library(readxl)
datainflow <- read_excel(path = "Inflowup.xlsx")
dataoutflow <- read_excel(path = "outflowup.xlsx")
datainflowtahun <- datainflow[c(1:11),c(1:19)]
datainflowtahun
## # A tibble: 11 x 19
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <chr>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1 2011    57900.  2308.           23238.            9385.  3012.       1426.
##  2 2012    65911.  2620.           25981.           11192.  4447.       2236.
##  3 2013    98369. 36337.           18120.           14056.  8933.       3378.
##  4 2014    86024.  4567.           30503.           14103.  6358.       2563.
##  5 2015    86549.  4710.           30254.           13309.  7156.       3218.
##  6 2016    97764.  5775.           34427.           14078.  8211.       4317.
##  7 2017   103748.  5514.           35617.           15312.  8553.       4412.
##  8 2018   117495.  5799.           41769.           15058. 10730.       5134.
##  9 2019   133762.  7509.           47112.           14750. 10915.       6077.
## 10 2020   109345.  6641.           36609.           10696.  9148.       6175.
## 11 2021    89270.  3702.           31840.           10748.  7769.       5009.
## # ... with 12 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Belitung <dbl>,
## #   DKI Jakarta <dbl>, Jawa <dbl>, Jawa Barat <dbl>, Jawa Tengah <dbl>,
## #   Yogyakarta <dbl>, Jawa Timur <dbl>, Banten <dbl>
dataoutflowtahun <- dataoutflow[c(1:11),c(1:19)]
dataoutflowtahun
## # A tibble: 11 x 19
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <chr>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1 2011    80092.  6338.           22176.            5300. 12434.       5819.
##  2 2012    85235.  6378.           22495.            6434. 13014.       6966.
##  3 2013   103288. 23278.           19235.            6511. 15460.       8747.
##  4 2014   102338.  8630.           26391.            7060. 15158.      10122.
##  5 2015   109186.  9637.           27877.            7471. 15789.       9803.
##  6 2016   121992. 11311.           31959.            9198. 17645.      10068.
##  7 2017   133606. 11760.           35243.           10754. 18128.      10749.
##  8 2018   135676. 11450.           36908.            8447. 17926.      12597.
##  9 2019   153484. 13087.           44051.            9465. 19277.      12644.
## 10 2020   140589. 12874.           39758.            8763. 19139.       8461.
## 11 2021    86627.  5770.           23453.            5941. 12631.       5128.
## # ... with 12 more variables: Jambi <dbl>, Sumatera Selatan <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, Kep. Bangka Belitung <dbl>,
## #   DKI Jakarta <dbl>, Jawa <dbl>, Jawa Barat <dbl>, Jawa Tengah <dbl>,
## #   Yogyakarta <dbl>, Jawa Timur <dbl>, Banten <dbl>
datainjawatimur <- datainflowtahun$`Jawa Timur`
dataoutjawatimur <- dataoutflowtahun$`Jawa Timur`
plot(datainjawatimur, type = "l", col = "red")

plot(dataoutjawatimur, type = "l", col = "blue")

plot(datainjawatimur, type = "l", col = "red")
lines(dataoutjawatimur, type = "l", col = "blue")

