setwd("/Volumes/GoogleDrive/Mi unidad/Agrosavia/Colaboraciones/Laura/BD Estadística SGR Santander/data")
datos4<-read.table("libano.csv", header=T, sep=',')
datos4$gen<-as.factor(datos4$gen)
datos4$forestal<-as.factor(datos4$forestal)
datos4$bloque<-as.factor(datos4$bloque)
attach(datos4)
library(ggplot2)
library(emmeans)
#Gráfica diámetro
ggplot(datos4, aes(semana, diam, group = gen, colour = gen)) +
  facet_grid(~forestal) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Diámetro") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  ) 
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 196 rows containing non-finite values (stat_smooth).

# Gráfica altura
ggplot(datos4, aes(semana, alt, group = gen, colour = gen)) +
  facet_grid(~forestal) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Altura") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  )  
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 196 rows containing non-finite values (stat_smooth).

# Anova general
aov.diam<-aov(diam~semana+forestal+gen+bloque+forestal*gen, na.action=na.exclude)
aov.alt<-aov(alt~semana+forestal+gen+bloque+forestal*gen, na.action=na.exclude)
#Análisis para diámetro
library(nlme)
fit.compsym.diam <- gls(diam ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.diam <- gls(diam ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.diam <- gls(diam ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.diam, fit.ar1.diam, fit.ar1het.diam) #compares the models
##                  Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.diam     1 20 8265.595 8385.895 -4112.797                        
## fit.ar1.diam         2 20 8104.670 8224.970 -4032.335                        
## fit.ar1het.diam      3 31 7013.025 7199.490 -3475.513 2 vs 3 1113.645  <.0001
anova(fit.ar1.diam)
## Denom. DF: 3026 
##              numDF   F-value p-value
## (Intercept)      1 20502.442  <.0001
## semana           1  3456.396  <.0001
## forestal         2     0.049  0.9523
## gen              4     0.829  0.5068
## bloque           2    54.821  <.0001
## forestal:gen     8     5.678  <.0001
anova(fit.ar1het.diam)
## Denom. DF: 3026 
##              numDF   F-value p-value
## (Intercept)      1 25856.498  <.0001
## semana           1  4824.702  <.0001
## forestal         2     1.272  0.2804
## gen              4     2.688  0.0297
## bloque           2    66.890  <.0001
## forestal:gen     8     5.331  <.0001
# Análisis para altura
fit.compsym.alt <- gls(alt ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.alt <- gls(alt ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.alt <- gls(alt ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.alt, fit.ar1.alt, fit.ar1het.alt) #compares the models
##                 Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.alt     1 20 30203.20 30323.50 -15081.60                        
## fit.ar1.alt         2 20 30094.19 30214.49 -15027.10                        
## fit.ar1het.alt      3 31 29262.16 29448.62 -14600.08 2 vs 3 854.0366  <.0001
anova(fit.ar1.alt)
## Denom. DF: 3026 
##              numDF   F-value p-value
## (Intercept)      1 26144.186  <.0001
## semana           1  3218.840  <.0001
## forestal         2     1.769  0.1707
## gen              4     5.751  0.0001
## bloque           2    62.379  <.0001
## forestal:gen     8     6.328  <.0001
anova(fit.ar1het.alt)
## Denom. DF: 3026 
##              numDF  F-value p-value
## (Intercept)      1 31708.88  <.0001
## semana           1  3719.82  <.0001
## forestal         2     3.62  0.0269
## gen              4     5.05  0.0005
## bloque           2    49.27  <.0001
## forestal:gen     8     5.25  <.0001
#Tukey diámetro
library(multcompView)
interac.tuk.diam<-TukeyHSD(aov.diam, "forestal:gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
fores.tuk.diam<-TukeyHSD(aov.diam, "forestal", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
gen.tuk.diam<-TukeyHSD(aov.diam, "gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
#Tukey altura
interac.tuk.alt<-TukeyHSD(aov.alt, "forestal:gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
fores.tuk.alt<-TukeyHSD(aov.alt, "forestal", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
gen.tuk.alt<-TukeyHSD(aov.alt, "gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
#Etiquetas Tukey diámetro
#Genotipos
