestal, bloque 
## P value adjustment: tukey method for comparing a family of 5 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean     SE   df lower.CL upper.CL .group
##  TCS01   3.75 0.0398 3009     3.67     3.83  A    
##  TCS13   3.72 0.0432 3009     3.64     3.81  A    
##  CCN51   3.50 0.0420 3009     3.41     3.58   B   
##  TCS06   3.48 0.0398 3009     3.40     3.56   B   
##  TCS19   3.26 0.0445 3009     3.18     3.35    C  
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 5 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal
contrast <- emmeans(aov.diam, ~forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.forestal <- emmeans(aov.diam, pairwise ~ forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal
## $emmeans
##  forestal   emmean     SE   df lower.CL upper.CL
##  Abarco       3.55 0.0329 3009     3.48     3.61
##  Roble        3.57 0.0325 3009     3.51     3.64
##  Terminalia   3.50 0.0320 3009     3.44     3.57
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast            estimate     SE   df t.ratio p.value
##  Abarco - Roble       -0.0243 0.0461 3009  -0.528  0.8577
##  Abarco - Terminalia   0.0444 0.0458 3009   0.969  0.5967
##  Roble - Terminalia    0.0687 0.0456 3009   1.507  0.2875
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_forestal <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal
##  forestal   emmean     SE   df lower.CL upper.CL .group
##  Roble        3.57 0.0325 3009     3.51     3.64  A    
##  Abarco       3.55 0.0329 3009     3.48     3.61  A    
##  Terminalia   3.50 0.0320 3009     3.44     3.57  A    
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal*Gen
contrast <- emmeans(aov.diam, ~gen*forestal)
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.forestal.gen <- emmeans(aov.diam, pairwise ~ gen*forestal)
medias.forestal.gen
## $emmeans
##  gen   forestal   emmean     SE   df lower.CL upper.CL
##  CCN51 Abarco       3.21 0.0765 3009     3.06     3.36
##  TCS01 Abarco       4.01 0.0703 3009     3.88     4.15
##  TCS06 Abarco       3.58 0.0681 3009     3.45     3.72
##  TCS13 Abarco       3.78 0.0745 3009     3.63     3.92
##  TCS19 Abarco       3.16 0.0768 3009     3.00     3.31
##  CCN51 Roble        3.66 0.0719 3009     3.51     3.80
##  TCS01 Roble        3.34 0.0695 3009     3.20     3.48
##  TCS06 Roble        3.53 0.0684 3009     3.40     3.67
##  TCS13 Roble        4.02 0.0734 3009     3.87     4.16
##  TCS19 Roble        3.32 0.0787 3009     3.16     3.47
##  CCN51 Terminalia   3.62 0.0692 3009     3.49     3.76
##  TCS01 Terminalia   3.90 0.0670 3009     3.77     4.03
##  TCS06 Terminalia   3.32 0.0705 3009     3.18     3.45
##  TCS13 Terminalia   3.37 0.0762 3009     3.22     3.52
##  TCS19 Terminalia   3.32 0.0745 3009     3.17     3.46
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate     SE   df t.ratio p.value
