Introduction:

Welcome to the Cyclistic bike-share analysis case study! This analysis is based on the Divvy case study “‘Sophisticated, Clear, and Polished’: Divvy and Data Visualization” written by Kevin Hartman found here.

About The Company

In 2016, Cyclistic launched a successful bike-share offering. Since then, the program has grown to a fleet of 5,824 bicycles that are geotracked and locked into a network of 692 stations across Chicago. The bikes can be unlocked from one station and returned to any other station in the system anytime.

Aim of the Company

Converting Casual Riders into Annual Members

Company believes that maximizing the number of annual members will be key to future growth. Rather than creating a marketing campaign that targets all-new customers,

The purpose of this script is to consolidate downloaded Divvy data into a single dataframe and then conduct simple analysis to help answer the key question: “In what ways do members and casual riders use Divvy bikes differently?”

In order to answer the key business questions, this case study follows these steps: ask, prepare, process, analyze, share, and act.

Asking the questions for the future marketing program.

  • 1.How do annual members and casual riders use Cyclistic bikes differently?
  • 2.Why would casual riders buy Cyclistic annual memberships?
  • 3.How can Cyclistic use digital media to influence casual riders to become members?

Installing required packages

library(tidyverse)  #helps wrangle data
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.7
## v tidyr   1.1.4     v stringr 1.4.0
## v readr   2.1.1     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(lubridate)  #helps wrangle date attributes
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
library(ggplot2)  #helps visualize data

Setting the work directory to simplify calls to data

getwd()
## [1] "C:/Users/G.MK-007/Desktop/Divvy_Exercise/csv"
setwd("C:/Users/G.MK-007/Desktop/Divvy_Exercise/csv")

STEP 1: COLLECTING DATA

Uploading Divvy datasets (csv files)

q2_2019 <- read_csv("Divvy_Trips_2019_Q2.csv")
## Rows: 1108163 Columns: 12
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr  (4): 03 - Rental Start Station Name, 02 - Rental End Station Name, User...
## dbl  (5): 01 - Rental Details Rental ID, 01 - Rental Details Bike ID, 03 - R...
## dttm (2): 01 - Rental Details Local Start Time, 01 - Rental Details Local En...
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
q3_2019 <- read_csv("Divvy_Trips_2019_Q3.csv")
## Rows: 1640718 Columns: 12
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr  (4): from_station_name, to_station_name, usertype, gender
## dbl  (5): trip_id, bikeid, from_station_id, to_station_id, birthyear
## dttm (2): start_time, end_time
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
q4_2019 <- read_csv("Divvy_Trips_2019_Q4.csv")
## Rows: 704054 Columns: 12
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr  (4): from_station_name, to_station_name, usertype, gender
## dbl  (5): trip_id, bikeid, from_station_id, to_station_id, birthyear
## dttm (2): start_time, end_time
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
q1_2020 <- read_csv("Divvy_Trips_2020_Q1.csv")
## Rows: 426887 Columns: 13
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr  (5): ride_id, rideable_type, start_station_name, end_station_name, memb...
## dbl  (6): start_station_id, end_station_id, start_lat, start_lng, end_lat, e...
## dttm (2): started_at, ended_at
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.