generate_label_df_gen_diam <- function(gen.tuk.diam, variable){
  Tukey.levels <- gen.tuk.diam[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.diam <- generate_label_df_gen_diam(gen.tuk.diam, "gen")
labels.gen.diam
##       Letters treatment
## CCN51       a     CCN51
## TCS01       a     TCS01
## TCS06       a     TCS06
## TCS13       a     TCS13
## TCS19       a     TCS19
# Forestal
generate_label_df_forestal_diam <- function(fores.tuk.diam, variable){
  Tukey.levels <- fores.tuk.diam[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.forestal.diam <- generate_label_df_forestal_diam(fores.tuk.diam, "forestal")
labels.forestal.diam
##            Letters  treatment
## Abarco           c     Abarco
## Roble            b      Roble
## Terminalia       a Terminalia
# Interacción Forestal:Genotipo
generate_label_df_interac_diam <- function(interac.tuk.diam, variable){
  Tukey.levels <- interac.tuk.diam[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.diam <- generate_label_df_interac_diam(interac.tuk.diam, "forestal:gen")
labels.interac.diam
##                  Letters        treatment
## Abarco:CCN51        abcd     Abarco:CCN51
## Abarco:TCS01        abcd     Abarco:TCS01
## Abarco:TCS06           d     Abarco:TCS06
## Abarco:TCS13           b     Abarco:TCS13
## Abarco:TCS19        abcd     Abarco:TCS19
## Roble:CCN51          acd      Roble:CCN51
## Roble:TCS01           ab      Roble:TCS01
## Roble:TCS06         abcd      Roble:TCS06
## Roble:TCS13         abcd      Roble:TCS13
## Roble:TCS19           cd      Roble:TCS19
## Terminalia:CCN51     abc Terminalia:CCN51
## Terminalia:TCS01     acd Terminalia:TCS01
## Terminalia:TCS06      ab Terminalia:TCS06
## Terminalia:TCS13      cd Terminalia:TCS13
## Terminalia:TCS19     acd Terminalia:TCS19
#Etiquetas Tukey altura
#Genotipos
generate_label_df_gen_alt <- function(gen.tuk.alt, variable){
  Tukey.levels <- gen.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.alt <- generate_label_df_gen_alt(gen.tuk.alt, "gen")
labels.gen.alt
##       Letters treatment
## CCN51       c     CCN51
## TCS01       b     TCS01
## TCS06      ac     TCS06
## TCS13      ac     TCS13
## TCS19      ab     TCS19
# Forestal
generate_label_df_forestal_alt <- function(fores.tuk.alt, variable){
  Tukey.levels <- fores.tuk.alt[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.forestal.alt <- generate_label_df_forestal_alt(fores.tuk.alt, "forestal")
labels.forestal.alt
##            Letters  treatment
## Abarco           a     Abarco
## Roble            b      Roble
## Terminalia       c Terminalia
# Interacción Forestal:Genotipo
generate_label_df_interac_alt <- function(interac.tuk.alt, variable){
  Tukey.levels <- interac.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.alt <- generate_label_df_interac_alt(interac.tuk.alt, "forestal:gen")
labels.interac.alt
##                  Letters        treatment
## Abarco:CCN51       abcde     Abarco:CCN51
## Abarco:TCS01         abc     Abarco:TCS01
## Abarco:TCS06          de     Abarco:TCS06
## Abarco:TCS13         abc     Abarco:TCS13
## Abarco:TCS19          ab     Abarco:TCS19
## Roble:CCN51            e      Roble:CCN51
## Roble:TCS01            b      Roble:TCS01
## Roble:TCS06        abcde      Roble:TCS06
## Roble:TCS13         acde      Roble:TCS13
## Roble:TCS19          cde      Roble:TCS19
## Terminalia:CCN51    abcd Terminalia:CCN51
## Terminalia:TCS01     abc Terminalia:TCS01
## Terminalia:TCS06     abc Terminalia:TCS06
## Terminalia:TCS13      de Terminalia:TCS13
## Terminalia:TCS19     abc Terminalia:TCS19
## Gráficas contrastes de medias diametro
#Gen
contrast <- emmeans(aov.diam, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.gen <- emmeans(aov.diam, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean     SE   df lower.CL upper.CL
##  CCN51   3.04 0.0372 3026     2.97     3.12
##  TCS01   3.02 0.0386 3026     2.94     3.10
##  TCS06   3.04 0.0369 3026     2.97     3.12
##  TCS13   2.99 0.0382 3026     2.92     3.07
##  TCS19   3.11 0.0370 3026     3.04     3.18
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast       estimate     SE   df t.ratio p.value