##  CCN51 Abarco - TCS01 Abarco         -0.800945 0.1039 3009  -7.711  <.0001
##  CCN51 Abarco - TCS06 Abarco         -0.370876 0.1024 3009  -3.621  0.0236
##  CCN51 Abarco - TCS13 Abarco         -0.563247 0.1067 3009  -5.281  <.0001
##  CCN51 Abarco - TCS19 Abarco          0.058319 0.1082 3009   0.539  1.0000
##  CCN51 Abarco - CCN51 Roble          -0.441771 0.1048 3009  -4.217  0.0024
##  CCN51 Abarco - TCS01 Roble          -0.125890 0.1033 3009  -1.218  0.9968
##  CCN51 Abarco - TCS06 Roble          -0.320383 0.1026 3009  -3.123  0.1112
##  CCN51 Abarco - TCS13 Roble          -0.804796 0.1058 3009  -7.610  <.0001
##  CCN51 Abarco - TCS19 Roble          -0.105475 0.1094 3009  -0.964  0.9998
##  CCN51 Abarco - CCN51 Terminalia     -0.407322 0.1032 3009  -3.949  0.0070
##  CCN51 Abarco - TCS01 Terminalia     -0.687460 0.1018 3009  -6.755  <.0001
##  CCN51 Abarco - TCS06 Terminalia     -0.102959 0.1039 3009  -0.991  0.9997
##  CCN51 Abarco - TCS13 Terminalia     -0.154860 0.1078 3009  -1.437  0.9840
##  CCN51 Abarco - TCS19 Terminalia     -0.102364 0.1066 3009  -0.960  0.9998
##  TCS01 Abarco - TCS06 Abarco          0.430069 0.0978 3009   4.396  0.0011
##  TCS01 Abarco - TCS13 Abarco          0.237699 0.1024 3009   2.321  0.5749
##  TCS01 Abarco - TCS19 Abarco          0.859265 0.1041 3009   8.254  <.0001
##  TCS01 Abarco - CCN51 Roble           0.359175 0.1005 3009   3.572  0.0279
##  TCS01 Abarco - TCS01 Roble           0.675056 0.0988 3009   6.832  <.0001
##  TCS01 Abarco - TCS06 Roble           0.480562 0.0980 3009   4.902  0.0001
##  TCS01 Abarco - TCS13 Roble          -0.003850 0.1016 3009  -0.038  1.0000
##  TCS01 Abarco - TCS19 Roble           0.695470 0.1055 3009   6.591  <.0001
##  TCS01 Abarco - CCN51 Terminalia      0.393623 0.0986 3009   3.993  0.0059
##  TCS01 Abarco - TCS01 Terminalia      0.113486 0.0971 3009   1.169  0.9980
##  TCS01 Abarco - TCS06 Terminalia      0.697986 0.0995 3009   7.015  <.0001
##  TCS01 Abarco - TCS13 Terminalia      0.646086 0.1036 3009   6.235  <.0001
##  TCS01 Abarco - TCS19 Terminalia      0.698582 0.1024 3009   6.822  <.0001
##  TCS06 Abarco - TCS13 Abarco         -0.192371 0.1009 3009  -1.906  0.8506
##  TCS06 Abarco - TCS19 Abarco          0.429195 0.1027 3009   4.180  0.0028
##  TCS06 Abarco - CCN51 Roble          -0.070894 0.0990 3009  -0.716  1.0000
##  TCS06 Abarco - TCS01 Roble           0.244986 0.0972 3009   2.519  0.4266
##  TCS06 Abarco - TCS06 Roble           0.050493 0.0965 3009   0.523  1.0000
##  TCS06 Abarco - TCS13 Roble          -0.433919 0.1001 3009  -4.333  0.0014
##  TCS06 Abarco - TCS19 Roble           0.265401 0.1041 3009   2.550  0.4048
##  TCS06 Abarco - CCN51 Terminalia     -0.036446 0.0970 3009  -0.376  1.0000
##  TCS06 Abarco - TCS01 Terminalia     -0.316584 0.0955 3009  -3.314  0.0640
##  TCS06 Abarco - TCS06 Terminalia      0.267917 0.0980 3009   2.735  0.2840
##  TCS06 Abarco - TCS13 Terminalia      0.216016 0.1022 3009   2.114  0.7253
##  TCS06 Abarco - TCS19 Terminalia      0.268513 0.1009 3009   2.661  0.3299
##  TCS13 Abarco - TCS19 Abarco          0.621566 0.1069 3009   5.814  <.0001
##  TCS13 Abarco - CCN51 Roble           0.121476 0.1035 3009   1.174  0.9979
##  TCS13 Abarco - TCS01 Roble           0.437357 0.1019 3009   4.291  0.0017
##  TCS13 Abarco - TCS06 Roble           0.242864 0.1011 3009   2.401  0.5138
##  TCS13 Abarco - TCS13 Roble          -0.241549 0.1045 3009  -2.311  0.5824
##  TCS13 Abarco - TCS19 Roble           0.457771 0.1083 3009   4.229  0.0023