STEP 2: WRANGLE DATA AND COMBINE INTO A SINGLE FILE

Comparing the column names each of the files before combining
colnames(q3_2019)
##  [1] "trip_id"           "start_time"        "end_time"         
##  [4] "bikeid"            "tripduration"      "from_station_id"  
##  [7] "from_station_name" "to_station_id"     "to_station_name"  
## [10] "usertype"          "gender"            "birthyear"
colnames(q4_2019)
##  [1] "trip_id"           "start_time"        "end_time"         
##  [4] "bikeid"            "tripduration"      "from_station_id"  
##  [7] "from_station_name" "to_station_id"     "to_station_name"  
## [10] "usertype"          "gender"            "birthyear"
colnames(q2_2019)
##  [1] "01 - Rental Details Rental ID"                   
##  [2] "01 - Rental Details Local Start Time"            
##  [3] "01 - Rental Details Local End Time"              
##  [4] "01 - Rental Details Bike ID"                     
##  [5] "01 - Rental Details Duration In Seconds Uncapped"
##  [6] "03 - Rental Start Station ID"                    
##  [7] "03 - Rental Start Station Name"                  
##  [8] "02 - Rental End Station ID"                      
##  [9] "02 - Rental End Station Name"                    
## [10] "User Type"                                       
## [11] "Member Gender"                                   
## [12] "05 - Member Details Member Birthday Year"
colnames(q1_2020)
##  [1] "ride_id"            "rideable_type"      "started_at"        
##  [4] "ended_at"           "start_station_name" "start_station_id"  
##  [7] "end_station_name"   "end_station_id"     "start_lat"         
## [10] "start_lng"          "end_lat"            "end_lng"           
## [13] "member_casual"
Renameing column names to make them consisent with q1_2020 (as this will be the supposed going-forward table design for Divvy)
(q4_2019 <- rename(q4_2019
                   ,ride_id = trip_id
                   ,rideable_type = bikeid 
                   ,started_at = start_time  
                   ,ended_at = end_time  
                   ,start_station_name = from_station_name 
                   ,start_station_id = from_station_id 
                   ,end_station_name = to_station_name 
                   ,end_station_id = to_station_id 
                   ,member_casual = usertype))
## # A tibble: 704,054 x 12
##     ride_id started_at          ended_at            rideable_type tripduration
##       <dbl> <dttm>              <dttm>                      <dbl>        <dbl>
##  1 25223640 2019-10-01 00:01:39 2019-10-01 00:17:20          2215          940
##  2 25223641 2019-10-01 00:02:16 2019-10-01 00:06:34          6328          258
##  3 25223642 2019-10-01 00:04:32 2019-10-01 00:18:43          3003          850
##  4 25223643 2019-10-01 00:04:32 2019-10-01 00:43:43          3275         2350
##  5 25223644 2019-10-01 00:04:34 2019-10-01 00:35:42          5294         1867
##  6 25223645 2019-10-01 00:04:38 2019-10-01 00:10:51          1891          373
##  7 25223646 2019-10-01 00:04:52 2019-10-01 00:22:45          1061         1072
##  8 25223647 2019-10-01 00:04:57 2019-10-01 00:29:16          1274         1458
##  9 25223648 2019-10-01 00:05:20 2019-10-01 00:29:18          6011         1437
## 10 25223649 2019-10-01 00:05:20 2019-10-01 02:23:46          2957         8306
## # ... with 704,044 more rows, and 7 more variables: start_station_id <dbl>,
## #   start_station_name <chr>, end_station_id <dbl>, end_station_name <chr>,
## #   member_casual <chr>, gender <chr>, birthyear <dbl>
(q3_2019 <- rename(q3_2019
                   ,ride_id = trip_id
                   ,rideable_type = bikeid 
                   ,started_at = start_time  
                   ,ended_at = end_time  
                   ,start_station_name = from_station_name 
                   ,start_station_id = from_station_id 
                   ,end_station_name = to_station_name 
