setwd("/Volumes/GoogleDrive/Mi unidad/Agrosavia/Colaboraciones/Laura/BD Estadística SGR Santander/data")
datos4<-read.table("cabana.csv", header=T, sep=',')
datos4$gen<-as.factor(datos4$gen)
datos4$forestal<-as.factor(datos4$forestal)
datos4$bloque<-as.factor(datos4$bloque)
attach(datos4)
library(ggplot2)
library(emmeans)
#Gráfica diámetro
ggplot(datos4, aes(semana, diam, group = gen, colour = gen)) +
  facet_grid(~forestal) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Diámetro") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  ) 
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 725 rows containing non-finite values (stat_smooth).

# Gráfica altura
ggplot(datos4, aes(semana, alt, group = gen, colour = gen)) +
  facet_grid(~forestal) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Altura") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  )  
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 730 rows containing non-finite values (stat_smooth).

# Anova general
aov.diam<-aov(diam~semana+forestal+gen+bloque+forestal*gen, na.action=na.exclude)
aov.alt<-aov(alt~semana+forestal+gen+bloque+forestal*gen, na.action=na.exclude)
#Análisis para diámetro
library(nlme)
fit.compsym.diam <- gls(diam ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.diam <- gls(diam ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.diam <- gls(diam ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.diam, fit.ar1.diam, fit.ar1het.diam) #compares the models
##                  Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.diam     1 20 6456.799 6572.522 -3208.399                        
## fit.ar1.diam         2 20 6269.361 6385.084 -3114.681                        
## fit.ar1het.diam      3 32 5958.889 6144.045 -2947.444 2 vs 3 334.4723  <.0001
anova(fit.ar1.diam)
## Denom. DF: 2407 
##              numDF  F-value p-value
## (Intercept)      1 36620.94  <.0001
## semana           1  5262.01  <.0001
## forestal         2   128.69  <.0001
## gen              4     8.26  <.0001
## bloque           2    10.67  <.0001
## forestal:gen     8    27.99  <.0001
anova(fit.ar1het.diam)
## Denom. DF: 2407 
##              numDF   F-value p-value
## (Intercept)      1 28265.228  <.0001
## semana           1  6125.856  <.0001
## forestal         2    58.474  <.0001
## gen              4     4.900   6e-04
## bloque           2    17.403  <.0001
## forestal:gen     8    18.752  <.0001
# Análisis para altura
fit.compsym.alt <- gls(alt ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.alt <- gls(alt ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.alt <- gls(alt ~ semana+forestal+gen+bloque+forestal*gen, data=datos4, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.alt, fit.ar1.alt, fit.ar1het.alt) #compares the models
##                 Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.alt     1 20 24492.00 24607.68 -12226.00                        
## fit.ar1.alt         2 20 24143.68 24259.36 -12051.84                        
## fit.ar1het.alt      3 32 23990.07 24175.16 -11963.03 2 vs 3 177.6081  <.0001
anova(fit.ar1.alt)
## Denom. DF: 2402 
##              numDF   F-value p-value
## (Intercept)      1 24308.787  <.0001
## semana           1  2693.342  <.0001
## forestal         2    92.694  <.0001
## gen              4     8.998  <.0001
## bloque           2    21.771  <.0001
## forestal:gen     8    21.394  <.0001
anova(fit.ar1het.alt)
## Denom. DF: 2402 
##              numDF   F-value p-value
## (Intercept)      1 20404.953  <.0001
## semana           1  3848.266  <.0001
## forestal         2    50.059  <.0001
## gen              4     6.166   1e-04
## bloque           2    25.555  <.0001
## forestal:gen     8    16.951  <.0001
#Tukey diámetro
library(multcompView)
interac.tuk.diam<-TukeyHSD(aov.diam, "forestal:gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
fores.tuk.diam<-TukeyHSD(aov.diam, "forestal", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
gen.tuk.diam<-TukeyHSD(aov.diam, "gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
#Tukey altura
interac.tuk.alt<-TukeyHSD(aov.alt, "forestal:gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
fores.tuk.alt<-TukeyHSD(aov.alt, "forestal", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
gen.tuk.alt<-TukeyHSD(aov.alt, "gen", ordered = TRUE)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored: semana
#Etiquetas Tukey diámetro
