library(dplyr)
## Warning: package 'dplyr' was built under R version 3.6.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readr)
## Warning: package 'readr' was built under R version 3.6.2
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.2
datasetsum<-read_csv("/Users/rebeccagibble/Downloads/Fall 2021 Data.csv")
## Warning: Missing column names filled in: 'X8' [8], 'X9' [9], 'X10' [10],
## 'X11' [11], 'X12' [12], 'X13' [13]
##
## ── Column specification ────────────────────────────────────────────────────────
## cols(
## Timestamp = col_character(),
## Week = col_character(),
## Mentor = col_character(),
## VOH = col_character(),
## Student = col_double(),
## Status = col_character(),
## Concern = col_character(),
## X8 = col_logical(),
## X9 = col_logical(),
## X10 = col_logical(),
## X11 = col_logical(),
## X12 = col_logical(),
## X13 = col_logical()
## )
newname1<-datasetsum%>%
select(VOH,Student)
name2<-aggregate(x = newname1$Student,
by = list(newname1$VOH),
FUN = sum)
name2[with(name2, order(-x)), ]
## Group.1 x
## 24 Wednesday 3:00 - 4:00 15
## 12 Thursday 3:00 - 4:00 14
## 6 Monday 3:00 - 4:00 13
## 15 Tuesday 11:00 - 12:00 11
## 17 Tuesday 2:00 - 3:00 11
## 1 Monday 1:00 - 2:00 10
## 5 Monday 2:00 - 3:00 10
## 16 Tuesday 12:00 - 1:00 10
## 4 Monday 12:00 - 1:00 9
## 7 Thursday 1:00 - 2:00 9
## 13 Tuesday 1:00 - 2:00 9
## 10 Thursday 12:00 - 1:00 8
## 11 Thursday 2:00 - 3:00 8
## 3 Monday 11:00 - 12:00 7
## 18 Tuesday 3:00 - 4:00 7
## 21 Wednesday 11:00 - 12:00 7
## 2 Monday 10:00 - 11:00 6
## 14 Tuesday 10:00 - 11:00 6
## 19 Wednesday 1:00 - 2:00 5
## 20 Wednesday 10:00 - 11:00 5
## 22 Wednesday 12:00 - 1:00 5
## 9 Thursday 11:00 - 12:00 4
## 23 Wednesday 2:00 - 3:00 4
## 8 Thursday 10:00 - 11:00 2
my_data <- as_tibble(name2)
my_data
## # A tibble: 24 x 2
## Group.1 x
## <chr> <dbl>
## 1 Monday 1:00 - 2:00 10
## 2 Monday 10:00 - 11:00 6
## 3 Monday 11:00 - 12:00 7
## 4 Monday 12:00 - 1:00 9
## 5 Monday 2:00 - 3:00 10
## 6 Monday 3:00 - 4:00 13
## 7 Thursday 1:00 - 2:00 9
## 8 Thursday 10:00 - 11:00 2
## 9 Thursday 11:00 - 12:00 4
## 10 Thursday 12:00 - 1:00 8
## # … with 14 more rows
colnames(my_data)
## [1] "Group.1" "x"
names(my_data)[names(my_data) == "Group.1"] <- "VOH"
names(my_data)[names(my_data) == "x"] <- "Frequency"
my_data[with(my_data, order(-Frequency)), ]
## # A tibble: 24 x 2
## VOH Frequency
## <chr> <dbl>
## 1 Wednesday 3:00 - 4:00 15
## 2 Thursday 3:00 - 4:00 14
## 3 Monday 3:00 - 4:00 13
## 4 Tuesday 11:00 - 12:00 11
## 5 Tuesday 2:00 - 3:00 11
## 6 Monday 1:00 - 2:00 10
## 7 Monday 2:00 - 3:00 10
## 8 Tuesday 12:00 - 1:00 10
## 9 Monday 12:00 - 1:00 9
## 10 Thursday 1:00 - 2:00 9
## # … with 14 more rows
ggplot(my_data, aes(x = reorder(VOH,+Frequency), y = Frequency)) +
coord_flip()+
geom_bar(stat = "identity")