datainflowbulan <- datainflow[c(12:139),c(1:19)]
datainflowbulan
## # A tibble: 128 x 19
##    Tahun     Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <chr>        <dbl> <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1 01/01/20~    4164.  124.            2068.             545.   94.2        84.2
##  2 01/02/20~    3338.  115.            1826.             450.   96.4        45.3
##  3 01/03/20~    4878.  154.            2028.             849.  288.         87.2
##  4 01/04/20~    3157.  122.            1429.             539.  160.        106. 
##  5 01/05/20~    3821.  123.            1539.             692.  195.         79.4
##  6 01/06/20~    3686.  151.            1637.             592.  101.         79.4
##  7 01/07/20~    4370.  107.            1791.             800.  143.        121. 
##  8 01/08/20~    3668.  184.            1256.             586.  134.         64.6
##  9 01/09/20~   12875.  606.            4172.            2176. 1014.        370. 
## 10 01/10/20~    4777.  158.            1941.             787.  341.        127. 
## # ... with 118 more rows, and 12 more variables: Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>, DKI Jakarta <dbl>, Jawa <dbl>,
## #   Jawa Barat <dbl>, Jawa Tengah <dbl>, Yogyakarta <dbl>, Jawa Timur <dbl>,
## #   Banten <dbl>
dataoutflowbulan <- dataoutflow[c(12:139),c(1:19)]
dataoutflowbulan
## # A tibble: 128 x 19
##    Tahun      Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau `Kep. Riau`
##    <chr>         <dbl> <dbl>            <dbl>            <dbl> <dbl>       <dbl>
##  1 01/01/2011    3442.  350.             941.             307.  478.       189. 
##  2 01/02/2011    3989.  193.             990.             228.  400.       268. 
##  3 01/03/2011    4229.  230.            1209.             347.  621.       209. 
##  4 01/04/2011    6721.  529.            1653.             336. 1006.       364. 
##  5 01/05/2011    5787.  523.            1465.             328. 1000.       448. 
##  6 01/06/2011    7395.  406.            2167.             399. 1366.       516. 
##  7 01/07/2011    7154.  958.            1695.             449.  815.       584. 
##  8 01/08/2011   16043. 1046.            4104.            1376. 2729.      1312. 
##  9 01/09/2011    1915.  124.             824.             148.  154.        99.2
## 10 01/10/2011    5174.  634.            1392.             299.  830.       270. 
## # ... with 118 more rows, and 12 more variables: Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>, DKI Jakarta <dbl>, Jawa <dbl>,
## #   Jawa Barat <dbl>, Jawa Tengah <dbl>, Yogyakarta <dbl>, Jawa Timur <dbl>,
## #   Banten <dbl>
plot(datainflowbulan$`Jawa Timur`, type = "l", col = "red")
lines(dataoutflowbulan$`Jawa Timur`,col="green")
legend("top",c("Inflow","Outflow"),fill=c("red","green"))

jatimtimeseries <- datainflowbulan$`Jawa Timur`
plot.ts(jatimtimeseries , type = "l", col = "red")

logjawatimur <- log(datainflowbulan$`Jawa Timur`)
plot.ts(logjawatimur)

library("TTR")
jawatimurSMA3 <- SMA(datainflowbulan$`Jawa Timur`,n=3)
plot.ts(jawatimurSMA3 )

library("TTR")
jawatimurSMA3 <- SMA(datainflowbulan$`Jawa Timur`,n=8)
plot.ts(jawatimurSMA3 )