#Genotipos
generate_label_df_gen_diam <- function(gen.tuk.diam, variable){
  Tukey.levels <- gen.tuk.diam[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.diam <- generate_label_df_gen_diam(gen.tuk.diam, "gen")
labels.gen.diam
##       Letters treatment
## CCN51      ab     CCN51
## TCS01      ab     TCS01
## TCS06       a     TCS06
## TCS13       c     TCS13
## TCS19       b     TCS19
# Forestal
generate_label_df_forestal_diam <- function(fores.tuk.diam, variable){
  Tukey.levels <- fores.tuk.diam[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.forestal.diam <- generate_label_df_forestal_diam(fores.tuk.diam, "forestal")
labels.forestal.diam
##            Letters  treatment
## Abarco           a     Abarco
## Roble            a      Roble
## Terminalia       a Terminalia
# Interacción Forestal:Genotipo
generate_label_df_interac_diam <- function(interac.tuk.diam, variable){
  Tukey.levels <- interac.tuk.diam[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.diam <- generate_label_df_interac_diam(interac.tuk.diam, "forestal:gen")
labels.interac.diam
##                  Letters        treatment
## Abarco:CCN51           a     Abarco:CCN51
## Abarco:TCS01          bc     Abarco:TCS01
## Abarco:TCS06         def     Abarco:TCS06
## Abarco:TCS13         cde     Abarco:TCS13
## Abarco:TCS19           a     Abarco:TCS19
## Roble:CCN51           fg      Roble:CCN51
## Roble:TCS01           ef      Roble:TCS01
## Roble:TCS06           ef      Roble:TCS06
## Roble:TCS13            f      Roble:TCS13
## Roble:TCS19            g      Roble:TCS19
## Terminalia:CCN51     cde Terminalia:CCN51
## Terminalia:TCS01     bcd Terminalia:TCS01
## Terminalia:TCS06       b Terminalia:TCS06
## Terminalia:TCS13      ef Terminalia:TCS13
## Terminalia:TCS19     bcd Terminalia:TCS19
#Etiquetas Tukey altura
#Genotipos
generate_label_df_gen_alt <- function(gen.tuk.alt, variable){
  Tukey.levels <- gen.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.alt <- generate_label_df_gen_alt(gen.tuk.alt, "gen")
labels.gen.alt
##       Letters treatment
## CCN51       d     CCN51
## TCS01      ac     TCS01
## TCS06      ab     TCS06
## TCS13      cd     TCS13
## TCS19       b     TCS19
# Forestal
generate_label_df_forestal_alt <- function(fores.tuk.alt, variable){
  Tukey.levels <- fores.tuk.alt[[variable]][,2]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.forestal.alt <- generate_label_df_forestal_alt(fores.tuk.alt, "forestal")
labels.forestal.alt
##            Letters  treatment
## Abarco           a     Abarco
## Roble            a      Roble
## Terminalia       a Terminalia
# Interacción Forestal:Genotipo
generate_label_df_interac_alt <- function(interac.tuk.alt, variable){
  Tukey.levels <- interac.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.interac.alt <- generate_label_df_interac_alt(interac.tuk.alt, "forestal:gen")
labels.interac.alt
##                  Letters        treatment
## Abarco:CCN51           a     Abarco:CCN51
## Abarco:TCS01        bcde     Abarco:TCS01
## Abarco:TCS06         bcd     Abarco:TCS06
## Abarco:TCS13        bcde     Abarco:TCS13
## Abarco:TCS19           j     Abarco:TCS19
## Roble:CCN51            i      Roble:CCN51
## Roble:TCS01          fgh      Roble:TCS01
## Roble:TCS06         cdef      Roble:TCS06
## Roble:TCS13         efgh      Roble:TCS13
## Roble:TCS19           hi      Roble:TCS19
## Terminalia:CCN51     ghi Terminalia:CCN51
## Terminalia:TCS01      bc Terminalia:TCS01
## Terminalia:TCS06      ab Terminalia:TCS06
## Terminalia:TCS13    defg Terminalia:TCS13
## Terminalia:TCS19     bcd Terminalia:TCS19
## Gráficas contrastes de medias diametro
#Gen
contrast <- emmeans(aov.diam, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.gen <- emmeans(aov.diam, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean     SE   df lower.CL upper.CL
##  CCN51   4.45 0.0450 2407     4.36     4.54
##  TCS01   4.54 0.0463 2407     4.45     4.63
##  TCS06   4.59 0.0453 2407     4.50     4.67
##  TCS13   4.80 0.0444 2407     4.72     4.89
##  TCS19   4.38 0.0464 2407     4.29     4.47
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate     SE   df t.ratio p.value