                   ,end_station_id = to_station_id 
                   ,member_casual = usertype))
## # A tibble: 1,640,718 x 12
##     ride_id started_at          ended_at            rideable_type tripduration
##       <dbl> <dttm>              <dttm>                      <dbl>        <dbl>
##  1 23479388 2019-07-01 00:00:27 2019-07-01 00:20:41          3591         1214
##  2 23479389 2019-07-01 00:01:16 2019-07-01 00:18:44          5353         1048
##  3 23479390 2019-07-01 00:01:48 2019-07-01 00:27:42          6180         1554
##  4 23479391 2019-07-01 00:02:07 2019-07-01 00:27:10          5540         1503
##  5 23479392 2019-07-01 00:02:13 2019-07-01 00:22:26          6014         1213
##  6 23479393 2019-07-01 00:02:21 2019-07-01 00:07:31          4941          310
##  7 23479394 2019-07-01 00:02:24 2019-07-01 00:23:12          3770         1248
##  8 23479395 2019-07-01 00:02:26 2019-07-01 00:28:16          5442         1550
##  9 23479396 2019-07-01 00:02:34 2019-07-01 00:28:57          2957         1583
## 10 23479397 2019-07-01 00:02:45 2019-07-01 00:29:14          6091         1589
## # ... with 1,640,708 more rows, and 7 more variables: start_station_id <dbl>,
## #   start_station_name <chr>, end_station_id <dbl>, end_station_name <chr>,
## #   member_casual <chr>, gender <chr>, birthyear <dbl>
(q2_2019 <- rename(q2_2019
                   ,ride_id = "01 - Rental Details Rental ID"
                   ,rideable_type = "01 - Rental Details Bike ID" 
                   ,started_at = "01 - Rental Details Local Start Time"  
                   ,ended_at = "01 - Rental Details Local End Time"  
                   ,start_station_name = "03 - Rental Start Station Name" 
                   ,start_station_id = "03 - Rental Start Station ID"
                   ,end_station_name = "02 - Rental End Station Name" 
                   ,end_station_id = "02 - Rental End Station ID"
                   ,member_casual = "User Type"))
## # A tibble: 1,108,163 x 12
##     ride_id started_at          ended_at            rideable_type
##       <dbl> <dttm>              <dttm>                      <dbl>
##  1 22178529 2019-04-01 00:02:22 2019-04-01 00:09:48          6251
##  2 22178530 2019-04-01 00:03:02 2019-04-01 00:20:30          6226
##  3 22178531 2019-04-01 00:11:07 2019-04-01 00:15:19          5649
##  4 22178532 2019-04-01 00:13:01 2019-04-01 00:18:58          4151
##  5 22178533 2019-04-01 00:19:26 2019-04-01 00:36:13          3270
##  6 22178534 2019-04-01 00:19:39 2019-04-01 00:23:56          3123
##  7 22178535 2019-04-01 00:26:33 2019-04-01 00:35:41          6418
##  8 22178536 2019-04-01 00:29:48 2019-04-01 00:36:11          4513
##  9 22178537 2019-04-01 00:32:07 2019-04-01 01:07:44          3280
## 10 22178538 2019-04-01 00:32:19 2019-04-01 01:07:39          5534
## # ... with 1,108,153 more rows, and 8 more variables:
## #   01 - Rental Details Duration In Seconds Uncapped <dbl>,
## #   start_station_id <dbl>, start_station_name <chr>, end_station_id <dbl>,
## #   end_station_name <chr>, member_casual <chr>, Member Gender <chr>,
## #   05 - Member Details Member Birthday Year <dbl>
Inspecting the dataframes and look for incongruencies
str(q1_2020)
## spec_tbl_df [426,887 x 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ ride_id           : chr [1:426887] "EACB19130B0CDA4A" "8FED874C809DC021" "789F3C21E472CA96" "C9A388DAC6ABF313" ...
##  $ rideable_type     : chr [1:426887] "docked_bike" "docked_bike" "docked_bike" "docked_bike" ...
##  $ started_at        : POSIXct[1:426887], format: "2020-01-21 20:06:59" "2020-01-30 14:22:39" ...
##  $ ended_at          : POSIXct[1:426887], format: "2020-01-21 20:14:30" "2020-01-30 14:26:22" ...
##  $ start_station_name: chr [1:426887] "Western Ave & Leland Ave" "Clark St & Montrose Ave" "Broadway & Belmont Ave" "Clark St & Randolph St" ...
##  $ start_station_id  : num [1:426887] 239 234 296 51 66 212 96 96 212 38 ...