jatiminflowtimeseries <- ts(datainflowbulan$`Jawa Timur`, frequency=12, start=c(2011,1))
jatiminflowtimeseries
##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 2011  3071.011  2932.262  3054.203  2381.178  2418.761  1998.229  2329.895
## 2012  5551.676  4091.862  3249.951  3193.361  3851.132  2673.787  3945.991
## 2013  6189.613  3389.515  2937.854  3256.841  3189.894  2975.463  3470.218
## 2014  8821.191  5411.171  3789.147  3889.709  3960.321  4229.178  1784.529
## 2015  9302.214  4610.568  4528.315  4299.768  5006.318  4808.087 10719.480
## 2016  9802.295  7060.086  5170.786  4770.902  6282.794  4496.823 14403.892
## 2017 10336.152  6777.860  6750.998  6386.411  7526.697  3332.357 19702.729
## 2018 13187.621  7417.607  6096.684  7509.484  6441.516 15185.729 12618.539
## 2019 13282.646  7529.556  7036.191  7362.127  6503.036 19381.085  9575.539
## 2020 14488.880  8426.676  6497.389  6243.143  7031.218  9908.713  5461.708
## 2021 14673.916  7171.052  5813.241  5305.827 11546.156  6446.963  2922.981
##            Aug       Sep       Oct       Nov       Dec
## 2011  1886.602  8767.383  3314.239  3747.879  2613.509
## 2012  5367.956  5415.970  3291.799  4143.024  2606.021
## 2013  7713.398  4588.796  4117.679  4097.263  2760.064
## 2014 14339.480  4988.205  5031.002  4545.631  3486.724
## 2015  6885.894  4549.856  5109.469  5009.577  3978.902
## 2016  7197.173  5917.749  6556.520  5873.714  5905.975
## 2017  8271.746  7553.481  7754.196  7510.503  6477.016
## 2018  8495.113  7821.194  8461.978  7774.122  5423.020
## 2019  8845.822  7792.708  9314.393  8651.688  8375.968
## 2020  6323.179  6604.377  5057.451  7289.093  3515.972
## 2021  5105.404
jatimoutflowtimeseries <- ts(dataoutflowbulan$`Jawa Timur`, frequency=12, start=c(2011,1))
jatimoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   622.2843  1161.2019  1818.9743  2548.3076  2202.0508  2881.6643
## 2012   972.6386  2107.9733  3537.5574  3385.7392  3330.3175  5276.1881
## 2013  1042.6989  1416.3046  1956.8638  1501.3800  2436.5230  2548.4787
## 2014  2292.6490  2337.3901  4341.3923  3259.1932  3762.0541  3671.3338
## 2015  1477.3586  2466.3076  3691.7979  6112.8089  3701.0538  7691.4778
## 2016  2028.4451  3699.0597  4496.5522  5539.6423  7636.9558 18111.9600
## 2017  2443.7613  4603.4441  7882.3392  6755.4780  8700.5238 22447.4045
## 2018  2578.4385  5969.9665  9790.7112  6163.5930 14484.9670 15809.8892
## 2019  2272.9352  5545.4638  8593.6906  9438.6568 24122.3944  2418.9280
## 2020  3789.6870  5644.7356  9175.4920  9057.1774 11911.2719  2584.3144
## 2021  1339.2973  4063.6639  5911.6155 12153.3435 10258.7903  3478.7340
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  3703.3381 10065.1388   997.5488  2446.9332  2002.5094  4766.7289
## 2012  4999.0124  7700.9961  1600.9659  3363.9058  2929.6925  5283.8016
## 2013  5133.5144  3883.1844  2330.9637  4056.2800  3496.0878  6862.7322
## 2014 14441.2175  1421.8224  3508.4894  4449.9358  4017.4337  6428.3864
## 2015 13456.5557  2901.5841  5135.6666  3915.9097  4379.8290  8654.3655
## 2016  3438.6223  3697.4495  6212.4006  4866.6283  5763.2763  8999.8004
## 2017  2421.0292  8428.1973  5489.6827  5071.8714  8510.9058 10641.2201
## 2018  4579.9448  9148.7061  5728.7680  6591.1663  7346.6019  9802.3189
## 2019  7869.8703  8757.2044  6624.0955  6896.2513  8618.8669 14355.7462
## 2020  8544.1231  5712.7574  6949.3088 10935.1122  5170.0166 13900.2427
## 2021  5906.8317  2917.2180
plot.ts(jatimoutflowtimeseries)

plot.ts(jatiminflowtimeseries)