##  CCN51 - TCS01  -0.0896 0.0577 2407  -1.553  0.5278
##  CCN51 - TCS06  -0.1388 0.0574 2407  -2.421  0.1101
##  CCN51 - TCS13  -0.3562 0.0569 2407  -6.264  <.0001
##  CCN51 - TCS19   0.0678 0.0581 2407   1.167  0.7700
##  TCS01 - TCS06  -0.0493 0.0580 2407  -0.850  0.9148
##  TCS01 - TCS13  -0.2666 0.0575 2407  -4.637  <.0001
##  TCS01 - TCS19   0.1574 0.0587 2407   2.683  0.0568
##  TCS06 - TCS13  -0.2174 0.0572 2407  -3.803  0.0014
##  TCS06 - TCS19   0.2066 0.0584 2407   3.541  0.0037
##  TCS13 - TCS19   0.4240 0.0579 2407   7.326  <.0001
## 
## Results are averaged over the levels of: forestal, bloque 
## P value adjustment: tukey method for comparing a family of 5 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean     SE   df lower.CL upper.CL .group
##  TCS13   4.80 0.0444 2407     4.72     4.89  A    
##  TCS06   4.59 0.0453 2407     4.50     4.67   B   
##  TCS01   4.54 0.0463 2407     4.45     4.63   BC  
##  CCN51   4.45 0.0450 2407     4.36     4.54   BC  
##  TCS19   4.38 0.0464 2407     4.29     4.47    C  
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 5 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal
contrast <- emmeans(aov.diam, ~forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.forestal <- emmeans(aov.diam, pairwise ~ forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal
## $emmeans
##  forestal   emmean     SE   df lower.CL upper.CL
##  Abarco       4.13 0.0383 2407     4.06     4.21
##  Roble        5.00 0.0378 2407     4.93     5.08
##  Terminalia   4.52 0.0362 2407     4.44     4.59
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast            estimate     SE   df t.ratio p.value
##  Abarco - Roble        -0.868 0.0451 2407 -19.231  <.0001
##  Abarco - Terminalia   -0.381 0.0447 2407  -8.527  <.0001
##  Roble - Terminalia     0.486 0.0444 2407  10.945  <.0001
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_forestal <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal
##  forestal   emmean     SE   df lower.CL upper.CL .group
##  Roble        5.00 0.0378 2407     4.93     5.08  A    
##  Terminalia   4.52 0.0362 2407     4.44     4.59   B   
##  Abarco       4.13 0.0383 2407     4.06     4.21    C  
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal*Gen
contrast <- emmeans(aov.diam, ~gen*forestal)
plot(contrast, comparisons = TRUE, xlab ="Diámetro")

medias.forestal.gen <- emmeans(aov.diam, pairwise ~ gen*forestal)
medias.forestal.gen
## $emmeans
##  gen   forestal   emmean     SE   df lower.CL upper.CL
##  CCN51 Abarco       3.71 0.0734 2407     3.56     3.85
##  TCS01 Abarco       4.31 0.0759 2407     4.16     4.46
##  TCS06 Abarco       4.71 0.0743 2407     4.57     4.86
##  TCS13 Abarco       4.57 0.0721 2407     4.43     4.72
##  TCS19 Abarco       3.36 0.0778 2407     3.21     3.52
##  CCN51 Roble        5.01 0.0733 2407     4.86     5.15
##  TCS01 Roble        4.86 0.0741 2407     4.72     5.01
##  TCS06 Roble        4.80 0.0739 2407     4.66     4.95
##  TCS13 Roble        5.00 0.0732 2407     4.85     5.14
##  TCS19 Roble        5.33 0.0745 2407     5.19     5.48
##  CCN51 Terminalia   4.63 0.0712 2407     4.49     4.77
##  TCS01 Terminalia   4.44 0.0731 2407     4.29     4.58
##  TCS06 Terminalia   4.24 0.0716 2407     4.10     4.38
##  TCS13 Terminalia   4.84 0.0706 2407     4.70     4.98
##  TCS19 Terminalia   4.44 0.0729 2407     4.30     4.58
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                            estimate     SE   df t.ratio p.value
##  CCN51 Abarco - TCS01 Abarco         -0.60190 0.1013 2407  -5.941  <.0001
##  CCN51 Abarco - TCS06 Abarco         -1.00690 0.1006 2407 -10.009  <.0001
##  CCN51 Abarco - TCS13 Abarco         -0.86664 0.0991 2407  -8.748  <.0001
##  CCN51 Abarco - TCS19 Abarco          0.34324 0.1031 2407   3.330  0.0612
##  CCN51 Abarco - CCN51 Roble          -1.29864 0.0997 2407 -13.029  <.0001
##  CCN51 Abarco - TCS01 Roble          -1.15713 0.1003 2407 -11.538  <.0001
##  CCN51 Abarco - TCS06 Roble          -1.09731 0.1003 2407 -10.942  <.0001
##  CCN51 Abarco - TCS13 Roble          -1.29043 0.1000 2407 -12.909  <.0001
##  CCN51 Abarco - TCS19 Roble          -1.62710 0.1008 2407 -16.149  <.0001
##  CCN51 Abarco - CCN51 Terminalia     -0.91967 0.0986 2407  -9.323  <.0001
##  CCN51 Abarco - TCS01 Terminalia     -0.72801 0.1000 2407  -7.283  <.0001
##  CCN51 Abarco - TCS06 Terminalia     -0.53064 0.0991 2407  -5.356  <.0001
##  CCN51 Abarco - TCS13 Terminalia     -1.12986 0.0984 2407 -11.484  <.0001
##  CCN51 Abarco - TCS19 Terminalia     -0.73109 0.0998 2407  -7.325  <.0001
##  TCS01 Abarco - TCS06 