##  CCN51 - TCS01  0.024023 0.0536 3026   0.448  0.9917
##  CCN51 - TCS06  0.000902 0.0524 3026   0.017  1.0000
##  CCN51 - TCS13  0.050348 0.0533 3026   0.945  0.8792
##  CCN51 - TCS19 -0.066752 0.0524 3026  -1.273  0.7077
##  TCS01 - TCS06 -0.023121 0.0534 3026  -0.433  0.9927
##  TCS01 - TCS13  0.026324 0.0543 3026   0.485  0.9888
##  TCS01 - TCS19 -0.090775 0.0535 3026  -1.698  0.4352
##  TCS06 - TCS13  0.049445 0.0531 3026   0.932  0.8846
##  TCS06 - TCS19 -0.067654 0.0522 3026  -1.295  0.6942
##  TCS13 - TCS19 -0.117099 0.0531 3026  -2.204  0.1783
## 
## Results are averaged over the levels of: forestal, bloque 
## P value adjustment: tukey method for comparing a family of 5 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean     SE   df lower.CL upper.CL .group
##  TCS19   3.11 0.0370 3026     3.04     3.18  A    
##  CCN51   3.04 0.0372 3026     2.97     3.12  A    
##  TCS06   3.04 0.0369 3026     2.97     3.12  A    
##  TCS01   3.02 0.0386 3026     2.94     3.10  A    
##  TCS13   2.99 0.0382 3026     2.92     3.07  A    
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 5 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal
contrast <- emmeans(aov.diam, ~forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.forestal <- emmeans(aov.diam, pairwise ~ forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal
## $emmeans
##  forestal   emmean     SE   df lower.CL upper.CL
##  Abarco       3.01 0.0290 3026     2.96     3.07
##  Roble        3.05 0.0288 3026     3.00     3.11
##  Terminalia   3.06 0.0295 3026     3.00     3.12
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast            estimate     SE   df t.ratio p.value
##  Abarco - Roble      -0.04084 0.0409 3026  -0.999  0.5774
##  Abarco - Terminalia -0.04827 0.0414 3026  -1.166  0.4734
##  Roble - Terminalia  -0.00742 0.0412 3026  -0.180  0.9822
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_forestal <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal
##  forestal   emmean     SE   df lower.CL upper.CL .group
##  Terminalia   3.06 0.0295 3026     3.00     3.12  A    
##  Roble        3.05 0.0288 3026     3.00     3.11  A    
##  Abarco       3.01 0.0290 3026     2.96     3.07  A    
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal*Gen
contrast <- emmeans(aov.diam, ~gen*forestal)
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.forestal.gen <- emmeans(aov.diam, pairwise ~ gen*forestal)
medias.forestal.gen
## $emmeans
##  gen   forestal   emmean     SE   df lower.CL upper.CL
##  CCN51 Abarco       3.05 0.0650 3026     2.92     3.18
##  TCS01 Abarco       3.05 0.0651 3026     2.92     3.18
##  TCS06 Abarco       3.25 0.0634 3026     3.12     3.37
##  TCS13 Abarco       2.76 0.0666 3026     2.63     2.89
##  TCS19 Abarco       2.95 0.0646 3026     2.82     3.08
##  CCN51 Roble        3.14 0.0642 3026     3.02     3.27
##  TCS01 Roble        2.87 0.0645 3026     2.75     3.00
##  TCS06 Roble        3.01 0.0640 3026     2.89     3.14
##  TCS13 Roble        3.00 0.0658 3026     2.87     3.13
##  TCS19 Roble        3.24 0.0631 3026     3.11     3.36
##  CCN51 Terminalia   2.94 0.0640 3026     2.81     3.06
##  TCS01 Terminalia   3.13 0.0709 3026     3.00     3.27
##  TCS06 Terminalia   2.87 0.0643 3026     2.74     2.99
##  TCS13 Terminalia   3.22 0.0658 3026     3.09     3.35
##  TCS19 Terminalia   3.15 0.0643 3026     3.02     3.27
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                             estimate     SE   df t.ratio p.value
##  CCN51 Abarco - TCS01 Abarco         -0.000158 0.0920 3026  -0.002  1.0000
##  CCN51 Abarco - TCS06 Abarco         -0.196836 0.0908 3026  -2.168  0.6877
##  CCN51 Abarco - TCS13 Abarco          0.290262 0.0931 3026   3.119  0.1125
##  CCN51 Abarco - TCS19 Abarco          0.100799 0.0916 3026   1.100  0.9989
##  CCN51 Abarco - CCN51 Roble          -0.090287 0.0913 3026  -0.989  0.9997
##  CCN51 Abarco - TCS01 Roble           0.177225 0.0915 3026   1.937  0.8346
##  CCN51 Abarco - TCS06 Roble           0.038397 0.0912 3026   0.421  1.0000
##  CCN51 Abarco - TCS13 Roble           0.049007 0.0925 3026   0.530  1.0000
##  CCN51 Abarco - TCS19 Roble          -0.184496 0.0906 3026  -2.037  0.7760
##  CCN51 Abarco - CCN51 Terminalia      0.112500 0.0912 3026   1.234  0.9964
##  CCN51 Abarco - TCS01 Terminalia     -0.082783 0.0962 3026  -0.861  0.9999
##  CCN51 Abarco - TCS06 Terminalia      0.183360 0.0914 3026   2.006  0.7953
##  CCN51 Abarco - TCS13 Terminalia     -0.166012 0.0924 3026  -1.796  0.9001
##  CCN51 Abarco - TCS19 Terminalia     -0.094344 0.0914 3026  -1.032  0.9995
##  TCS01 Abarco - TCS06 Abarco         -0.196678 0.0909 3026  -2.164  0.6908
##  TCS01 Abarco - TCS13 Abarco          0.290420 0.0932 3026   3.117  0.1129
##  TCS01 Abarco - TCS19 Abarco          0.100957 0.0918 3026   1.100  0.9989
##  TCS01 Abarco - CCN51 Roble          -0.090129 0.0914 3026  -0.986  0.9997
##  TCS01 Abarco - TCS01 Roble           0.177383 0.0916 3026   1.936  0.8349
##  TCS01 Abarco - TCS06 Roble           0.038555 0.0913 3026   0.422  1.0000
##  TCS01 Abarco - TCS13 Roble           0.049165 0.0926 3026   0.531  1.0000
##  TCS01 Abarco - TCS19 Roble          -0.184338 0.0907 3026  -2.033  0.7787
##  TCS01 Abarco - CCN51 Terminalia      0.112659 0.0913 3026   1.234  0.9964
##  TCS01 Abarco - TCS01 Terminalia     -0.082625 0.0963 3026  -0.858  0.9999
##  TCS01 Abarco - TCS06 Terminalia      0.183518 0.0915 3026   2.005  0.7956
##  TCS01 Abarco - TCS13 Terminalia     -0.165853 0.0925 3026  -1.792  0.9016
##  TCS01 Abarco - TCS19 Terminalia     -0.094186 0.0915 3026  -1.029  0.9995
##  TCS06 Abarco - TCS13 Abarco          0.487098 0.0920 3026   5.296  <.0001
##  TCS06 Abarco - TCS19 Abarco          0.297635 0.0905 3026   3.287  0.0695
##  TCS06 Abarco - CCN51 Roble           0.106549 0.0902 3026   1.181  0.9977
##  TCS06 Abarco - TCS01 Roble           0.374061 0.0904 3026   4.136  0.0033
##  TCS06 Abarco - TCS06 Roble           0.235233 0.0901 3026   2.611  0.3628
##  TCS06 Abarco - TCS13 Roble           0.245843 0.0914 3026   2.691  0.3110
##  TCS06 Abarco - TCS19 Roble           0.012340 0.0895 3026   0.138  1.0000
##  TCS06 Abarco - CCN51 Terminalia      0.309337 0.0901 3026   3.433  0.0441
##  TCS06 Abarco - TCS01 Terminalia      0.114053 0.0951 3026   1.199  0.9973
##  TCS06 Abarco - TCS06 Terminalia      0.380196 0.0903 3026   4.209  0.0024
##  TCS06 Abarco - TCS13 Terminalia      0.030825 0.0914 3026   0.337  1.0000
##  TCS06 Abarco - TCS19 Terminalia      0.102492 0.0903 3026   1.135  0.9985
##  TCS13 Abarco - TCS19 Abarco         -0.189463 0.0928 3026  -2.041  0.7738
##  TCS13 Abarco - CCN51 Roble          -0.380549 0.0925 3026  -4.113  0.0036
##  TCS13 Abarco - TCS01 Roble          -0.113037 0.0927 3026  -1.219  0.9968
##  TCS13 Abarco - TCS06 Roble          -0.251865 0.0924 3026  -2.726  0.2892
##  TCS13 Abarco - TCS13 Roble          -0.241255 0.0936 3026  -2.577  0.3855
##  TCS13 Abarco - TCS19 Roble          -0.474758 0.0918 3026  -5.173  <.0001
##  TCS13 Abarco - CCN51 Terminalia     -0.177761 0.0924 3026  -1.924  0.8411
##  TCS13 Abarco - TCS01 Terminalia     -0.373045 0.0973 3026  -3.832  0.0110
##  TCS13 Abarco - TCS06 Terminalia     -0.106902 0.0926 3026  -1.154  0.9982
##  TCS13 Abarco - TCS13 Terminalia     -0.456273 0.0936 3026  -4.874  0.0001
##  TCS13 Abarco - TCS19 Terminalia     -0.384606 0.0926 3026  -4.153  0.0031
##  TCS19 Abarco - CCN51 Roble          -0.191086 0.0911 3026  -2.098  0.7363
##  TCS19 Abarco - TCS01 Roble           0.076426 0.0913 3026   0.837  1.0000
##  TCS19 Abarco - TCS06 Roble          -0.062402 0.0910 3026  -0.686  1.0000
##  TCS19 Abarco - TCS13 Roble          -0.051792 0.0922 3026  -0.561  1.0000
##  TCS19 Abarco - TCS19 Roble          -0.285295 0.0903 3026  -3.158  0.1009
##  TCS19 Abarco - CCN51 Terminalia      0.011702 0.0910 3026   0.129  1.0000
##  TCS19 Abarco - TCS01 Terminalia     -0.183582 0.0959 3026  -1.915  0.8461
##  TCS19 Abarco - TCS06 Terminalia      0.082561 0.0912 3026   0.905  0.9999
##  TCS19 Abarco - TCS13 Terminalia     -0.266810 0.0922 3026  -2.893  0.1998
##  TCS19 Abarco - TCS19 Terminalia     -0.195143 0.0912 3026  -2.140  0.7080
##  CCN51 Roble - TCS01 Roble            0.267512 0.0910 3026   2.941  0.1784
##  CCN51 Roble - TCS06 Roble            0.128684 0.0906 3026   1.420  0.9857
##  CCN51 Roble - TCS13 Roble            0.139294 0.0919 3026   1.515  0.9742
##  CCN51 Roble - TCS19 Roble           -0.094209 0.0900 3026  -1.047  0.9994
##  CCN51 Roble - CCN51 Terminalia       0.202787 0.0906 3026   2.237  0.6376
##  CCN51 Roble - TCS01 Terminalia       0.007504 0.0956 3026   0.079  1.0000
##  CCN51 Roble - TCS06 Terminalia       0.273647 0.0909 3026   3.012  0.1493
##  CCN51 Roble - TCS13 Terminalia      -0.075725 0.0919 3026  -0.824  