##  TCS13 Abarco - CCN51 Terminalia      0.155924 0.1017 3009   1.534  0.9713
##  TCS13 Abarco - TCS01 Terminalia     -0.124213 0.1003 3009  -1.239  0.9963
##  TCS13 Abarco - TCS06 Terminalia      0.460288 0.1025 3009   4.490  0.0007
##  TCS13 Abarco - TCS13 Terminalia      0.408387 0.1064 3009   3.838  0.0107
##  TCS13 Abarco - TCS19 Terminalia      0.460883 0.1053 3009   4.379  0.0012
##  TCS19 Abarco - CCN51 Roble          -0.500089 0.1051 3009  -4.760  0.0002
##  TCS19 Abarco - TCS01 Roble          -0.184209 0.1036 3009  -1.778  0.9069
##  TCS19 Abarco - TCS06 Roble          -0.378702 0.1028 3009  -3.683  0.0190
##  TCS19 Abarco - TCS13 Roble          -0.863115 0.1061 3009  -8.137  <.0001
##  TCS19 Abarco - TCS19 Roble          -0.163794 0.1098 3009  -1.492  0.9774
##  TCS19 Abarco - CCN51 Terminalia     -0.465641 0.1034 3009  -4.504  0.0007
##  TCS19 Abarco - TCS01 Terminalia     -0.745779 0.1020 3009  -7.311  <.0001
##  TCS19 Abarco - TCS06 Terminalia     -0.161278 0.1042 3009  -1.548  0.9689
##  TCS19 Abarco - TCS13 Terminalia     -0.213179 0.1081 3009  -1.973  0.8145
##  TCS19 Abarco - TCS19 Terminalia     -0.160683 0.1069 3009  -1.503  0.9759
##  CCN51 Roble - TCS01 Roble            0.315881 0.1000 3009   3.159  0.1005
##  CCN51 Roble - TCS06 Roble            0.121387 0.0992 3009   1.223  0.9967
##  CCN51 Roble - TCS13 Roble           -0.363025 0.1026 3009  -3.539  0.0312
##  CCN51 Roble - TCS19 Roble            0.336295 0.1064 3009   3.161  0.1002
##  CCN51 Roble - CCN51 Terminalia       0.034448 0.0998 3009   0.345  1.0000
##  CCN51 Roble - TCS01 Terminalia      -0.245689 0.0984 3009  -2.498  0.4420
##  CCN51 Roble - TCS06 Terminalia       0.338811 0.1006 3009   3.367  0.0544
##  CCN51 Roble - TCS13 Terminalia       0.286911 0.1047 3009   2.741  0.2804
##  CCN51 Roble - TCS19 Terminalia       0.339407 0.1034 3009   3.281  0.0707
##  TCS01 Roble - TCS06 Roble           -0.194493 0.0975 3009  -1.996  0.8011
##  TCS01 Roble - TCS13 Roble           -0.678906 0.1011 3009  -6.717  <.0001
##  TCS01 Roble - TCS19 Roble            0.020415 0.1050 3009   0.194  1.0000
##  TCS01 Roble - CCN51 Terminalia      -0.281432 0.0980 3009  -2.871  0.2103
##  TCS01 Roble - TCS01 Terminalia      -0.561570 0.0965 3009  -5.818  <.0001
##  TCS01 Roble - TCS06 Terminalia       0.022931 0.0989 3009   0.232  1.0000
##  TCS01 Roble - TCS13 Terminalia      -0.028970 0.1031 3009  -0.281  1.0000
##  TCS01 Roble - TCS19 Terminalia       0.023526 0.1019 3009   0.231  1.0000
##  TCS06 Roble - TCS13 Roble           -0.484412 0.1003 3009  -4.829  0.0001
##  TCS06 Roble - TCS19 Roble            0.214908 0.1043 3009   2.061  0.7605
##  TCS06 Roble - CCN51 Terminalia      -0.086939 0.0972 3009  -0.894  0.9999
##  TCS06 Roble - TCS01 Terminalia      -0.367077 0.0957 3009  -3.834  0.0109
##  TCS06 Roble - TCS06 Terminalia       0.217424 0.0982 3009   2.215  0.6540
##  TCS06 Roble - TCS13 Terminalia       0.165523 0.1023 3009   1.617  0.9552
##  TCS06 Roble - TCS19 Terminalia       0.218020 0.1011 3009   2.156  0.6963
##  TCS13 Roble - TCS19 Roble            0.699320 0.1074 3009   6.513  <.0001
##  TCS13 Roble - CCN51 Terminalia       0.397473 0.1009 3009   3.940  