Abarco         -0.40500 0.1017 2407  -3.980  0.0062
##  TCS01 Abarco - TCS13 Abarco         -0.26474 0.1003 2407  -2.640  0.3431
##  TCS01 Abarco - TCS19 Abarco          0.94514 0.1042 2407   9.074  <.0001
##  TCS01 Abarco - CCN51 Roble          -0.69675 0.1008 2407  -6.911  <.0001
##  TCS01 Abarco - TCS01 Roble          -0.55523 0.1014 2407  -5.475  <.0001
##  TCS01 Abarco - TCS06 Roble          -0.49542 0.1014 2407  -4.884  0.0001
##  TCS01 Abarco - TCS13 Roble          -0.68853 0.1011 2407  -6.807  <.0001
##  TCS01 Abarco - TCS19 Roble          -1.02520 0.1019 2407 -10.060  <.0001
##  TCS01 Abarco - CCN51 Terminalia     -0.31777 0.0999 2407  -3.181  0.0947
##  TCS01 Abarco - TCS01 Terminalia     -0.12611 0.1012 2407  -1.247  0.9960
##  TCS01 Abarco - TCS06 Terminalia      0.07126 0.1003 2407   0.710  1.0000
##  TCS01 Abarco - TCS13 Terminalia     -0.52796 0.0997 2407  -5.297  <.0001
##  TCS01 Abarco - TCS19 Terminalia     -0.12919 0.1010 2407  -1.279  0.9948
##  TCS06 Abarco - TCS13 Abarco          0.14026 0.0995 2407   1.409  0.9866
##  TCS06 Abarco - TCS19 Abarco          1.35014 0.1035 2407  13.045  <.0001
##  TCS06 Abarco - CCN51 Roble          -0.29175 0.1001 2407  -2.914  0.1906
##  TCS06 Abarco - TCS01 Roble          -0.15023 0.1008 2407  -1.491  0.9776
##  TCS06 Abarco - TCS06 Roble          -0.09042 0.1007 2407  -0.898  0.9999
##  TCS06 Abarco - TCS13 Roble          -0.28353 0.1004 2407  -2.823  0.2350
##  TCS06 Abarco - TCS19 Roble          -0.62020 0.1012 2407  -6.127  <.0001
##  TCS06 Abarco - CCN51 Terminalia      0.08723 0.0991 2407   0.880  0.9999
##  TCS06 Abarco - TCS01 Terminalia      0.27889 0.1004 2407   2.777  0.2602
##  TCS06 Abarco - TCS06 Terminalia      0.47626 0.0996 2407   4.783  0.0002
##  TCS06 Abarco - TCS13 Terminalia     -0.12296 0.0989 2407  -1.243  0.9961
##  TCS06 Abarco - TCS19 Terminalia      0.27581 0.1003 2407   2.750  0.2756
##  TCS13 Abarco - TCS19 Abarco          1.20988 0.1020 2407  11.858  <.0001
##  TCS13 Abarco - CCN51 Roble          -0.43201 0.0986 2407  -4.381  0.0012
##  TCS13 Abarco - TCS01 Roble          -0.29049 0.0992 2407  -2.927  0.1844
##  TCS13 Abarco - TCS06 Roble          -0.23068 0.0992 2407  -2.325  0.5720
##  TCS13 Abarco - TCS13 Roble          -0.42379 0.0989 2407  -4.284  0.0018
##  TCS13 Abarco - TCS19 Roble          -0.76046 0.0997 2407  -7.626  <.0001
##  TCS13 Abarco - CCN51 Terminalia     -0.05303 0.0976 2407  -0.543  1.0000
##  TCS13 Abarco - TCS01 Terminalia      0.13863 0.0989 2407   1.402  0.9873
##  TCS13 Abarco - TCS06 Terminalia      0.33600 0.0980 2407   3.428  0.0450
##  TCS13 Abarco - TCS13 Terminalia     -0.26322 0.0973 2407  -2.705  0.3024
##  TCS13 Abarco - TCS19 Terminalia      0.13555 0.0988 2407   1.373  0.9896
##  TCS19 Abarco - CCN51 Roble          -1.64189 0.1026 2407 -16.003  <.0001
##  TCS19 Abarco - TCS01 Roble          -1.50037 0.1032 2407 -14.537  <.0001
##  TCS19 Abarco - TCS06 Roble          -1.44055 0.1032 2407 -13.960  <.0001
##  TCS19 Abarco - TCS13 Roble          -1.63367 0.1029 2407 -15.876  <.0001
##  TCS19 Abarco - TCS19 Roble          -1.97034 0.1037 2407 -19.006  <.0001
##  TCS19 Abarco - CCN51 Terminalia     -1.26291 0.1016 2407 -12.425  <.0001
##  TCS19 Abarco - TCS01 Terminalia     -1.07125 0.1029 2407 -10.409  <.0001
##  TCS19 Abarco - TCS06 Terminalia     -0.87388 0.1021 2407  -8.562  <.0001
##  TCS19 Abarco - TCS13 Terminalia     -1.47310 0.1014 2407 -14.527  <.0001
##  TCS19 Abarco - TCS19 Terminalia     -1.07433 0.1028 2407 -10.451  <.0001
##  CCN51 Roble - TCS01 Roble            0.14152 0.0998 2407   1.418  0.9858
##  CCN51 Roble - TCS06 Roble            0.20133 0.0998 2407   2.017  0.7884
##  CCN51 Roble - TCS13 Roble            0.00822 0.0995 2407   0.083  1.0000
##  CCN51 Roble - TCS19 Roble           -0.32845 0.1003 2407  -3.275  0.0722
##  CCN51 Roble - CCN51 Terminalia       0.37898 0.0982 2407   3.859  0.0100
##  CCN51 Roble - TCS01 Terminalia       0.57064 0.0995 2407   5.734  <.0001
##  CCN51 Roble - TCS06 Terminalia       0.76801 0.0986 2407   7.786  <.0001
##  CCN51 Roble - TCS13 Terminalia       0.16878 0.0980 2407   1.723  0.9262
##  CCN51 Roble - TCS19 Terminalia       0.56756 0.0994 2407   5.711  <.0001
##  TCS01 Roble - TCS06 Roble            0.05981 0.1004 2407   0.596  1.0000
##  TCS01 Roble - TCS13 Roble           -0.13330 0.1001 2407  -1.331  0.9923
##  TCS01 Roble - TCS19 