1.0000
##  CCN51 Roble - TCS19 Terminalia      -0.004057 0.0909 3026  -0.045  1.0000
##  TCS01 Roble - TCS06 Roble           -0.138828 0.0909 3026  -1.528  0.9722
##  TCS01 Roble - TCS13 Roble           -0.128218 0.0921 3026  -1.392  0.9881
##  TCS01 Roble - TCS19 Roble           -0.361721 0.0902 3026  -4.009  0.0055
##  TCS01 Roble - CCN51 Terminalia      -0.064724 0.0909 3026  -0.712  1.0000
##  TCS01 Roble - TCS01 Terminalia      -0.260008 0.0958 3026  -2.713  0.2971
##  TCS01 Roble - TCS06 Terminalia       0.006136 0.0911 3026   0.067  1.0000
##  TCS01 Roble - TCS13 Terminalia      -0.343236 0.0921 3026  -3.727  0.0162
##  TCS01 Roble - TCS19 Terminalia      -0.271569 0.0911 3026  -2.981  0.1612
##  TCS06 Roble - TCS13 Roble            0.010610 0.0918 3026   0.116  1.0000
##  TCS06 Roble - TCS19 Roble           -0.222893 0.0899 3026  -2.480  0.4555
##  TCS06 Roble - CCN51 Terminalia       0.074104 0.0905 3026   0.819  1.0000
##  TCS06 Roble - TCS01 Terminalia      -0.121180 0.0955 3026  -1.269  0.9952
##  TCS06 Roble - TCS06 Terminalia       0.144963 0.0907 3026   1.598  0.9595
##  TCS06 Roble - TCS13 Terminalia      -0.204408 0.0918 3026  -2.227  0.6449
##  TCS06 Roble - TCS19 Terminalia      -0.132741 0.0907 3026  -1.463  0.9812
##  TCS13 Roble - TCS19 Roble           -0.233503 0.0912 3026  -2.561  0.3967
##  TCS13 Roble - CCN51 Terminalia       0.063494 0.0918 3026   0.692  1.0000
##  TCS13 Roble - TCS01 Terminalia      -0.131790 0.0968 3026  -1.362  0.9903
##  TCS13 Roble - TCS06 Terminalia       0.134353 0.0920 3026   1.460  0.9814
##  TCS13 Roble - TCS13 Terminalia      -0.215018 0.0930 3026  -2.312  0.5818
##  TCS13 Roble - TCS19 Terminalia      -0.143351 0.0920 3026  -1.558  0.9671
##  TCS19 Roble - CCN51 Terminalia       0.296996 0.0899 3026   3.304  0.0660
##  TCS19 Roble - TCS01 Terminalia       0.101713 0.0949 3026   1.072  0.9992
##  TCS19 Roble - TCS06 Terminalia       0.367856 0.0901 3026   4.082  0.0041
##  TCS19 Roble - TCS13 Terminalia       0.018484 0.0911 3026   0.203  1.0000
##  TCS19 Roble - TCS19 Terminalia       0.090152 0.0901 3026   1.000  0.9996
##  CCN51 Terminalia - TCS01 Terminalia -0.195283 0.0955 3026  -2.044  0.7715
##  CCN51 Terminalia - TCS06 Terminalia  0.070860 0.0907 3026   0.781  1.0000
##  CCN51 Terminalia - TCS13 Terminalia -0.278512 0.0918 3026  -3.035  0.1407
##  CCN51 Terminalia - TCS19 Terminalia -0.206844 0.0907 3026  -2.279  0.6061
##  TCS01 Terminalia - TCS06 Terminalia  0.266143 0.0957 3026   2.780  0.2579
##  TCS01 Terminalia - TCS13 Terminalia -0.083229 0.0967 3026  -0.861  0.9999
##  TCS01 Terminalia - TCS19 Terminalia -0.011561 0.0958 3026  -0.121  1.0000
##  TCS06 Terminalia - TCS13 Terminalia -0.349372 0.0920 3026  -3.798  0.0125
##  TCS06 Terminalia - TCS19 Terminalia -0.277704 0.0910 3026  -3.053  0.1343
##  TCS13 Terminalia - TCS19 Terminalia  0.071667 0.0920 3026   0.779  1.0000
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 15 estimates
cld_forestal_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal_gen
##  gen   forestal   emmean     SE   df lower.CL upper.CL .group
##  TCS06 Abarco       3.25 0.0634 3026     3.12     3.37  A    
##  TCS19 Roble        3.24 0.0631 3026     3.11     3.36  AB   
##  TCS13 Terminalia   3.22 0.0658 3026     3.09     3.35  AB   
##  TCS19 Terminalia   3.15 0.0643 3026     3.02     3.27  ABC  
##  CCN51 Roble        3.14 0.0642 3026     3.02     3.27  ABC  
##  TCS01 Terminalia   3.13 0.0709 3026     3.00     3.27  ABC  
##  TCS01 Abarco       3.05 0.0651 3026     2.92     3.18  ABCD 
##  CCN51 Abarco       3.05 0.0650 3026     2.92     3.18  ABCD 
##  TCS06 Roble        3.01 0.0640 3026     2.89     3.14  ABCD 
##  TCS13 Roble        3.00 0.0658 3026     2.87     3.13  ABCD 
##  TCS19 Abarco       2.95 0.0646 3026     2.82     3.08  ABCD 
##  CCN51 Terminalia   2.94 0.0640 3026     2.81     3.06   BCD 
##  TCS01 Roble        2.87 0.0645 3026     2.75     3.00    CD 
##  TCS06 Terminalia   2.87 0.0643 3026     2.74     2.99    CD 
##  TCS13 Abarco       2.76 0.0666 3026     2.63     2.89     D 
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 15 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
## Gráficas contrastes de medias altura
#Gen
#Gen