0.0073
##  TCS13 Roble - TCS01 Terminalia       0.117336 0.0995 3009   1.180  0.9978
##  TCS13 Roble - TCS06 Terminalia       0.701836 0.1017 3009   6.902  <.0001
##  TCS13 Roble - TCS13 Terminalia       0.649936 0.1057 3009   6.149  <.0001
##  TCS13 Roble - TCS19 Terminalia       0.702432 0.1045 3009   6.723  <.0001
##  TCS19 Roble - CCN51 Terminalia      -0.301847 0.1048 3009  -2.880  0.2060
##  TCS19 Roble - TCS01 Terminalia      -0.581985 0.1034 3009  -5.626  <.0001
##  TCS19 Roble - TCS06 Terminalia       0.002516 0.1055 3009   0.024  1.0000
##  TCS19 Roble - TCS13 Terminalia      -0.049384 0.1094 3009  -0.452  1.0000
##  TCS19 Roble - TCS19 Terminalia       0.003112 0.1082 3009   0.029  1.0000
##  CCN51 Terminalia - TCS01 Terminalia -0.280137 0.0963 3009  -2.909  0.1923
##  CCN51 Terminalia - TCS06 Terminalia  0.304363 0.0987 3009   3.083  0.1238
##  CCN51 Terminalia - TCS13 Terminalia  0.252463 0.1029 3009   2.454  0.4743
##  CCN51 Terminalia - TCS19 Terminalia  0.304959 0.1016 3009   3.000  0.1538
##  TCS01 Terminalia - TCS06 Terminalia  0.584501 0.0973 3009   6.010  <.0001
##  TCS01 Terminalia - TCS13 Terminalia  0.532600 0.1015 3009   5.248  <.0001
##  TCS01 Terminalia - TCS19 Terminalia  0.585096 0.1002 3009   5.837  <.0001
##  TCS06 Terminalia - TCS13 Terminalia -0.051901 0.1037 3009  -0.500  1.0000
##  TCS06 Terminalia - TCS19 Terminalia  0.000596 0.1025 3009   0.006  1.0000
##  TCS13 Terminalia - TCS19 Terminalia  0.052496 0.1064 3009   0.493  1.0000
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 15 estimates
cld_forestal_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal_gen
##  gen   forestal   emmean     SE   df lower.CL upper.CL .group 
##  TCS13 Roble        4.02 0.0734 3009     3.87     4.16  A     
##  TCS01 Abarco       4.01 0.0703 3009     3.88     4.15  A     
##  TCS01 Terminalia   3.90 0.0670 3009     3.77     4.03  AB    
##  TCS13 Abarco       3.78 0.0745 3009     3.63     3.92  ABC   
##  CCN51 Roble        3.66 0.0719 3009     3.51     3.80   BCD  
##  CCN51 Terminalia   3.62 0.0692 3009     3.49     3.76   BCD  
##  TCS06 Abarco       3.58 0.0681 3009     3.45     3.72   BCD  
##  TCS06 Roble        3.53 0.0684 3009     3.40     3.67    CDE 
##  TCS13 Terminalia   3.37 0.0762 3009     3.22     3.52     DEF
##  TCS01 Roble        3.34 0.0695 3009     3.20     3.48     DEF
##  TCS19 Roble        3.32 0.0787 3009     3.16     3.47     DEF
##  TCS06 Terminalia   3.32 0.0705 3009     3.18     3.45     DEF
##  TCS19 Terminalia   3.32 0.0745 3009     3.17     3.46     DEF
##  CCN51 Abarco       3.21 0.0765 3009     3.06     3.36      EF
##  TCS19 Abarco       3.16 0.0768 3009     3.00     3.31       F
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 15 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
## Gráficas contrastes de medias altura
#Gen
#Gen
contrast <- emmeans(aov.alt, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.gen <- emmeans(aov.alt, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean   SE   df lower.CL upper.CL