Roble           -0.46997 0.1009 2407  -4.657  0.0003
##  TCS01 Roble - CCN51 Terminalia       0.23746 0.0988 2407   2.403  0.5130
##  TCS01 Roble - TCS01 Terminalia       0.42912 0.1001 2407   4.285  0.0018
##  TCS01 Roble - TCS06 Terminalia       0.62649 0.0993 2407   6.311  <.0001
##  TCS01 Roble - TCS13 Terminalia       0.02727 0.0986 2407   0.277  1.0000
##  TCS01 Roble - TCS19 Terminalia       0.42604 0.1000 2407   4.261  0.0020
##  TCS06 Roble - TCS13 Roble           -0.19311 0.1001 2407  -1.929  0.8386
##  TCS06 Roble - TCS19 Roble           -0.52978 0.1009 2407  -5.250  <.0001
##  TCS06 Roble - CCN51 Terminalia       0.17765 0.0988 2407   1.798  0.8993
##  TCS06 Roble - TCS01 Terminalia       0.36931 0.1001 2407   3.689  0.0187
##  TCS06 Roble - TCS06 Terminalia       0.56668 0.0992 2407   5.710  <.0001
##  TCS06 Roble - TCS13 Terminalia      -0.03255 0.0986 2407  -0.330  1.0000
##  TCS06 Roble - TCS19 Terminalia       0.36623 0.1000 2407   3.663  0.0204
##  TCS13 Roble - TCS19 Roble           -0.33667 0.1006 2407  -3.347  0.0581
##  TCS13 Roble - CCN51 Terminalia       0.37076 0.0985 2407   3.764  0.0142
##  TCS13 Roble - TCS01 Terminalia       0.56242 0.0998 2407   5.635  <.0001
##  TCS13 Roble - TCS06 Terminalia       0.75979 0.0989 2407   7.681  <.0001
##  TCS13 Roble - TCS13 Terminalia       0.16056 0.0982 2407   1.635  0.9511
##  TCS13 Roble - TCS19 Terminalia       0.55934 0.0997 2407   5.612  <.0001
##  TCS19 Roble - CCN51 Terminalia       0.70743 0.0993 2407   7.124  <.0001
##  TCS19 Roble - TCS01 Terminalia       0.89909 0.1006 2407   8.937  <.0001
##  TCS19 Roble - TCS06 Terminalia       1.09646 0.0997 2407  10.994  <.0001
##  TCS19 Roble - TCS13 Terminalia       0.49724 0.0991 2407   5.020  0.0001
##  TCS19 Roble - TCS19 Terminalia       0.89601 0.1005 2407   8.919  <.0001
##  CCN51 Terminalia - TCS01 Terminalia  0.19166 0.0985 2407   1.946  0.8293
##  CCN51 Terminalia - TCS06 Terminalia  0.38903 0.0976 2407   3.987  0.0061
##  CCN51 Terminalia - TCS13 Terminalia -0.21019 0.0969 2407  -2.170  0.6866
##  CCN51 Terminalia - TCS19 Terminalia  0.18858 0.0983 2407   1.918  0.8443
##  TCS01 Terminalia - TCS06 Terminalia  0.19737 0.0989 2407   1.995  0.8013
##  TCS01 Terminalia - TCS13 Terminalia -0.40185 0.0982 2407  -4.091  0.0040
##  TCS01 Terminalia - TCS19 Terminalia -0.00308 0.0997 2407  -0.031  1.0000
##  TCS06 Terminalia - TCS13 Terminalia -0.59922 0.0973 2407  -6.159  <.0001
##  TCS06 Terminalia - TCS19 Terminalia -0.20045 0.0988 2407  -2.030  0.7806
##  TCS13 Terminalia - TCS19 Terminalia  0.39877 0.0981 2407   4.067  0.0044
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 15 estimates
cld_forestal_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal_gen
##  gen   forestal   emmean     SE   df lower.CL upper.CL .group  
##  TCS19 Roble        5.33 0.0745 2407     5.19     5.48  A      
##  CCN51 Roble        5.01 0.0733 2407     4.86     5.15  AB     
##  TCS13 Roble        5.00 0.0732 2407     4.85     5.14  AB     
##  TCS01 Roble        4.86 0.0741 2407     4.72     5.01   BC    
##  TCS13 Terminalia   4.84 0.0706 2407     4.70     4.98   BC    
##  TCS06 Roble        4.80 0.0739 2407     4.66     4.95   BC    
##  TCS06 Abarco       4.71 0.0743 2407     4.57     4.86   BCD   
##  CCN51 Terminalia   4.63 0.0712 2407     4.49     4.77    CDE  
##  TCS13 Abarco       4.57 0.0721 2407     4.43     4.72    CDE  
##  TCS19 Terminalia   4.44 0.0729 2407     4.30     4.58     DEF 
##  TCS01 Terminalia   4.44 0.0731 2407     4.29     4.58     DEF 
##  TCS01 Abarco       4.31 0.0759 2407     4.16     4.46      EF 
##  TCS06 Terminalia   4.24 0.0716 2407     4.10     4.38       F 
##  CCN51 Abarco       3.71 0.0734 2407     3.56     3.85        G
##  TCS19 Abarco       3.36 0.0778 2407     3.21     3.52        G
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 15 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
## Gráficas contrastes de medias altura
#Gen
contrast <- emmeans(aov.alt, ~gen)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.gen <- emmeans(aov.alt, pairwise ~ gen)
## NOTE: Results may be misleading due to involvement in interactions
medias.gen
## $emmeans
##  gen   emmean   SE   df lower.CL upper.CL
##  CCN51    183 1.92 2402      179      187
##  TCS01    174 1.98 2402      170      178
##  TCS06    168 1.95 2402      165      172
##  TCS13    179 1.90 2402      175      183
##  TCS19    163 1.98 2402      160      167
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE   df t.ratio p.value