##  $ end_station_name  : chr [1:426887] "Clark St & Leland Ave" "Southport Ave & Irving Park Rd" "Wilton Ave & Belmont Ave" "Fairbanks Ct & Grand Ave" ...
##  $ end_station_id    : num [1:426887] 326 318 117 24 212 96 212 212 96 100 ...
##  $ start_lat         : num [1:426887] 42 42 41.9 41.9 41.9 ...
##  $ start_lng         : num [1:426887] -87.7 -87.7 -87.6 -87.6 -87.6 ...
##  $ end_lat           : num [1:426887] 42 42 41.9 41.9 41.9 ...
##  $ end_lng           : num [1:426887] -87.7 -87.7 -87.7 -87.6 -87.6 ...
##  $ member_casual     : chr [1:426887] "member" "member" "member" "member" ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   ride_id = col_character(),
##   ..   rideable_type = col_character(),
##   ..   started_at = col_datetime(format = ""),
##   ..   ended_at = col_datetime(format = ""),
##   ..   start_station_name = col_character(),
##   ..   start_station_id = col_double(),
##   ..   end_station_name = col_character(),
##   ..   end_station_id = col_double(),
##   ..   start_lat = col_double(),
##   ..   start_lng = col_double(),
##   ..   end_lat = col_double(),
##   ..   end_lng = col_double(),
##   ..   member_casual = col_character()
##   .. )
##  - attr(*, "problems")=<externalptr>
str(q4_2019)
## spec_tbl_df [704,054 x 12] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ ride_id           : num [1:704054] 25223640 25223641 25223642 25223643 25223644 ...
##  $ started_at        : POSIXct[1:704054], format: "2019-10-01 00:01:39" "2019-10-01 00:02:16" ...
##  $ ended_at          : POSIXct[1:704054], format: "2019-10-01 00:17:20" "2019-10-01 00:06:34" ...
##  $ rideable_type     : num [1:704054] 2215 6328 3003 3275 5294 ...
##  $ tripduration      : num [1:704054] 940 258 850 2350 1867 ...
##  $ start_station_id  : num [1:704054] 20 19 84 313 210 156 84 156 156 336 ...
##  $ start_station_name: chr [1:704054] "Sheffield Ave & Kingsbury St" "Throop (Loomis) St & Taylor St" "Milwaukee Ave & Grand Ave" "Lakeview Ave & Fullerton Pkwy" ...
##  $ end_station_id    : num [1:704054] 309 241 199 290 382 226 142 463 463 336 ...
##  $ end_station_name  : chr [1:704054] "Leavitt St & Armitage Ave" "Morgan St & Polk St" "Wabash Ave & Grand Ave" "Kedzie Ave & Palmer Ct" ...
##  $ member_casual     : chr [1:704054] "Subscriber" "Subscriber" "Subscriber" "Subscriber" ...
##  $ gender            : chr [1:704054] "Male" "Male" "Female" "Male" ...
##  $ birthyear         : num [1:704054] 1987 1998 1991 1990 1987 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   trip_id = col_double(),
##   ..   start_time = col_datetime(format = ""),
##   ..   end_time = col_datetime(format = ""),
##   ..   bikeid = col_double(),
##   ..   tripduration = col_number(),
##   ..   from_station_id = col_double(),
##   ..   from_station_name = col_character(),
##   ..   to_station_id = col_double(),
##   ..   to_station_name = col_character(),
##   ..   usertype = col_character(),
##   ..   gender = col_character(),
##   ..   birthyear = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
str(q3_2019)
## spec_tbl_df [1,640,718 x 12] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ ride_id           : num [1:1640718] 23479388 23479389 23479390 23479391 23479392 ...
##  $ started_at        : POSIXct[1:1640718], format: "2019-07-01 00:00:27" "2019-07-01 00:01:16" ...
##  $ ended_at          : POSIXct[1:1640718], format: "2019-07-01 00:20:41" "2019-07-01 00:18:44" ...
##  $ rideable_type     : num [1:1640718] 3591 5353 6180 5540 6014 ...
##  $ tripduration      : num [1:1640718] 1214 1048 1554 1503 1213 ...
##  $ start_station_id  : num [1:1640718] 117 381 313 313 168 300 168 313 43 43 ...
##  $ start_station_name: chr [1:1640718] "Wilton Ave & Belmont Ave" "Western Ave & Monroe St" "Lakeview Ave & Fullerton Pkwy" "Lakeview Ave & Fullerton Pkwy" ...
##  $ end_station_id    : num [1:1640718] 497 203 144 144 62 232 62 144 195 195 ...