##  CCN51    136 1.44 2991      133      139
##  TCS01    140 1.37 2991      137      143
##  TCS06    134 1.37 2991      131      137
##  TCS13    131 1.49 2991      128      134
##  TCS19    113 1.52 2991      110      116
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE   df t.ratio p.value
##  CCN51 - TCS01    -3.86 1.98 2991  -1.949  0.2918
##  CCN51 - TCS06     2.43 1.98 2991   1.229  0.7345
##  CCN51 - TCS13     5.62 2.06 2991   2.731  0.0497
##  CCN51 - TCS19    23.36 2.08 2991  11.224  <.0001
##  TCS01 - TCS06     6.30 1.93 2991   3.256  0.0101
##  TCS01 - TCS13     9.49 2.02 2991   4.695  <.0001
##  TCS01 - TCS19    27.22 2.04 2991  13.315  <.0001
##  TCS06 - TCS13     3.19 2.02 2991   1.580  0.5102
##  TCS06 - TCS19    20.93 2.04 2991  10.244  <.0001
##  TCS13 - TCS19    17.74 2.12 2991   8.383  <.0001
## 
## Results are averaged over the levels of: forestal, bloque 
## P value adjustment: tukey method for comparing a family of 5 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean   SE   df lower.CL upper.CL .group
##  TCS01    140 1.37 2991      137      143  A    
##  CCN51    136 1.44 2991      133      139  AB   
##  TCS06    134 1.37 2991      131      137   BC  
##  TCS13    131 1.49 2991      128      134    C  
##  TCS19    113 1.52 2991      110      116     D 
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 5 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal
contrast <- emmeans(aov.alt, ~forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.forestal <- emmeans(aov.alt, pairwise ~ forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal
## $emmeans
##  forestal   emmean   SE   df lower.CL upper.CL
##  Abarco        131 1.12 2991      129      133
##  Roble         131 1.12 2991      129      134
##  Terminalia    130 1.10 2991      128      132
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast            estimate   SE   df t.ratio p.value
##  Abarco - Roble        -0.539 1.58 2991  -0.341  0.9380
##  Abarco - Terminalia    0.675 1.57 2991   0.431  0.9028
##  Roble - Terminalia     1.213 1.57 2991   0.775  0.7183
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_forestal <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal
##  forestal   emmean   SE   df lower.CL upper.CL .group
##  Roble         131 1.12 2991      129      134  A    
##  Abarco        131 1.12 2991      129      133  A    
##  Terminalia    130 1.10 2991      128      132  A    
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal*Gen
contrast <- emmeans(aov.alt, ~gen*forestal)
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.forestal.gen <- emmeans(aov.alt, pairwise ~ gen*forestal)
medias.forestal.gen
## $emmeans
##  gen   forestal   emmean   SE   df lower.CL upper.CL
##  CCN51 Abarco        126 2.62 2991      121      131
##  TCS01 Abarco        149 2.40 2991      144      154
##  TCS06 Abarco        139 2.33 2991      134      143
##  TCS13 Abarco        132 2.55 2991      127      137
##  TCS19 Abarco        108 2.63 2991      103      113
##  CCN51 Roble         141 2.46 2991      136      145
##  TCS01 Roble         127 2.41 2991      122      131
##  TCS06 Roble         133 2.37 2991      129      138
##  TCS13 Roble         139 2.54 2991      134      144
##  TCS19 Roble         117 2.69 2991      112      122
##  CCN51 Terminalia    143 2.36 2991      138      147
##  TCS01 Terminalia    145 2.29 2991      140      149
##  TCS06 Terminalia    129 2.41 2991      125      134
##  TCS13 Terminalia    121 2.62 2991      115      126
##  TCS19 Terminalia    114 2.55 2991      109      119
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                            estimate   SE   df t.ratio p.value