##  CCN51 - TCS01     8.72 2.47 2402   3.531  0.0039
##  CCN51 - TCS06    14.56 2.46 2402   5.910  <.0001
##  CCN51 - TCS13     4.15 2.43 2402   1.704  0.4315
##  CCN51 - TCS19    19.45 2.49 2402   7.822  <.0001
##  TCS01 - TCS06     5.84 2.49 2402   2.345  0.1311
##  TCS01 - TCS13    -4.57 2.46 2402  -1.856  0.3414
##  TCS01 - TCS19    10.73 2.51 2402   4.271  0.0002
##  TCS06 - TCS13   -10.41 2.45 2402  -4.240  0.0002
##  TCS06 - TCS19     4.89 2.51 2402   1.952  0.2902
##  TCS13 - TCS19    15.30 2.48 2402   6.173  <.0001
## 
## Results are averaged over the levels of: forestal, bloque 
## P value adjustment: tukey method for comparing a family of 5 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean   SE   df lower.CL upper.CL .group
##  CCN51    183 1.92 2402      179      187  A    
##  TCS13    179 1.90 2402      175      183  AB   
##  TCS01    174 1.98 2402      170      178   BC  
##  TCS06    168 1.95 2402      165      172    CD 
##  TCS19    163 1.98 2402      160      167     D 
## 
## Results are averaged over the levels of: forestal, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 5 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal
contrast <- emmeans(aov.alt, ~forestal)
## NOTE: Results may be misleading due to involvement in interactions
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.forestal <- emmeans(aov.alt, pairwise ~ forestal)
## NOTE: Results may be misleading due to involvement in interactions
medias.forestal
## $emmeans
##  forestal   emmean   SE   df lower.CL upper.CL
##  Abarco        157 1.64 2402      153      160
##  Roble         190 1.62 2402      187      193
##  Terminalia    174 1.55 2402      171      177
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast            estimate   SE   df t.ratio p.value
##  Abarco - Roble         -33.4 1.94 2402 -17.236  <.0001
##  Abarco - Terminalia    -17.8 1.92 2402  -9.254  <.0001
##  Roble - Terminalia      15.6 1.90 2402   8.200  <.0001
## 
## Results are averaged over the levels of: gen, bloque 
## P value adjustment: tukey method for comparing a family of 3 estimates
cld_forestal <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal
##  forestal   emmean   SE   df lower.CL upper.CL .group
##  Roble         190 1.62 2402      187      193  A    
##  Terminalia    174 1.55 2402      171      177   B   
##  Abarco        157 1.64 2402      153      160    C  
## 
## Results are averaged over the levels of: gen, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
#Forestal*Gen
contrast <- emmeans(aov.alt, ~gen*forestal)
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.forestal.gen <- emmeans(aov.alt, pairwise ~ gen*forestal)
medias.forestal.gen
## $emmeans
##  gen   forestal   emmean   SE   df lower.CL upper.CL
##  CCN51 Abarco        151 3.14 2402      144      157
##  TCS01 Abarco        169 3.25 2402      162      175
##  TCS06 Abarco        169 3.23 2402      163      175
##  TCS13 Abarco        170 3.09 2402      164      176
##  TCS19 Abarco        124 3.33 2402      117      130
##  CCN51 Roble         205 3.14 2402      199      211
##  TCS01 Roble         187 3.17 2402      181      194
##  TCS06 Roble         175 3.16 2402      169      181
##  TCS13 Roble         184 3.14 2402      178      190
##  TCS19 Roble         197 3.19 2402      191      204
##  CCN51 Terminalia    193 3.05 2402      187      199
##  TCS01 Terminalia    166 3.13 2402      160      173
##  TCS06 Terminalia    161 3.07 2402      155      167
##  TCS13 Terminalia    182 3.02 2402      176      188
##  TCS19 Terminalia    169 3.12 2402      163      175
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                            estimate   SE   df t.ratio p.value