jawatimurintimeseriescomponents <- decompose(jatiminflowtimeseries)
jawatimurintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2012  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2013  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2014  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2015  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2016  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2017  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2018  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2019  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2020  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
## 2021  3956.04132  -434.86644 -1491.60992 -1394.72968 -1099.06353   791.28563
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2012  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2013  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2014  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2015  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2016  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2017  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2018  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2019  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2020  2040.31129  1105.68863   -56.13335  -678.91480  -665.75481 -2072.25434
## 2021  2040.31129  1105.68863
jawatimurouttimeseriescomponents <- decompose(jatimoutflowtimeseries)
jawatimurouttimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2012 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2013 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2014 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2015 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2016 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2017 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2018 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2019 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2020 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
## 2021 -4074.06921 -2291.82747   -32.32033  -349.47499  2804.60711  2800.31496
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2012   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2013   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2014   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2015   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2016   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2017   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2018   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2019   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2020   983.48098   281.38109 -1461.68022  -717.14347  -826.61161  2883.34315
## 2021   983.48098   281.38109
plot(jawatimurintimeseriescomponents$seasonal,type = "l", col = "red")
lines(jawatimurouttimeseriescomponents$seasonal,col="green")
legend("top",c("Inflow","Outflow"),fill=c("red","green"))

plot(jawatimurintimeseriescomponents$trend,type = "l", col = "red")
lines(jawatimurouttimeseriescomponents$trend,col="green")
legend("top",c("Inflow","Outflow"),fill=c("red","green"))

plot(jawatimurintimeseriescomponents$random ,type = "l", col = "red")
lines(jawatimurouttimeseriescomponents$random,col="green")
legend("top",c("Inflow","Outflow"),fill=c("red","green"))

plot(jawatimurintimeseriescomponents$figure ,type = "l", col = "red")
lines(jawatimurouttimeseriescomponents$figure,col="green")
legend("top",c("Inflow","Outflow"),fill=c("red","green"))

jawatimurintimeseriesseasonallyadjusted <- jatimtimeseries - jawatimurintimeseriescomponents$seasonal
plot(jawatimurintimeseriesseasonallyadjusted)