##  CCN51 Abarco - TCS01 Abarco          -23.383 3.55 2991  -6.584  <.0001
##  CCN51 Abarco - TCS06 Abarco          -13.120 3.50 2991  -3.746  0.0151
##  CCN51 Abarco - TCS13 Abarco           -6.499 3.65 2991  -1.782  0.9054
##  CCN51 Abarco - TCS19 Abarco           17.541 3.70 2991   4.743  0.0002
##  CCN51 Abarco - CCN51 Roble           -14.859 3.58 2991  -4.148  0.0032
##  CCN51 Abarco - TCS01 Roble            -0.796 3.55 2991  -0.224  1.0000
##  CCN51 Abarco - TCS06 Roble            -7.745 3.53 2991  -2.195  0.6684
##  CCN51 Abarco - TCS13 Roble           -13.415 3.63 2991  -3.692  0.0184
##  CCN51 Abarco - TCS19 Roble             8.663 3.74 2991   2.316  0.5789
##  CCN51 Abarco - CCN51 Terminalia      -16.816 3.53 2991  -4.768  0.0002
##  CCN51 Abarco - TCS01 Terminalia      -19.082 3.48 2991  -5.484  <.0001
##  CCN51 Abarco - TCS06 Terminalia       -3.507 3.55 2991  -0.987  0.9997
##  CCN51 Abarco - TCS13 Terminalia        5.115 3.70 2991   1.384  0.9888
##  CCN51 Abarco - TCS19 Terminalia       12.203 3.65 2991   3.348  0.0577
##  TCS01 Abarco - TCS06 Abarco           10.263 3.34 2991   3.068  0.1288
##  TCS01 Abarco - TCS13 Abarco           16.883 3.50 2991   4.821  0.0001
##  TCS01 Abarco - TCS19 Abarco           40.924 3.56 2991  11.497  <.0001
##  TCS01 Abarco - CCN51 Roble             8.523 3.44 2991   2.479  0.4557
##  TCS01 Abarco - TCS01 Roble            22.586 3.40 2991   6.638  <.0001
##  TCS01 Abarco - TCS06 Roble            15.637 3.37 2991   4.634  0.0004
##  TCS01 Abarco - TCS13 Roble             9.967 3.49 2991   2.852  0.2199
##  TCS01 Abarco - TCS19 Roble            32.045 3.61 2991   8.882  <.0001
##  TCS01 Abarco - CCN51 Terminalia        6.567 3.37 2991   1.948  0.8282
##  TCS01 Abarco - TCS01 Terminalia        4.300 3.32 2991   1.295  0.9941
##  TCS01 Abarco - TCS06 Terminalia       19.876 3.40 2991   5.842  <.0001
##  TCS01 Abarco - TCS13 Terminalia       28.497 3.55 2991   8.018  <.0001
##  TCS01 Abarco - TCS19 Terminalia       35.586 3.50 2991  10.163  <.0001
##  TCS06 Abarco - TCS13 Abarco            6.620 3.45 2991   1.918  0.8442
##  TCS06 Abarco - TCS19 Abarco           30.661 3.51 2991   8.735  <.0001
##  TCS06 Abarco - CCN51 Roble            -1.739 3.39 2991  -0.514  1.0000
##  TCS06 Abarco - TCS01 Roble            12.323 3.35 2991   3.679  0.0192
##  TCS06 Abarco - TCS06 Roble             5.374 3.32 2991   1.618  0.9549
##  TCS06 Abarco - TCS13 Roble            -0.296 3.44 2991  -0.086  1.0000
##  TCS06 Abarco - TCS19 Roble            21.782 3.56 2991   6.121  <.0001
##  TCS06 Abarco - CCN51 Terminalia       -3.696 3.32 2991  -1.114  0.9988
##  TCS06 Abarco - TCS01 Terminalia       -5.962 3.27 2991  -1.826  0.8879
##  TCS06 Abarco - TCS06 Terminalia        9.613 3.35 2991   2.870  0.2109
##  TCS06 Abarco - TCS13 Terminalia       