##  CCN51 Abarco - TCS01 Abarco          -18.227 4.34 2402  -4.202  0.0025
##  CCN51 Abarco - TCS06 Abarco          -18.362 4.34 2402  -4.228  0.0023
##  CCN51 Abarco - TCS13 Abarco          -19.752 4.24 2402  -4.656  0.0003
##  CCN51 Abarco - TCS19 Abarco           26.749 4.41 2402   6.061  <.0001
##  CCN51 Abarco - CCN51 Roble           -54.734 4.27 2402 -12.825  <.0001
##  CCN51 Abarco - TCS01 Roble           -36.801 4.29 2402  -8.570  <.0001
##  CCN51 Abarco - TCS06 Roble           -24.638 4.29 2402  -5.738  <.0001
##  CCN51 Abarco - TCS13 Roble           -33.440 4.28 2402  -7.813  <.0001
##  CCN51 Abarco - TCS19 Roble           -46.744 4.31 2402 -10.835  <.0001
##  CCN51 Abarco - CCN51 Terminalia      -42.252 4.22 2402 -10.003  <.0001
##  CCN51 Abarco - TCS01 Terminalia      -15.798 4.28 2402  -3.691  0.0185
##  CCN51 Abarco - TCS06 Terminalia      -10.316 4.24 2402  -2.432  0.4912
##  CCN51 Abarco - TCS13 Terminalia      -31.346 4.21 2402  -7.441  <.0001
##  CCN51 Abarco - TCS19 Terminalia      -18.649 4.27 2402  -4.364  0.0013
##  TCS01 Abarco - TCS06 Abarco           -0.135 4.39 2402  -0.031  1.0000
##  TCS01 Abarco - TCS13 Abarco           -1.525 4.29 2402  -0.355  1.0000
##  TCS01 Abarco - TCS19 Abarco           44.976 4.46 2402  10.085  <.0001
##  TCS01 Abarco - CCN51 Roble           -36.507 4.32 2402  -8.458  <.0001
##  TCS01 Abarco - TCS01 Roble           -18.574 4.34 2402  -4.277  0.0018
##  TCS01 Abarco - TCS06 Roble            -6.411 4.34 2402  -1.476  0.9795
##  TCS01 Abarco - TCS13 Roble           -15.213 4.33 2402  -3.513  0.0341
##  TCS01 Abarco - TCS19 Roble           -28.517 4.36 2402  -6.535  <.0001
##  TCS01 Abarco - CCN51 Terminalia      -24.025 4.28 2402  -5.617  <.0001
##  TCS01 Abarco - TCS01 Terminalia        2.428 4.33 2402   0.561  1.0000
##  TCS01 Abarco - TCS06 Terminalia        7.911 4.30 2402   1.842  0.8810
##  TCS01 Abarco - TCS13 Terminalia      -13.119 4.27 2402  -3.074  0.1271
##  TCS01 Abarco - TCS19 Terminalia       -0.423 4.33 2402  -0.098  1.0000
##  TCS06 Abarco - TCS13 Abarco           -1.390 4.30 2402  -0.323  1.0000
##  TCS06 Abarco - TCS19 Abarco           45.111 4.47 2402  10.102  <.0001
##  TCS06 Abarco - CCN51 Roble           -36.372 4.32 2402  -8.413  <.0001
##  TCS06 Abarco - TCS01 Roble           -18.439 4.35 2402  -4.239  0.0022
##  TCS06 Abarco - TCS06 Roble            -6.276 4.35 2402  -1.443  0.9833
##  TCS06 Abarco - TCS13 Roble           -15.078 4.34 2402  -3.478  0.0383
##  TCS06 Abarco - TCS19 Roble           -28.382 4.37 2402  -6.496  <.0001
##  TCS06 Abarco - CCN51 Terminalia      -23.890 4.28 2402  -5.580  <.0001
##  TCS06 Abarco - TCS01 Terminalia        2.563 4.34 2402   0.591  1.0000
##  TCS06 Abarco - TCS06 Terminalia        8.046 4.30 2402   1.872  0.8672
##  TCS06 Abarco - TCS13 Terminalia      -12.984 4.27 2402  -3.040  0.1388
##  TCS06 Abarco - TCS19 Terminalia       -0.288 4.33 2402  -0.066  1.0000
##  TCS13 Abarco - TCS19 Abarco           46.501 4.37 2402  10.644  <.0001
##  TCS13 Abarco - CCN51 Roble           -34.982 4.22 2402  -8.286  <.0001
##  TCS13 Abarco - TCS01 Roble           -17.049 4.25 2402  -4.013  0.0055
##  TCS13 Abarco - TCS06 Roble            -4.886 4.25 2402  -1.150  0.9983
##  TCS13 Abarco - TCS13 Roble           -13.688 4.24 2402  -3.232  0.0819
##  TCS13 Abarco - TCS19 Roble           -26.992 4.27 2402  -6.322  <.0001
##  TCS13 Abarco - CCN51 Terminalia      -22.500 4.18 2402  -5.385  <.0001
##  TCS13 Abarco - TCS01 Terminalia        3.953 4.24 2402   0.933  0.9998
##  TCS13 Abarco - TCS06 Terminalia        9.436 4.20 2402   2.248  0.6294
##  TCS13 Abarco - TCS13 Terminalia      -11.594 4.17 2402  -2.782  0.2570
##  TCS13 Abarco - TCS19 Terminalia        1.102 4.23 2402   0.261  1.0000
##  TCS19 Abarco - CCN51 Roble           -81.483 4.39 2402 -18.548  <.0001
##  TCS19 Abarco - TCS01 Roble           -63.550 4.42 2402 -14.381  <.0001
##  TCS19 Abarco - TCS06 Roble           -51.387 4.42 2402 -11.630  <.0001
##  TCS19 Abarco - TCS13 Roble           -60.189 4.41 2402 -13.661  <.0001
##  TCS19 Abarco - TCS19 Roble           -73.493 4.44 2402 -16.556  <.0001
##  TCS19 Abarco - CCN51 Terminalia      -69.001 4.35 2402 -15.855  <.0001
##  TCS19 Abarco - TCS01 Terminalia      -42.547 4.41 2402  -9.656  <.0001
##  TCS19 Abarco - TCS06 Terminalia      -37.065 4.37 2402  -8.481  <.0001
##  TCS19 Abarco - TCS13 Terminalia      -58.095 4.34 2402 -13.380  <.0001
##  TCS19 Abarco - TCS19 Terminalia      -45.398 4.40 2402 -10.315  <.0001
##  CCN51 Roble - TCS01 Roble             17.933 4.27 2402   4.196  0.0026
##  CCN51 Roble - TCS06 Roble             30.096 4.27 2402   7.042  <.0001
##  CCN51 Roble - TCS13 Roble             21.294 4.26 2402   4.998  0.0001
##  CCN51 Roble - TCS19 Roble              7.990 4.29 2402   1.861  0.8724
##  CCN51 Roble - CCN51 Terminalia        12.482 4.20 2402   2.969  0.1666
##  CCN51 Roble - TCS01 Terminalia        38.936 4.26 2402   