jatimseriesforecasts <- HoltWinters(jatimtimeseries, beta=FALSE, gamma=FALSE)
jatimseriesforecasts
## Holt-Winters exponential smoothing without trend and without seasonal component.
## 
## Call:
## HoltWinters(x = jatimtimeseries, beta = FALSE, gamma = FALSE)
## 
## Smoothing parameters:
##  alpha: 0.09988877
##  beta : FALSE
##  gamma: FALSE
## 
## Coefficients:
##      [,1]
## a 7064.61
jatimseriesforecasts$fitted
## Time Series:
## Start = 2 
## End = 128 
## Frequency = 1 
##         xhat    level
##   2 3071.011 3071.011
##   3 3057.151 3057.151
##   4 3056.857 3056.857
##   5 2989.364 2989.364
##   6 2932.367 2932.367
##   7 2839.057 2839.057
##   8 2788.198 2788.198
##   9 2698.138 2698.138
##  10 3304.388 3304.388
##  11 3305.372 3305.372
##  12 3349.573 3349.573
##  13 3276.049 3276.049
##  14 3503.358 3503.358
##  15 3562.143 3562.143
##  16 3530.959 3530.959
##  17 3497.236 3497.236
##  18 3532.587 3532.587
##  19 3446.802 3446.802
##  20 3496.666 3496.666
##  21 3683.586 3683.586
##  22 3856.632 3856.632
##  23 3800.212 3800.212
##  24 3834.455 3834.455
##  25 3711.748 3711.748
##  26 3959.259 3959.259
##  27 3902.348 3902.348
##  28 3806.006 3806.006
##  29 3751.150 3751.150
##  30 3695.087 3695.087
##  31 3623.205 3623.205
##  32 3607.923 3607.923
##  33 4018.014 4018.014
##  34 4075.029 4075.029
##  35 4079.289 4079.289
##  36 4081.084 4081.084
##  37 3949.129 3949.129
##  38 4435.794 4435.794
##  39 4533.223 4533.223
##  40 4458.898 4458.898
##  41 4402.042 4402.042
##  42 4357.919 4357.919
##  43 4345.060 4345.060
##  44 4089.291 4089.291
##  45 5113.170 5113.170
##  46 5100.687 5100.687
##  47 5093.727 5093.727
##  48 5038.978 5038.978
##  49 4883.925 4883.925
##  50 5325.263 5325.263
##  51 5253.873 5253.873
##  52 5181.398 5181.398
##  53 5093.333 5093.333
##  54 5084.641 5084.641
##  55 5057.016 5057.016
##  56 5622.633 5622.633
##  57 5748.818 5748.818
##  58 5629.056 5629.056
##  59 5577.155 5577.155
##  60 5520.460 5520.460
##  61 5366.476 5366.476
##  62 5809.564 5809.564
##  63 5934.477 5934.477
##  64 5858.193 5858.193
##  65 5749.585 5749.585
##  66 5802.847 5802.847
##  67 5672.390 5672.390
##  68 6544.569 6544.569
##  69 6609.757 6609.757
##  70 6540.633 6540.633
##  71 6542.220 6542.220
##  72 6475.443 6475.443
##  73 6418.560 6418.560
##  74 6809.883 6809.883
##  75 6806.685 6806.685
##  76 6801.122 6801.122
##  77 6759.697 6759.697
##  78 6836.312 6836.312
##  79 6486.306 6486.306
##  80 7806.478 7806.478
##  81 7852.953 7852.953
##  82 7823.039 7823.039
##  83 7816.163 7816.163
##  84 7785.631 7785.631
##  85 7654.915 7654.915
##  86 8207.570 8207.570
##  87 8128.662 8128.662
##  88 7925.690 7925.690
##  89 7884.116 7884.116
##  90 7740.016 7740.016
##  91 8483.759 8483.759
##  92 8896.777 8896.777
##  93 8856.656 8856.656
##  94 8753.225 8753.225
##  95 8724.132 8724.132
##  96 8629.237 8629.237
##  97 8308.972 8308.972
##  98 8805.786 8805.786
##  99 8678.305 8678.305
## 100 8514.276 8514.276
## 101 8399.190 8399.190
## 102 8209.785 8209.785
## 103 9325.673 9325.673
## 104 9350.631 9350.631
## 105 9300.207 9300.207
## 106 9149.624 9149.624
## 107 9166.083 9166.083
## 108 9114.701 9114.701
## 109 9040.910 9040.910
## 110 9585.101 9585.101
## 111 9469.387 9469.387
## 112 9172.518 9172.518
## 113 8879.906 8879.906
## 114 8695.243 8695.243
## 115 8816.455 8816.455
## 116 8481.354 8481.354
## 117 8265.776 8265.776
## 118 8099.821 8099.821
## 119 7795.922 7795.922
## 120 7745.296 7745.296
## 121 7322.834 7322.834
## 122 8057.124 8057.124
## 123 7968.616 7968.616
## 124 7753.318 7753.318
## 125 7508.841 7508.841
## 126 7912.124 7912.124
## 127 7765.770 7765.770
## 128 7282.030 7282.030
plot(jatimseriesforecasts)

