library(dplyr)
## Warning: package 'dplyr' was built under R version 3.6.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)
## Warning: package 'readr' was built under R version 3.6.2
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.2
datasetsum<-read_csv("/Users/rebeccagibble/Downloads/Fall 2021 Data.csv")
## Warning: Missing column names filled in: 'X8' [8], 'X9' [9], 'X10' [10],
## 'X11' [11], 'X12' [12], 'X13' [13]
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   Timestamp = col_character(),
##   Week = col_character(),
##   Mentor = col_character(),
##   VOH = col_character(),
##   Student = col_double(),
##   Status = col_character(),
##   Concern = col_character(),
##   X8 = col_logical(),
##   X9 = col_logical(),
##   X10 = col_logical(),
##   X11 = col_logical(),
##   X12 = col_logical(),
##   X13 = col_logical()
## )

Fall 2021 Virtual Office Hour Logs

In Fall of 2021, we had 554 logged office hours (in the response sheet), but it is important to note that some office hours get logged many times as a result of multiple mentors working the same office hour. Excluding duplicates and days where we had training/faculty lectures, we actually hosted 324 office hours.

Out of these office hours, we saw 195 students according to the log. This response sheet does not include the students supervisors met with.

This means that we see students in at least 60.18% of office hours.

Frequency Per Office Hour

newname1<-datasetsum%>%
  select(VOH,Student)

name2<-aggregate(x = newname1$Student,               
          by = list(newname1$VOH),              
          FUN = sum)

name2[with(name2, order(-x)), ]
##                    Group.1  x
## 24   Wednesday 3:00 - 4:00 15
## 12    Thursday 3:00 - 4:00 14
## 6       Monday 3:00 - 4:00 13
## 15   Tuesday 11:00 - 12:00 11
## 17     Tuesday 2:00 - 3:00 11
## 1       Monday 1:00 - 2:00 10
## 5       Monday 2:00 - 3:00 10
## 16    Tuesday 12:00 - 1:00 10
## 4      Monday 12:00 - 1:00  9
## 7     Thursday 1:00 - 2:00  9
## 13     Tuesday 1:00 - 2:00  9
## 10   Thursday 12:00 - 1:00  8
## 11    Thursday 2:00 - 3:00  8
## 3     Monday 11:00 - 12:00  7
## 18     Tuesday 3:00 - 4:00  7
## 21 Wednesday 11:00 - 12:00  7
## 2     Monday 10:00 - 11:00  6
## 14   Tuesday 10:00 - 11:00  6
## 19   Wednesday 1:00 - 2:00  5
## 20 Wednesday 10:00 - 11:00  5
## 22  Wednesday 12:00 - 1:00  5
## 9   Thursday 11:00 - 12:00  4
## 23   Wednesday 2:00 - 3:00  4
## 8   Thursday 10:00 - 11:00  2
my_data <- as_tibble(name2)
my_data
## # A tibble: 24 x 2
##    Group.1                    x
##    <chr>                  <dbl>
##  1 Monday 1:00 - 2:00        10
##  2 Monday 10:00 - 11:00       6
##  3 Monday 11:00 - 12:00       7
##  4 Monday 12:00 - 1:00        9
##  5 Monday 2:00 - 3:00        10
##  6 Monday 3:00 - 4:00        13
##  7 Thursday 1:00 - 2:00       9
##  8 Thursday 10:00 - 11:00     2
##  9 Thursday 11:00 - 12:00     4
## 10 Thursday 12:00 - 1:00      8
## # … with 14 more rows
colnames(my_data)
## [1] "Group.1" "x"
names(my_data)[names(my_data) == "Group.1"] <- "VOH"
names(my_data)[names(my_data) == "x"] <- "Frequency"

my_data[with(my_data, order(-Frequency)), ]
## # A tibble: 24 x 2
##    VOH                   Frequency
##    <chr>                     <dbl>
##  1 Wednesday 3:00 - 4:00        15
##  2 Thursday 3:00 - 4:00         14
##  3 Monday 3:00 - 4:00           13
##  4 Tuesday 11:00 - 12:00        11
##  5 Tuesday 2:00 - 3:00          11
##  6 Monday 1:00 - 2:00           10
##  7 Monday 2:00 - 3:00           10
##  8 Tuesday 12:00 - 1:00         10
##  9 Monday 12:00 - 1:00           9
## 10 Thursday 1:00 - 2:00          9
## # … with 14 more rows

Bar Chart For Frequency

ggplot(my_data, aes(x = reorder(VOH,+Frequency), y = Frequency)) +
  coord_flip()+
    geom_bar(stat = "identity")

### Frequency Per Mentor #### This is not as telling as some Mentors did see students, but another Mentor logged it.

newname2<-datasetsum%>%
  select(Mentor,Student)

name4<-aggregate(x = newname2$Student,               
          by = list(newname2$Mentor),              
          FUN = sum)

name4[with(name4, order(-x)), ]
##       Group.1  x
## 3      Ashley 26
## 7     Brianna 19
## 5        Bria 16
## 4       Atika 13
## 11    Nirvana 13
## 1       Amaya 12
## 15    Reveena 12
## 20  Stephanie 12
## 19      Sneha 11
## 17      Sabah 10
## 2      Anlisa  9
## 12     Rachel  9
## 16  Riyahauna  8
## 18     Sheyla  8
## 8       Chloe  4
## 21     Uzaiza  4
## 10 Miss Prity  3
## 6       Bria   2
## 13    Reubena  2
## 9       Jorge  1
## 14   Reubena   1
my_data1 <- as_tibble(name4)

colnames(my_data1)
## [1] "Group.1" "x"
names(my_data1)[names(my_data1) == "Group.1"] <- "Mentor"
names(my_data1)[names(my_data1) == "x"] <- "Frequency"

my_data1[with(my_data1, order(-Frequency)), ]
## # A tibble: 21 x 2
##    Mentor    Frequency
##    <chr>         <dbl>
##  1 Ashley           26
##  2 Brianna          19
##  3 Bria             16
##  4 Atika            13
##  5 Nirvana          13
##  6 Amaya            12
##  7 Reveena          12
##  8 Stephanie        12
##  9 Sneha            11
## 10 Sabah            10
## # … with 11 more rows