contrast <- emmeans(aov.alt, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.gen <- emmeans(aov.alt, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean   SE   df lower.CL upper.CL
##  CCN51    127 1.39 3026      125      130
##  TCS01    118 1.45 3026      115      121
##  TCS06    126 1.38 3026      123      128
##  TCS13    125 1.43 3026      123      128
##  TCS19    121 1.39 3026      118      123
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE   df t.ratio p.value
##  CCN51 - TCS01   9.5496 2.01 3026   4.750  <.0001
##  CCN51 - TCS06   1.9186 1.97 3026   0.976  0.8660
##  CCN51 - TCS13   1.9910 2.00 3026   0.996  0.8572
##  CCN51 - TCS19   6.9702 1.97 3026   3.544  0.0037
##  TCS01 - TCS06  -7.6309 2.00 3026  -3.808  0.0013
##  TCS01 - TCS13  -7.5586 2.04 3026  -3.709  0.0020
##  TCS01 - TCS19  -2.5793 2.01 3026  -1.286  0.6999
##  TCS06 - TCS13   0.0723 1.99 3026   0.036  1.0000
##  TCS06 - TCS19   5.0516 1.96 3026   2.578  0.0747
##  TCS13 - TCS19   4.9793 1.99 3026   2.498  0.0913
## 
## Results are averaged over the levels of: forestal, bloque 
## P value adjustment: tukey method for comparing a family of 5 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean   SE   df lower.CL upper.CL .group
##  CCN51    127 1.39 3026      125      130  A    
##  TCS06    126 1.38 3026      123      128  AB   
##  TCS13    125 1.43 3026      123      128  AB   
##  TCS19    121 1.39 3026      118      123   BC  
##  TCS01    118 1.45 3026      115      121    C  
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 5 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal
contrast <- emmeans(aov.alt, ~forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.forestal <- emmeans(aov.alt, pairwise ~ forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal
## $emmeans
##  forestal   emmean   SE   df lower.CL upper.CL
##  Abarco        122 1.09 3026      120      124
##  Roble         126 1.08 3026      123      128
##  Terminalia    122 1.11 3026      120      125
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast            estimate   SE   df t.ratio p.value
##  Abarco - Roble        -3.437 1.53 3026  -2.241  0.0646
##  Abarco - Terminalia   -0.345 1.55 3026  -0.223  0.9731
##  Roble - Terminalia     3.092 1.54 3026   2.001  0.1121
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_forestal <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal
##  forestal   emmean   SE   df lower.CL upper.CL .group
##  Roble         126 1.08 3026      123      128  A    
##  Terminalia    122 1.11 3026      120      125  A    
##  Abarco        122 1.09 3026      120      124  A    
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal*Gen
contrast <- emmeans(aov.alt, ~gen*forestal)
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.forestal.gen <- emmeans(aov.alt, pairwise ~ gen*forestal)
medias.forestal.gen
## $emmeans
##  gen   forestal   emmean   SE   df lower.CL upper.CL
##  CCN51 Abarco        125 2.44 3026      120      129
##  TCS01 Abarco        120 2.44 3026      115      124
##  TCS06 Abarco        134 2.38 3026      129      138
##  TCS13 Abarco        117 2.50 3026      112      122
##  TCS19 Abarco        116 2.43 3026      111      120
##  CCN51 Roble         135 2.41 3026      130      139
##  TCS01 Roble         114 2.42 3026      109      119
##  TCS06 Roble         125 2.40 3026      121      130
##  TCS13 Roble         126 2.47 3026      122      131
##  TCS19 Roble         127 2.37 3026      123      132
##  CCN51 Terminalia    123 2.40 3026      118      128
##  TCS01 Terminalia    120 2.66 3026      115      125
##  TCS06 Terminalia    118 2.41 3026      113      122
##  TCS13 Terminalia    133 2.47 3026      128      138
##  TCS19 Terminalia    119 2.41 3026      114      123
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                            estimate   SE   df t.ratio p.value