jatimseriesforecasts$SSE
## [1] 1087163799
jatimseriesforecasts <- HoltWinters(jawatimurintimeseriescomponents$seasonal, beta=FALSE, gamma=FALSE)
jatimseriesforecasts
## Holt-Winters exponential smoothing without trend and without seasonal component.
## 
## Call:
## HoltWinters(x = jawatimurintimeseriescomponents$seasonal, beta = FALSE,     gamma = FALSE)
## 
## Smoothing parameters:
##  alpha: 0.1516967
##  beta : FALSE
##  gamma: FALSE
## 
## Coefficients:
##       [,1]
## a 281.6174
jatimseriesforecasts$fitted
##                 xhat       level
## Feb 2011 3956.041325 3956.041325
## Mar 2011 3289.955114 3289.955114
## Apr 2011 2564.607485 2564.607485
## May 2011 1963.989110 1963.989110
## Jun 2011 1499.334137 1499.334137
## Jul 2011 1391.925517 1391.925517
## Aug 2011 1490.283498 1490.283498
## Sep 2011 1431.941726 1431.941726
## Oct 2011 1206.205650 1206.205650
## Nov 2011  920.239102  920.239102
## Dec 2011  679.649062  679.649062
## Jan 2012  262.194401  262.194401
## Feb 2012  822.538784  822.538784
## Mar 2012  631.794562  631.794562
## Apr 2012  309.681113  309.681113
## May 2012   51.127624   51.127624
## Jun 2012 -123.352577 -123.352577
## Jul 2012   15.395019   15.395019
## Aug 2012  322.568132  322.568132
## Sep 2012  441.364926  441.364926
## Oct 2012  365.896080  365.896080
## Nov 2012  207.401719  207.401719
## Dec 2012   74.946757   74.946757
## Jan 2013 -250.776561 -250.776561
## Feb 2013  387.383823  387.383823
## Mar 2013  262.651172  262.651172
## Apr 2013   -3.464444   -3.464444
## May 2013 -214.514786 -214.514786
## Jun 2013 -348.697910 -348.697910
## Jul 2013 -175.766171 -175.766171
## Aug 2013  160.405464  160.405464
## Sep 2013  303.801798  303.801798
## Oct 2013  249.200825  249.200825
## Nov 2013  108.408749  108.408749
## Dec 2013   -9.029307   -9.029307
## Jan 2014 -322.013733 -322.013733
## Feb 2014  326.953095  326.953095
## Mar 2014  211.387586  211.387586
## Apr 2014  -46.951513  -46.951513
## May 2014 -251.405011 -251.405011
## Jun 2014 -379.992010 -379.992010
## Jul 2014 -202.313058 -202.313058
## Aug 2014  137.885651  137.885651
## Sep 2014  284.698167  284.698167
## Oct 2014  232.995151  232.995151
## Nov 2014   94.661423   94.661423
## Dec 2014  -20.691209  -20.691209
## Jan 2015 -331.906563 -331.906563
## Feb 2015  318.560974  318.560974
## Mar 2015  204.268523  204.268523
## Apr 2015  -52.990638  -52.990638
## May 2015 -256.528020 -256.528020
## Jun 2015 -384.337876 -384.337876
## Jul 2015 -205.999671 -205.999671
## Aug 2015  134.758286  134.758286
## Sep 2015  282.045212  282.045212
## Oct 2015  230.744641  230.744641
## Nov 2015   92.752307   92.752307
## Dec 2015  -22.310718  -22.310718
## Jan 2016 -333.280398 -333.280398
## Feb 2016  317.395546  317.395546
## Mar 2016  203.279886  203.279886
## Apr 2016  -53.829302  -53.829302
## May 2016 -257.239462 -257.239462
## Jun 2016 -384.941394 -384.941394
## Jul 2016 -206.511637 -206.511637
## Aug 2016  134.323983  134.323983
## Sep 2016  281.676792  281.676792
## Oct 2016  230.432109  230.432109
## Nov 2016   92.487185   92.487185
## Dec 2016  -22.535622  -22.535622
## Jan 2017 -333.471185 -333.471185
## Feb 2017  317.233701  317.233701
## Mar 2017  203.142592  203.142592
## Apr 2017  -53.945769  -53.945769
## May 2017 -257.338261 -257.338261
## Jun 2017 -385.025205 -385.025205
## Jul 2017 -206.582735 -206.582735
## Aug 2017  134.263670  134.263670
## Sep 2017  281.625629  281.625629
## Oct 2017  230.388707  230.388707
## Nov 2017   92.450367   92.450367
## Dec 2017  -22.566855  -22.566855
## Jan 2018 -333.497679 -333.497679
## Feb 2018  317.211225  317.211225
## Mar 2018  203.123526  203.123526
## Apr 2018  -53.961943  -53.961943
## May 2018 -257.351981 -257.351981
## Jun 2018 -385.036844 -385.036844
## Jul 2018 -206.592608 -206.592608
## Aug 2018  134.255295  134.255295
## Sep 2018  281.618524  281.618524
## Oct 2018  230.382680  230.382680
## Nov 2018   92.445254   92.445254
## Dec 2018  -22.571192  -22.571192
## Jan 2019 -333.501359 -333.501359
## Feb 2019  317.208104  317.208104
## Mar 2019  203.120878  203.120878
## Apr 2019  -53.964189  -53.964189
## May 2019 -257.353887 -257.353887
## Jun 2019 -385.038461 -385.038461
## Jul 2019 -206.593980 -206.593980
## Aug 2019  134.254132  134.254132
## Sep 2019  281.617537  281.617537
## Oct 2019  230.381843  230.381843
## Nov 2019   92.444544   92.444544
## Dec 2019  -22.571794  -22.571794
## Jan 2020 -333.501870 -333.501870
## Feb 2020  317.207670  317.207670
## Mar 2020  203.120510  203.120510
## Apr 2020  -53.964501  -53.964501
## May 2020 -257.354151 -257.354151
## Jun 2020 -385.038685 -385.038685
## Jul 2020 -206.594170 -206.594170
## Aug 2020  134.253970  134.253970
## Sep 2020  281.617400  281.617400
## Oct 2020  230.381726  230.381726
## Nov 2020   92.444446   92.444446
## Dec 2020  -22.571878  -22.571878
## Jan 2021 -333.501941 -333.501941
## Feb 2021  317.207610  317.207610
## Mar 2021  203.120459  203.120459
## Apr 2021  -53.964544  -53.964544
## May 2021 -257.354188 -257.354188
## Jun 2021 -385.038716 -385.038716
## Jul 2021 -206.594196 -206.594196
## Aug 2021  134.253948  134.253948
plot(jatimseriesforecasts)