##  $ end_station_name  : chr [1:1640718] "Kimball Ave & Belmont Ave" "Western Ave & 21st St" "Larrabee St & Webster Ave" "Larrabee St & Webster Ave" ...
##  $ member_casual     : chr [1:1640718] "Subscriber" "Customer" "Customer" "Customer" ...
##  $ gender            : chr [1:1640718] "Male" NA NA NA ...
##  $ birthyear         : num [1:1640718] 1992 NA NA NA NA ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   trip_id = col_double(),
##   ..   start_time = col_datetime(format = ""),
##   ..   end_time = col_datetime(format = ""),
##   ..   bikeid = col_double(),
##   ..   tripduration = col_number(),
##   ..   from_station_id = col_double(),
##   ..   from_station_name = col_character(),
##   ..   to_station_id = col_double(),
##   ..   to_station_name = col_character(),
##   ..   usertype = col_character(),
##   ..   gender = col_character(),
##   ..   birthyear = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
str(q2_2019)
## spec_tbl_df [1,108,163 x 12] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ ride_id                                         : num [1:1108163] 22178529 22178530 22178531 22178532 22178533 ...
##  $ started_at                                      : POSIXct[1:1108163], format: "2019-04-01 00:02:22" "2019-04-01 00:03:02" ...
##  $ ended_at                                        : POSIXct[1:1108163], format: "2019-04-01 00:09:48" "2019-04-01 00:20:30" ...
##  $ rideable_type                                   : num [1:1108163] 6251 6226 5649 4151 3270 ...
##  $ 01 - Rental Details Duration In Seconds Uncapped: num [1:1108163] 446 1048 252 357 1007 ...
##  $ start_station_id                                : num [1:1108163] 81 317 283 26 202 420 503 260 211 211 ...
##  $ start_station_name                              : chr [1:1108163] "Daley Center Plaza" "Wood St & Taylor St" "LaSalle St & Jackson Blvd" "McClurg Ct & Illinois St" ...
##  $ end_station_id                                  : num [1:1108163] 56 59 174 133 129 426 500 499 211 211 ...
##  $ end_station_name                                : chr [1:1108163] "Desplaines St & Kinzie St" "Wabash Ave & Roosevelt Rd" "Canal St & Madison St" "Kingsbury St & Kinzie St" ...
##  $ member_casual                                   : chr [1:1108163] "Subscriber" "Subscriber" "Subscriber" "Subscriber" ...
##  $ Member Gender                                   : chr [1:1108163] "Male" "Female" "Male" "Male" ...
##  $ 05 - Member Details Member Birthday Year        : num [1:1108163] 1975 1984 1990 1993 1992 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   `01 - Rental Details Rental ID` = col_double(),
##   ..   `01 - Rental Details Local Start Time` = col_datetime(format = ""),
##   ..   `01 - Rental Details Local End Time` = col_datetime(format = ""),
##   ..   `01 - Rental Details Bike ID` = col_double(),
##   ..   `01 - Rental Details Duration In Seconds Uncapped` = col_number(),
##   ..   `03 - Rental Start Station ID` = col_double(),
##   ..   `03 - Rental Start Station Name` = col_character(),
##   ..   `02 - Rental End Station ID` = col_double(),
##   ..   `02 - Rental End Station Name` = col_character(),
##   ..   `User Type` = col_character(),
##   ..   `Member Gender` = col_character(),
##   ..   `05 - Member Details Member Birthday Year` = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
Converting ride_id and rideable_type to character so that they can stack correctly
q4_2019 <-  mutate(q4_2019, ride_id = as.character(ride_id)
                   ,rideable_type = as.character(rideable_type)) 
q3_2019 <-  mutate(q3_2019, ride_id = as.character(ride_id)
                   ,rideable_type = as.character(rideable_type)) 
q2_2019 <-  mutate(q2_2019, ride_id = as.character(ride_id)
                   ,rideable_type = as.character(rideable_type)) 
Stacking individual quarter’s data frames into one big data frame
all_trips <- bind_rows(q2_2019, q3_2019, q4_2019, q1_2020)