18.234 3.50 2991   5.203  <.0001
##  TCS06 Abarco - TCS19 Terminalia       25.323 3.45 2991   7.339  <.0001
##  TCS13 Abarco - TCS19 Abarco           24.040 3.66 2991   6.577  <.0001
##  TCS13 Abarco - CCN51 Roble            -8.360 3.54 2991  -2.363  0.5432
##  TCS13 Abarco - TCS01 Roble             5.703 3.51 2991   1.626  0.9533
##  TCS13 Abarco - TCS06 Roble            -1.246 3.48 2991  -0.358  1.0000
##  TCS13 Abarco - TCS13 Roble            -6.916 3.59 2991  -1.925  0.8408
##  TCS13 Abarco - TCS19 Roble            15.162 3.70 2991   4.096  0.0039
##  TCS13 Abarco - CCN51 Terminalia      -10.316 3.48 2991  -2.968  0.1667
##  TCS13 Abarco - TCS01 Terminalia      -12.583 3.43 2991  -3.670  0.0198
##  TCS13 Abarco - TCS06 Terminalia        2.992 3.50 2991   0.854  0.9999
##  TCS13 Abarco - TCS13 Terminalia       11.614 3.65 2991   3.183  0.0940
##  TCS13 Abarco - TCS19 Terminalia       18.703 3.60 2991   5.197  <.0001
##  TCS19 Abarco - CCN51 Roble           -32.400 3.59 2991  -9.020  <.0001
##  TCS19 Abarco - TCS01 Roble           -18.337 3.56 2991  -5.145  <.0001
##  TCS19 Abarco - TCS06 Roble           -25.286 3.54 2991  -7.149  <.0001
##  TCS19 Abarco - TCS13 Roble           -30.956 3.65 2991  -8.493  <.0001
##  TCS19 Abarco - TCS19 Roble            -8.878 3.75 2991  -2.366  0.5408
##  TCS19 Abarco - CCN51 Terminalia      -34.357 3.54 2991  -9.719  <.0001
##  TCS19 Abarco - TCS01 Terminalia      -36.623 3.49 2991 -10.501  <.0001
##  TCS19 Abarco - TCS06 Terminalia      -21.048 3.56 2991  -5.910  <.0001
##  TCS19 Abarco - TCS13 Terminalia      -12.426 3.71 2991  -3.354  0.0567
##  TCS19 Abarco - TCS19 Terminalia       -5.338 3.65 2991  -1.461  0.9814
##  CCN51 Roble - TCS01 Roble             14.063 3.44 2991   4.086  0.0041
##  CCN51 Roble - TCS06 Roble              7.114 3.41 2991   2.084  0.7461
##  CCN51 Roble - TCS13 Roble              1.444 3.53 2991   0.409  1.0000
##  CCN51 Roble - TCS19 Roble             23.522 3.64 2991   6.466  <.0001
##  CCN51 Roble - CCN51 Terminalia        -1.957 3.41 2991  -0.573  1.0000
##  CCN51 Roble - TCS01 Terminalia        -4.223 3.36 2991  -1.256  0.9957
##  CCN51 Roble - TCS06 Terminalia        11.352 3.44 2991   3.300  0.0668
##  CCN51 Roble - TCS13 Terminalia        19.974 3.59 2991   5.564  <.0001
##  CCN51 Roble - TCS19 Terminalia        27.062 3.54 2991   7.652  <.0001
##  TCS01 Roble - TCS06 Roble             -6.949 3.38 2991  -2.057  0.7634
##  TCS01 Roble - TCS13 Roble            -12.619 3.50 2991  -3.608  0.0247
##  TCS01 Roble - TCS19 Roble              9.459 3.61 2991   2.620  0.3568
##  TCS01 Roble - CCN51 Terminalia       -16.019 3.38 2991  -4.746  0.0002
##  TCS01 Roble - TCS01 Terminalia       -18.286 3.32 2991  -5.500  <.0001
##  TCS01 Roble - TCS06 Terminalia        -2.710 3.41 2991  -0.796  1.0000
##  TCS01 Roble - TCS13 Terminalia         5.911 3.56 2991   1.660  0.9446
##  TCS01 Roble - TCS19 Terminalia        13.000 3.51 2991   3.707  0.0174
##  TCS06 Roble - TCS13 Roble             -5.670 3.47 2991  -1.634  0.9513
##  TCS06 Roble - TCS19 Roble             16.408 3.58 2991   4.578  0.0005
##  TCS06 Roble - CCN51 Terminalia        -9.070 3.35 2991  -2.710  0.2990
##  