### Frequency Per Mentor #### This is not as telling as some Mentors did see students, but another Mentor logged it.
newname2<-datasetsum%>%
select(Mentor,Student)
name4<-aggregate(x = newname2$Student,
by = list(newname2$Mentor),
FUN = sum)
name4[with(name4, order(-x)), ]
## Group.1 x
## 3 Ashley 26
## 7 Brianna 19
## 5 Bria 16
## 4 Atika 13
## 11 Nirvana 13
## 1 Amaya 12
## 15 Reveena 12
## 20 Stephanie 12
## 19 Sneha 11
## 17 Sabah 10
## 2 Anlisa 9
## 12 Rachel 9
## 16 Riyahauna 8
## 18 Sheyla 8
## 8 Chloe 4
## 21 Uzaiza 4
## 10 Miss Prity 3
## 6 Bria 2
## 13 Reubena 2
## 9 Jorge 1
## 14 Reubena 1
my_data1 <- as_tibble(name4)
colnames(my_data1)
## [1] "Group.1" "x"
names(my_data1)[names(my_data1) == "Group.1"] <- "Mentor"
names(my_data1)[names(my_data1) == "x"] <- "Frequency"
my_data1[with(my_data1, order(-Frequency)), ]
## # A tibble: 21 x 2
## Mentor Frequency
## <chr> <dbl>
## 1 Ashley 26
## 2 Brianna 19
## 3 Bria 16
## 4 Atika 13
## 5 Nirvana 13
## 6 Amaya 12
## 7 Reveena 12
## 8 Stephanie 12
## 9 Sneha 11
## 10 Sabah 10
## # … with 11 more rows
ggplot(my_data1, aes(x = reorder(Mentor,+Frequency), y = Frequency)) +
coord_flip()+
geom_bar(stat = "identity")
### Frequency Per Week (Week 1, Week 2, Week 3, etc.)
weeks<-datasetsum%>%
select(Week,Student)
weeks1<-aggregate(x = weeks$Student,
by = list(weeks$Week),
FUN = sum)
weeks1[with(weeks1, order(-x)), ]
## Group.1 x
## 1 Wk 1 27
## 10 Wk 2 24
## 12 Wk 4 19
## 3 Wk 11 17
## 2 Wk 10 16
## 13 Wk 5 14
## 17 Wk 9 13
## 16 Wk 8 12
## 4 Wk 12 11
## 5 Wk 13 11
## 8 Wk 16 8
## 7 Wk 15 6
## 11 Wk 3 5
## 9 Wk 17 4
## 14 Wk 6 4
## 15 Wk 7 3
## 6 Wk 14 1
my_data3 <- as_tibble(weeks1)
my_data3
## # A tibble: 17 x 2
## Group.1 x
## <chr> <dbl>
## 1 Wk 1 27
## 2 Wk 10 16
## 3 Wk 11 17
## 4 Wk 12 11
## 5 Wk 13 11
## 6 Wk 14 1
## 7 Wk 15 6
## 8 Wk 16 8
## 9 Wk 17 4
## 10 Wk 2 24
## 11 Wk 3 5
## 12 Wk 4 19
## 13 Wk 5 14
## 14 Wk 6 4
## 15 Wk 7 3
## 16 Wk 8 12
## 17 Wk 9 13
colnames(my_data3)
## [1] "Group.1" "x"
names(my_data3)[names(my_data3) == "Group.1"] <- "Week"
names(my_data3)[names(my_data3) == "x"] <- "Frequency"
sort(my_data3$Frequency, decreasing=TRUE)
## [1] 27 24 19 17 16 14 13 12 11 11 8 6 5 4 4 3 1
my_data3
## # A tibble: 17 x 2
## Week Frequency
## <chr> <dbl>
## 1 Wk 1 27
## 2 Wk 10 16
## 3 Wk 11 17
## 4 Wk 12 11
## 5 Wk 13 11
## 6 Wk 14 1
## 7 Wk 15 6
## 8 Wk 16 8
## 9 Wk 17 4
## 10 Wk 2 24
## 11 Wk 3 5
## 12 Wk 4 19
## 13 Wk 5 14
## 14 Wk 6 4
## 15 Wk 7 3
## 16 Wk 8 12
## 17 Wk 9 13
ggplot(my_data3, aes(x = Week, y = Frequency)) +
geom_bar(stat = "identity")
### Mean Students Per Week #### 195 students throughout the semester, ~17 weeks of VOH. This number is a little off because many weeks were shortened (for example, week 17 only had 1 day of VOH).
195/17
## [1] 11.47059
table(datasetsum$Status)
##
## Freshman Parent Revisiting Student Senior
## 175 1 1 1
## Sophomore Transfer
## 1 11
table(datasetsum$Status)%>%
prop.table()%>%
round(2)*100
##
## Freshman Parent Revisiting Student Senior
## 92 1 1 1
## Sophomore Transfer
## 1 6
concern1<-table(datasetsum$Concern)
concern1
##
## Academic Planning Admissions Process
## 69 2
## Campaign Services Campus Access
## 26 7
## Financial Aid/Tuition Payment General Advisement
## 9 34
## Help with paper Schedule Issue
## 2 15
## Technology Transfer Process
## 22 5
table(datasetsum$Concern)%>%
prop.table()%>%
round(2)*100
##
## Academic Planning Admissions Process
## 36 1
## Campaign Services Campus Access
## 14 4
## Financial Aid/Tuition Payment General Advisement
## 5 18
## Help with paper Schedule Issue
## 1 8
## Technology Transfer Process
## 12 3