##  CCN51 Abarco - TCS01 Abarco            5.102 3.45 3026   1.479  0.9792
##  CCN51 Abarco - TCS06 Abarco           -9.025 3.41 3026  -2.650  0.3368
##  CCN51 Abarco - TCS13 Abarco            7.562 3.49 3026   2.166  0.6897
##  CCN51 Abarco - TCS19 Abarco            9.192 3.44 3026   2.673  0.3219
##  CCN51 Abarco - CCN51 Roble            -9.939 3.43 3026  -2.901  0.1962
##  CCN51 Abarco - TCS01 Roble            10.470 3.43 3026   3.049  0.1355
##  CCN51 Abarco - TCS06 Roble            -0.520 3.42 3026  -0.152  1.0000
##  CCN51 Abarco - TCS13 Roble            -1.647 3.47 3026  -0.475  1.0000
##  CCN51 Abarco - TCS19 Roble            -2.720 3.40 3026  -0.800  1.0000
##  CCN51 Abarco - CCN51 Terminalia        1.597 3.42 3026   0.467  1.0000
##  CCN51 Abarco - TCS01 Terminalia        4.734 3.61 3026   1.312  0.9933
##  CCN51 Abarco - TCS06 Terminalia        6.959 3.43 3026   2.029  0.7811
##  CCN51 Abarco - TCS13 Terminalia       -8.284 3.47 3026  -2.389  0.5235
##  CCN51 Abarco - TCS19 Terminalia        6.097 3.43 3026   1.777  0.9074
##  TCS01 Abarco - TCS06 Abarco          -14.128 3.41 3026  -4.143  0.0032
##  TCS01 Abarco - TCS13 Abarco            2.459 3.50 3026   0.704  1.0000
##  TCS01 Abarco - TCS19 Abarco            4.089 3.44 3026   1.188  0.9976
##  TCS01 Abarco - CCN51 Roble           -15.041 3.43 3026  -4.385  0.0011
##  TCS01 Abarco - TCS01 Roble             5.368 3.44 3026   1.561  0.9666
##  TCS01 Abarco - TCS06 Roble            -5.623 3.43 3026  -1.641  0.9495
##  TCS01 Abarco - TCS13 Roble            -6.750 3.47 3026  -1.943  0.8308
##  TCS01 Abarco - TCS19 Roble            -7.822 3.40 3026  -2.299  0.5912
##  TCS01 Abarco - CCN51 Terminalia       -3.506 3.43 3026  -1.023  0.9995
##  TCS01 Abarco - TCS01 Terminalia       -0.368 3.61 3026  -0.102  1.0000
##  TCS01 Abarco - TCS06 Terminalia        1.857 3.43 3026   0.541  1.0000
##  TCS01 Abarco - TCS13 Terminalia      -13.386 3.47 3026  -3.855  0.0101
##  TCS01 Abarco - TCS19 Terminalia        0.994 3.43 3026   0.290  1.0000
##  TCS06 Abarco - TCS13 Abarco           16.587 3.45 3026   4.807  0.0002
##  TCS06 Abarco - TCS19 Abarco           18.217 3.40 3026   5.362  <.0001
##  TCS06 Abarco - CCN51 Roble            -0.914 3.38 3026  -0.270  1.0000
##  TCS06 Abarco - TCS01 Roble            19.495 3.39 3026   5.746  <.0001
##  TCS06 Abarco - TCS06 Roble             8.505 3.38 3026   2.516  0.4291
##  TCS06 Abarco - TCS13 Roble             7.378 3.43 3026   2.152  0.6992
##  TCS06 Abarco - TCS19 Roble             6.305 3.36 3026   1.879  0.8640
##  TCS06 Abarco - CCN51 Terminalia       10.622 3.38 3026   3.142  0.1055
##  TCS06 Abarco - TCS01 Terminalia       13.759 3.57 3026   3.856  0.0101
##  TCS06 Abarco - TCS06 Terminalia       15.985 3.39 3026   4.717  0.0002
##  TCS06 Abarco - TCS13 Terminalia        0.741 3.43 3026   0.216  1.0000
##  TCS06 Abarco - TCS19 Terminalia       15.122 3.39 3026   4.462  0.0008
##  TCS13 Abarco - TCS19 Abarco            1.630 3.48 3026   0.468  1.0000
##  TCS13 Abarco - CCN51 Roble           -17.501 3.47 3026  -5.042  <.0001
##  TCS13 Abarco - TCS01 Roble             2.908 3.48 3026   0.836  1.0000
##  TCS13 Abarco - TCS06 Roble            -8.082 3.47 3026  -2.332  0.5666
##  TCS13 Abarco - TCS13 Roble            -9.209 3.51 3026  -2.622  0.3551
##  TCS13 Abarco - TCS19 Roble           -10.282 3.44 3026  -2.986  0.1594
##  TCS13 Abarco - CCN51 Terminalia       -5.965 3.47 3026  -1.721  0.9269
##  TCS13 Abarco - TCS01 Terminalia       -2.828 3.65 3026  -0.774  1.0000
##  TCS13 Abarco - TCS06 Terminalia       -0.603 3.47 3026  -0.173  1.0000
##  TCS13 Abarco - TCS13 Terminalia      -15.846 3.51 3026  -4.512  0.0006
##  TCS13 Abarco - TCS19 Terminalia       -1.465 3.47 3026  -0.422  1.0000
##  TCS19 Abarco - CCN51 Roble           -19.131 3.42 3026  -5.599  <.0001
##  TCS19 Abarco - TCS01 Roble             1.278 3.43 3026   0.373  1.0000
##  TCS19 Abarco - TCS06 Roble            -9.712 3.41 3026  -2.845  0.2233
##  TCS19 Abarco - TCS13 Roble           -10.839 3.46 3026  -3.132  0.1086
##  TCS19 Abarco - TCS19 Roble           -11.911 3.39 3026  -3.514  0.0339
##  TCS19 Abarco - CCN51 Terminalia       -7.595 3.41 3026  -2.225  0.6466
##  TCS19 Abarco - TCS01 Terminalia       -4.457 3.60 3026  -1.239  0.9962
##  TCS19 Abarco - TCS06 Terminalia       -2.232 3.42 3026  -0.652  1.0000
##  TCS19 Abarco - TCS13 Terminalia      -17.476 3.46 3026  -5.051  <.0001
##  TCS19 Abarco - TCS19 Terminalia       -3.095 3.42 3026  -0.904  0.9999
##  CCN51 Roble - TCS01 Roble             20.409 3.41 3026   5.979  <.0001
##  CCN51 Roble - TCS06 Roble              9.419 3.40 3026   2.770  0.2640
##  CCN51 Roble - TCS13 Roble              8.292 3.45 3026   2.404  0.5116
##  CCN51 Roble - TCS19 Roble              7.219 3.38 3026   2.138  0.7092
##  CCN51 Roble - CCN51 