TCS06 Roble - TCS01 Terminalia       -11.337 3.30 2991  -3.439  0.0433
##  TCS06 Roble - TCS06 Terminalia         4.239 3.38 2991   1.255  0.9957
##  TCS06 Roble - TCS13 Terminalia        12.860 3.53 2991   3.641  0.0220
##  TCS06 Roble - TCS19 Terminalia        19.949 3.48 2991   5.735  <.0001
##  TCS13 Roble - TCS19 Roble             22.078 3.69 2991   5.985  <.0001
##  TCS13 Roble - CCN51 Terminalia        -3.400 3.47 2991  -0.980  0.9997
##  TCS13 Roble - TCS01 Terminalia        -5.667 3.42 2991  -1.656  0.9457
##  TCS13 Roble - TCS06 Terminalia         9.909 3.50 2991   2.834  0.2291
##  TCS13 Roble - TCS13 Terminalia        18.530 3.64 2991   5.085  <.0001
##  TCS13 Roble - TCS19 Terminalia        25.619 3.59 2991   7.134  <.0001
##  TCS19 Roble - CCN51 Terminalia       -25.478 3.58 2991  -7.111  <.0001
##  TCS19 Roble - TCS01 Terminalia       -27.745 3.54 2991  -7.845  <.0001
##  TCS19 Roble - TCS06 Terminalia       -12.170 3.61 2991  -3.372  0.0535
##  TCS19 Roble - TCS13 Terminalia        -3.548 3.75 2991  -0.946  0.9998
##  TCS19 Roble - TCS19 Terminalia         3.540 3.70 2991   0.957  0.9998
##  CCN51 Terminalia - TCS01 Terminalia   -2.266 3.29 2991  -0.688  1.0000
##  CCN51 Terminalia - TCS06 Terminalia   13.309 3.38 2991   3.943  0.0072
##  CCN51 Terminalia - TCS13 Terminalia   21.930 3.53 2991   6.216  <.0001
##  CCN51 Terminalia - TCS19 Terminalia   29.019 3.48 2991   8.350  <.0001
##  TCS01 Terminalia - TCS06 Terminalia   15.575 3.33 2991   4.684  0.0003
##  TCS01 Terminalia - TCS13 Terminalia   24.197 3.48 2991   6.950  <.0001
##  TCS01 Terminalia - TCS19 Terminalia   31.285 3.43 2991   9.128  <.0001
##  TCS06 Terminalia - TCS13 Terminalia    8.622 3.56 2991   2.424  0.4968
##  TCS06 Terminalia - TCS19 Terminalia   15.710 3.50 2991   4.484  0.0007
##  TCS13 Terminalia - TCS19 Terminalia    7.088 3.65 2991   1.943  0.8312
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 15 estimates
cld_forestal_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal_gen
##  gen   forestal   emmean   SE   df lower.CL upper.CL .group   
##  TCS01 Abarco        149 2.40 2991      144      154  A       
##  TCS01 Terminalia    145 2.29 2991      140      149  A       
##  CCN51 Terminalia    143 2.36 2991      138      147  AB      
##  CCN51 Roble         141 2.46 2991      136      145  ABC     
##  TCS13 Roble         139 2.54 2991      134      144  ABC     
##  TCS06 Abarco        139 2.33 2991      134      143  ABC     
##  TCS06 Roble         133 2.37 2991      129      138   BCD    
##  TCS13 Abarco        132 2.55 2991      127      137   BCDE   
##  TCS06 Terminalia    129 2.41 2991      125      134    CDEF  
##  TCS01 Roble         127 2.41 2991      122      131     DEF  
##  CCN51 Abarco        126 2.62 2991      121      131     DEFG 
##  TCS13 Terminalia    121 2.62 2991      115      126      EFGH
##  TCS19 Roble         117 2.69 2991      112      122       FGH
##  TCS19 Terminalia    114 2.55 2991      109      119        GH
##  TCS19 Abarco        108 2.63 2991      103      113         H
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 15 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
detach(datos4)