jatimseriesforecasts$SSE
## [1] 451197402
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
dftimeseries.hw <- HoltWinters(jatimtimeseries, gamma=FALSE)
## Warning in HoltWinters(jatimtimeseries, gamma = FALSE): optimization
## difficulties: ERROR: ABNORMAL_TERMINATION_IN_LNSRCH
jawatimurtimeserieforecasts2  <-forecast(dftimeseries.hw,h=20)
jawatimurtimeserieforecasts2
##     Point Forecast       Lo 80    Hi 80      Lo 95     Hi 95
## 129       5475.372  1777.62368 9173.121  -179.8462 11130.591
## 130       5265.308  1564.79659 8965.820  -394.1360 10924.753
## 131       5055.244  1348.87851 8761.610  -613.1531 10723.642
## 132       4845.180  1128.73806 8561.623  -838.6277 10528.989
## 133       4635.117   903.26823 8366.965 -1072.2529 10342.486
## 134       4425.053   671.40003 8178.705 -1315.6636 10165.769
## 135       4214.989   432.11829 7997.859 -1570.4123 10000.390
## 136       4004.925   184.47839 7825.371 -1837.9437  9847.793
## 137       3794.861   -72.37727 7662.099 -2119.5694  9709.291
## 138       3584.797  -339.20425 7508.798 -2416.4450  9586.039
## 139       3374.733  -616.64408 7366.110 -2729.5514  9479.017
## 140       3164.669  -905.21599 7234.554 -3059.6830  9389.021
## 141       2954.605 -1205.31338 7114.524 -3407.4412  9316.651
## 142       2744.541 -1517.20499 7006.287 -3773.2371  9262.319
## 143       2534.477 -1841.04060 6909.995 -4157.2998  9226.254
## 144       2324.413 -2176.86056 6825.687 -4559.6910  9208.518
## 145       2114.349 -2524.60817 6753.307 -4980.3240  9209.023
## 146       1904.285 -2884.14385 6692.715 -5418.9852  9227.556
## 147       1694.222 -3255.25996 6643.703 -5875.3572  9263.800
## 148       1484.158 -3637.69549 6606.011 -6349.0407  9317.356
plot(jawatimurtimeserieforecasts2)