9.137  <.0001
##  CCN51 Roble - TCS06 Terminalia        44.418 4.22 2402  10.516  <.0001
##  CCN51 Roble - TCS13 Terminalia        23.388 4.19 2402   5.576  <.0001
##  CCN51 Roble - TCS19 Terminalia        36.085 4.25 2402   8.481  <.0001
##  TCS01 Roble - TCS06 Roble             12.163 4.30 2402   2.829  0.2321
##  TCS01 Roble - TCS13 Roble              3.361 4.29 2402   0.784  1.0000
##  TCS01 Roble - TCS19 Roble             -9.943 4.32 2402  -2.301  0.5898
##  TCS01 Roble - CCN51 Terminalia        -5.451 4.23 2402  -1.288  0.9944
##  TCS01 Roble - TCS01 Terminalia        21.003 4.29 2402   4.898  0.0001
##  TCS01 Roble - TCS06 Terminalia        26.486 4.25 2402   6.231  <.0001
##  TCS01 Roble - TCS13 Terminalia         5.455 4.22 2402   1.292  0.9942
##  TCS01 Roble - TCS19 Terminalia        18.152 4.28 2402   4.240  0.0022
##  TCS06 Roble - TCS13 Roble             -8.802 4.29 2402  -2.053  0.7657
##  TCS06 Roble - TCS19 Roble            -22.106 4.32 2402  -5.117  <.0001
##  TCS06 Roble - CCN51 Terminalia       -17.614 4.23 2402  -4.163  0.0030
##  TCS06 Roble - TCS01 Terminalia         8.839 4.29 2402   2.062  0.7602
##  TCS06 Roble - TCS06 Terminalia        14.322 4.25 2402   3.370  0.0540
##  TCS06 Roble - TCS13 Terminalia        -6.708 4.22 2402  -1.589  0.9611
##  TCS06 Roble - TCS19 Terminalia         5.988 4.28 2402   1.399  0.9875
##  TCS13 Roble - TCS19 Roble            -13.304 4.31 2402  -3.089  0.1222
##  TCS13 Roble - CCN51 Terminalia        -8.812 4.22 2402  -2.090  0.7421
##  TCS13 Roble - TCS01 Terminalia        17.642 4.27 2402   4.128  0.0034
##  TCS13 Roble - TCS06 Terminalia        23.124 4.24 2402   5.460  <.0001
##  TCS13 Roble - TCS13 Terminalia         2.094 4.21 2402   0.498  1.0000
##  TCS13 Roble - TCS19 Terminalia        14.791 4.27 2402   3.466  0.0398
##  TCS19 Roble - CCN51 Terminalia         4.492 4.25 2402   1.057  0.9993
##  TCS19 Roble - TCS01 Terminalia        30.945 4.31 2402   7.184  <.0001
##  TCS19 Roble - TCS06 Terminalia        36.428 4.27 2402   8.531  <.0001
##  TCS19 Roble - TCS13 Terminalia        15.398 4.24 2402   3.631  0.0229
##  TCS19 Roble - TCS19 Terminalia        28.095 4.30 2402   6.531  <.0001
##  CCN51 Terminalia - TCS01 Terminalia   26.453 4.22 2402   6.273  <.0001
##  CCN51 Terminalia - TCS06 Terminalia   31.936 4.18 2402   7.644  <.0001
##  CCN51 Terminalia - TCS13 Terminalia   10.906 4.15 2402   2.630  0.3504
##  CCN51 Terminalia - TCS19 Terminalia   23.602 4.21 2402   5.606  <.0001
##  TCS01 Terminalia - TCS06 Terminalia    5.483 4.24 2402   1.295  0.9941
##  TCS01 Terminalia - TCS13 Terminalia  -15.547 4.21 2402  -3.697  0.0181
##  TCS01 Terminalia - TCS19 Terminalia   -2.851 4.27 2402  -0.668  1.0000
##  TCS06 Terminalia - TCS13 Terminalia  -21.030 4.17 2402  -5.048  <.0001
##  TCS06 Terminalia - TCS19 Terminalia   -8.334 4.23 2402  -1.971  0.8156
##  TCS13 Terminalia - TCS19 Terminalia   12.696 4.20 2402   3.024  0.1449
## 
## Results are averaged over the levels of: bloque 
## P value adjustment: tukey method for comparing a family of 15 estimates
cld_forestal_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_forestal_gen
##  gen   forestal   emmean   SE   df lower.CL upper.CL .group    
##  CCN51 Roble         205 3.14 2402      199      211  A        
##  TCS19 Roble         197 3.19 2402      191      204  AB       
##  CCN51 Terminalia    193 3.05 2402      187      199  ABC      
##  TCS01 Roble         187 3.17 2402      181      194   BCD     
##  TCS13 Roble         184 3.14 2402      178      190   BCDE    
##  TCS13 Terminalia    182 3.02 2402      176      188    CDEF   
##  TCS06 Roble         175 3.16 2402      169      181     DEFG  
##  TCS13 Abarco        170 3.09 2402      164      176      EFG  
##  TCS19 Terminalia    169 3.12 2402      163      175       FG  
##  TCS06 Abarco        169 3.23 2402      163      175       FG  
##  TCS01 Abarco        169 3.25 2402      162      175       FG  
##  TCS01 Terminalia    166 3.13 2402      160      173        G  
##  TCS06 Terminalia    161 3.07 2402      155      167        GH 
##  CCN51 Abarco        151 3.14 2402      144      157         H 
##  TCS19 Abarco        124 3.33 2402      117      130          I
## 
## Results are averaged over the levels of: bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 15 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
detach(datos4)