Bar Chart For Frequency Per Mentor

ggplot(my_data1, aes(x = reorder(Mentor,+Frequency), y = Frequency)) +
  coord_flip()+
    geom_bar(stat = "identity")

### Frequency Per Week (Week 1, Week 2, Week 3, etc.)

weeks<-datasetsum%>%
  select(Week,Student)

weeks1<-aggregate(x = weeks$Student,               
          by = list(weeks$Week),              
          FUN = sum)

weeks1[with(weeks1, order(-x)), ]
##    Group.1  x
## 1     Wk 1 27
## 10    Wk 2 24
## 12    Wk 4 19
## 3    Wk 11 17
## 2    Wk 10 16
## 13    Wk 5 14
## 17    Wk 9 13
## 16    Wk 8 12
## 4    Wk 12 11
## 5    Wk 13 11
## 8    Wk 16  8
## 7    Wk 15  6
## 11    Wk 3  5
## 9    Wk 17  4
## 14    Wk 6  4
## 15    Wk 7  3
## 6    Wk 14  1
my_data3 <- as_tibble(weeks1)
my_data3
## # A tibble: 17 x 2
##    Group.1     x
##    <chr>   <dbl>
##  1 Wk 1       27
##  2 Wk 10      16
##  3 Wk 11      17
##  4 Wk 12      11
##  5 Wk 13      11
##  6 Wk 14       1
##  7 Wk 15       6
##  8 Wk 16       8
##  9 Wk 17       4
## 10 Wk 2       24
## 11 Wk 3        5
## 12 Wk 4       19
## 13 Wk 5       14
## 14 Wk 6        4
## 15 Wk 7        3
## 16 Wk 8       12
## 17 Wk 9       13
colnames(my_data3)
## [1] "Group.1" "x"
names(my_data3)[names(my_data3) == "Group.1"] <- "Week"
names(my_data3)[names(my_data3) == "x"] <- "Frequency"

sort(my_data3$Frequency, decreasing=TRUE)
##  [1] 27 24 19 17 16 14 13 12 11 11  8  6  5  4  4  3  1
my_data3
## # A tibble: 17 x 2
##    Week  Frequency
##    <chr>     <dbl>
##  1 Wk 1         27
##  2 Wk 10        16
##  3 Wk 11        17
##  4 Wk 12        11
##  5 Wk 13        11
##  6 Wk 14         1
##  7 Wk 15         6
##  8 Wk 16         8
##  9 Wk 17         4
## 10 Wk 2         24
## 11 Wk 3          5
## 12 Wk 4         19
## 13 Wk 5         14
## 14 Wk 6          4
## 15 Wk 7          3
## 16 Wk 8         12
## 17 Wk 9         13

Bar Chart (Per Week)

ggplot(my_data3, aes(x = Week, y = Frequency)) +
    geom_bar(stat = "identity")

### Mean Students Per Week #### 195 students throughout the semester, ~17 weeks of VOH. This number is a little off because many weeks were shortened (for example, week 17 only had 1 day of VOH).

195/17
## [1] 11.47059

Breakdown of student types in numbers

table(datasetsum$Status)
## 
##           Freshman            Parent  Revisiting Student             Senior 
##                175                  1                  1                  1 
##         Sophomore            Transfer 
##                  1                 11

Breakdown of student types in percentages

There are no percentage signs, but the numbers presented are percentages of the total population

table(datasetsum$Status)%>%
  prop.table()%>%
  round(2)*100
## 
##           Freshman            Parent  Revisiting Student             Senior 
##                 92                  1                  1                  1 
##         Sophomore            Transfer 
##                  1                  6

Breakdown of Student Concerns in Numbers

concern1<-table(datasetsum$Concern)
concern1
## 
##             Academic Planning            Admissions Process 
##                            69                             2 
##             Campaign Services                Campus Access  
##                            26                             7 
## Financial Aid/Tuition Payment            General Advisement 
##                             9                            34 
##               Help with paper                Schedule Issue 
##                             2                            15 
##                    Technology              Transfer Process 
##                            22                             5

Breakdown of Student Concerns in Percentages

There are no percentage signs, but the numbers presented are percentages of the total population

table(datasetsum$Concern)%>%
  prop.table()%>%
  round(2)*100
## 
##             Academic Planning            Admissions Process 
##                            36                             1 
##             Campaign Services                Campus Access  
##                            14                             4 
## Financial Aid/Tuition Payment            General Advisement 
##                             5                            18 
##               Help with paper                Schedule Issue 
##                             1                             8 
##                    Technology              Transfer Process 
##                            12                             3

Overall, this seems like our best semester (especially for a fall semester)!!