jatimtimeseriesdiff1<-diff(jatimtimeseries, difference=1)
plot.ts(jatimtimeseriesdiff1)

acf(jatimtimeseriesdiff1, lag.max=20) # plot correlogram

acf(jatimtimeseriesdiff1,lag.max=20, plot=FALSE) #to get the partial autocorrelation values
## 
## Autocorrelations of series 'jatimtimeseriesdiff1', by lag
## 
##      0      1      2      3      4      5      6      7      8      9     10 
##  1.000 -0.512  0.026 -0.046 -0.027  0.034  0.058  0.071 -0.110  0.025 -0.131 
##     11     12     13     14     15     16     17     18     19     20 
## -0.080  0.520 -0.342  0.019 -0.014 -0.064  0.037  0.115  0.013 -0.103
pacf(jatimtimeseriesdiff1,lag.max=20) #plot partial correlogram

pacf(jatimtimeseriesdiff1,lag.max=20,plot=FALSE) # get partial auto correlation value
## 
## Partial autocorrelations of series 'jatimtimeseriesdiff1', by lag
## 
##      1      2      3      4      5      6      7      8      9     10     11 
## -0.512 -0.320 -0.290 -0.326 -0.322 -0.242 -0.017  0.008  0.087 -0.109 -0.567 
##     12     13     14     15     16     17     18     19     20 
##  0.053  0.136  0.085  0.165  0.047 -0.076 -0.023  0.005  0.035
jatimtimeseriesarima<-arima(jatimtimeseries, order=c(0,1,1))
jatimtimeseriesarima
## 
## Call:
## arima(x = jatimtimeseries, order = c(0, 1, 1))
## 
## Coefficients:
##           ma1
##       -0.8972
## s.e.   0.0303
## 
## sigma^2 estimated as 8557623:  log likelihood = -1194.63,  aic = 2393.26
library("forecast") # load the "forecast" R library
jatimtimeseriesforecastsar <- forecast(jatimtimeseriesarima, h=15)
jatimtimeseriesforecastsar
##     Point Forecast    Lo 80    Hi 80     Lo 95    Hi 95
## 129       7036.183 3287.206 10785.16 1302.6184 12769.75
## 130       7036.183 3267.445 10804.92 1272.3957 12799.97
## 131       7036.183 3247.786 10824.58 1242.3308 12830.03
## 132       7036.183 3228.230 10844.14 1212.4210 12859.94
## 133       7036.183 3208.773 10863.59 1182.6640 12889.70
## 134       7036.183 3189.414 10882.95 1153.0576 12919.31
## 135       7036.183 3170.152 10902.21 1123.5994 12948.77
## 136       7036.183 3150.986 10921.38 1094.2873 12978.08
## 137       7036.183 3131.914 10940.45 1065.1190 13007.25
## 138       7036.183 3112.935 10959.43 1036.0926 13036.27
## 139       7036.183 3094.047 10978.32 1007.2059 13065.16
## 140       7036.183 3075.249 10997.12  978.4569 13093.91
## 141       7036.183 3056.539 11015.83  949.8437 13122.52
## 142       7036.183 3037.918 11034.45  921.3645 13151.00
## 143       7036.183 3019.383 11052.98  893.0172 13179.35
plot(jatimtimeseriesforecastsar)

acf(jatimtimeseriesforecastsar$residuals, lag.max=20)

Box.test(jatimtimeseriesforecastsar$residuals, lag=20, type="Ljung-Box")
## 
##  Box-Ljung test
## 
## data:  jatimtimeseriesforecastsar$residuals
## X-squared = 83.232, df = 20, p-value = 1.103e-09

Daftar pustaka :

  1. https://analyticsbuddhu.wordpress.com/2017/02/24/how-to-make-arima-models-in-time-series-using-r/
  2. https://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html