Terminalia        11.536 3.40 3026   3.392  0.0503
##  CCN51 Roble - TCS01 Terminalia        14.673 3.59 3026   4.092  0.0040
##  CCN51 Roble - TCS06 Terminalia        16.898 3.41 3026   4.957  0.0001
##  CCN51 Roble - TCS13 Terminalia         1.655 3.45 3026   0.480  1.0000
##  CCN51 Roble - TCS19 Terminalia        16.036 3.41 3026   4.703  0.0003
##  TCS01 Roble - TCS06 Roble            -10.990 3.41 3026  -3.224  0.0837
##  TCS01 Roble - TCS13 Roble            -12.117 3.46 3026  -3.506  0.0349
##  TCS01 Roble - TCS19 Roble            -13.190 3.39 3026  -3.896  0.0086
##  TCS01 Roble - CCN51 Terminalia        -8.873 3.41 3026  -2.603  0.3681
##  TCS01 Roble - TCS01 Terminalia        -5.736 3.60 3026  -1.595  0.9600
##  TCS01 Roble - TCS06 Terminalia        -3.511 3.42 3026  -1.027  0.9995
##  TCS01 Roble - TCS13 Terminalia       -18.754 3.46 3026  -5.427  <.0001
##  TCS01 Roble - TCS19 Terminalia        -4.373 3.42 3026  -1.280  0.9948
##  TCS06 Roble - TCS13 Roble             -1.127 3.44 3026  -0.327  1.0000
##  TCS06 Roble - TCS19 Roble             -2.199 3.37 3026  -0.652  1.0000
##  TCS06 Roble - CCN51 Terminalia         2.117 3.40 3026   0.623  1.0000
##  TCS06 Roble - TCS01 Terminalia         5.254 3.58 3026   1.466  0.9808
##  TCS06 Roble - TCS06 Terminalia         7.480 3.40 3026   2.197  0.6671
##  TCS06 Roble - TCS13 Terminalia        -7.764 3.44 3026  -2.255  0.6246
##  TCS06 Roble - TCS19 Terminalia         6.617 3.40 3026   1.944  0.8308
##  TCS13 Roble - TCS19 Roble             -1.073 3.42 3026  -0.314  1.0000
##  TCS13 Roble - CCN51 Terminalia         3.244 3.44 3026   0.942  0.9998
##  TCS13 Roble - TCS01 Terminalia         6.381 3.63 3026   1.758  0.9145
##  TCS13 Roble - TCS06 Terminalia         8.607 3.45 3026   2.493  0.4454
##  TCS13 Roble - TCS13 Terminalia        -6.637 3.49 3026  -1.902  0.8526
##  TCS13 Roble - TCS19 Terminalia         7.744 3.45 3026   2.244  0.6328
##  TCS19 Roble - CCN51 Terminalia         4.317 3.37 3026   1.280  0.9948
##  TCS19 Roble - TCS01 Terminalia         7.454 3.56 3026   2.093  0.7396
##  TCS19 Roble - TCS06 Terminalia         9.679 3.38 3026   2.863  0.2145
##  TCS19 Roble - TCS13 Terminalia        -5.564 3.42 3026  -1.627  0.9529
##  TCS19 Roble - TCS19 Terminalia         8.817 3.38 3026   2.608  0.3649
##  CCN51 Terminalia - TCS01 Terminalia    3.137 3.58 3026   0.875  0.9999
##  CCN51 Terminalia - TCS06 Terminalia    5.362 3.40 3026   1.575  0.9640
##  CCN51 Terminalia - TCS13 Terminalia   -9.881 3.44 3026  -2.870  0.2111
##  CCN51 Terminalia - TCS19 Terminalia    4.500 3.40 3026   1.322  0.9928
##  TCS01 Terminalia - TCS06 Terminalia    2.225 3.59 3026   0.620  1.0000
##  TCS01 Terminalia - TCS13 Terminalia  -13.018 3.63 3026  -3.588  0.0265
##  TCS01 Terminalia - TCS19 Terminalia    1.363 3.59 3026   0.379  1.0000
##  TCS06 Terminalia - TCS13 Terminalia  -15.243 3.45 3026  -4.417  0.0010
##  TCS06 Terminalia - TCS19 Terminalia   -0.863 3.41 3026  -0.253  1.0000
##  TCS13 Terminalia - TCS19 Terminalia   14.381 3.45 3026   4.166  0.0029
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 15 estimates
cld_forestal_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal_gen
##  gen   forestal   emmean   SE   df lower.CL upper.CL .group
##  CCN51 Roble         135 2.41 3026      130      139  A    
##  TCS06 Abarco        134 2.38 3026      129      138  A    
##  TCS13 Terminalia    133 2.47 3026      128      138  A    
##  TCS19 Roble         127 2.37 3026      123      132  AB   
##  TCS13 Roble         126 2.47 3026      122      131  ABC  
##  TCS06 Roble         125 2.40 3026      121      130  ABCD 
##  CCN51 Abarco        125 2.44 3026      120      129  ABCD 
##  CCN51 Terminalia    123 2.40 3026      118      128  ABCD 
##  TCS01 Terminalia    120 2.66 3026      115      125   BCD 
##  TCS01 Abarco        120 2.44 3026      115      124   BCD 
##  TCS19 Terminalia    119 2.41 3026      114      123   BCD 
##  TCS06 Terminalia    118 2.41 3026      113      122   BCD 
##  TCS13 Abarco        117 2.50 3026      112      122   BCD 
##  TCS19 Abarco        116 2.43 3026      111      120    CD 
##  TCS01 Roble         114 2.42 3026      109      119     D 
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 15 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
detach(datos4)