Removeing some columns as these data was dropped beginning in 2020

all_trips <- all_trips %>%  
  select(-c(start_lat, start_lng, end_lat, end_lng, birthyear, gender, "01 - Rental Details Duration In Seconds Uncapped", "05 - Member Details Member Birthday Year", "Member Gender", "tripduration"))

STEP 3: CLEAN UP AND ADD DATA TO PREPARE FOR ANALYSIS

Inspecting the new table that was created
colnames(all_trips)  #List of column names
## [1] "ride_id"            "started_at"         "ended_at"          
## [4] "rideable_type"      "start_station_id"   "start_station_name"
## [7] "end_station_id"     "end_station_name"   "member_casual"
nrow(all_trips)  #How many rows are in data frame?
## [1] 3879822
dim(all_trips)  #Dimensions of the data frame?
## [1] 3879822       9
head(all_trips)  #See the first 6 rows of data frame.  Also tail(all_trips)
## # A tibble: 6 x 9
##   ride_id started_at          ended_at            rideable_type start_station_id
##   <chr>   <dttm>              <dttm>              <chr>                    <dbl>
## 1 221785~ 2019-04-01 00:02:22 2019-04-01 00:09:48 6251                        81
## 2 221785~ 2019-04-01 00:03:02 2019-04-01 00:20:30 6226                       317
## 3 221785~ 2019-04-01 00:11:07 2019-04-01 00:15:19 5649                       283
## 4 221785~ 2019-04-01 00:13:01 2019-04-01 00:18:58 4151                        26
## 5 221785~ 2019-04-01 00:19:26 2019-04-01 00:36:13 3270                       202
## 6 221785~ 2019-04-01 00:19:39 2019-04-01 00:23:56 3123                       420
## # ... with 4 more variables: start_station_name <chr>, end_station_id <dbl>,
## #   end_station_name <chr>, member_casual <chr>
str(all_trips)  #See list of columns and data types (numeric, character, etc)
## tibble [3,879,822 x 9] (S3: tbl_df/tbl/data.frame)
##  $ ride_id           : chr [1:3879822] "22178529" "22178530" "22178531" "22178532" ...
##  $ started_at        : POSIXct[1:3879822], format: "2019-04-01 00:02:22" "2019-04-01 00:03:02" ...
##  $ ended_at          : POSIXct[1:3879822], format: "2019-04-01 00:09:48" "2019-04-01 00:20:30" ...
##  $ rideable_type     : chr [1:3879822] "6251" "6226" "5649" "4151" ...
##  $ start_station_id  : num [1:3879822] 81 317 283 26 202 420 503 260 211 211 ...
##  $ start_station_name: chr [1:3879822] "Daley Center Plaza" "Wood St & Taylor St" "LaSalle St & Jackson Blvd" "McClurg Ct & Illinois St" ...
##  $ end_station_id    : num [1:3879822] 56 59 174 133 129 426 500 499 211 211 ...
##  $ end_station_name  : chr [1:3879822] "Desplaines St & Kinzie St" "Wabash Ave & Roosevelt Rd" "Canal St & Madison St" "Kingsbury St & Kinzie St" ...
##  $ member_casual     : chr [1:3879822] "Subscriber" "Subscriber" "Subscriber" "Subscriber" ...
summary(all_trips)  #Statistical summary of data. Mainly for numerics
##    ride_id            started_at                     ended_at                  
##  Length:3879822     Min.   :2019-04-01 00:02:22   Min.   :2019-04-01 00:09:48  
##  Class :character   1st Qu.:2019-06-23 07:49:09   1st Qu.:2019-06-23 08:20:27  
##  Mode  :character   Median :2019-08-14 17:43:38   Median :2019-08-14 18:02:04  
##                     Mean   :2019-08-26 00:49:59   Mean   :2019-08-26 01:14:37  
##                     3rd Qu.:2019-10-12 12:10:21   3rd Qu.:2019-10-12 12:36:16  
##                     Max.   :2020-03-31 23:51:34   Max.   :2020-05-19 20:10:34  
##                                                                                
##  rideable_type      start_station_id start_station_name end_station_id 
##  Length:3879822     Min.   :  1.0    Length:3879822     Min.   :  1.0  
##  Class :character   1st Qu.: 77.0    Class :character   1st Qu.: 77.0  
##  Mode  :character   Median :174.0    Mode  :character   Median :174.0  
##                     Mean   :202.9                       Mean   :203.8  
##                     3rd Qu.:291.0                       3rd Qu.:291.0  
##                     Max.   :675.0                       Max.   :675.0  
##                                                         NA's   :1      
##  end_station_name   member_casual     
##  Length:3879822     Length:3879822    
##  Class :character   Class :character  
##  Mode  :character   Mode  :character  
##                                       
##                                       
##                                       
## 

There are a few problems that needs to be fix it:

  • In the “member_casual” column, there are two names for members (“member” and “Subscriber”) and two names for casual riders (“Customer” and “casual”). We will need to consolidate that from four to two labels.
  • The data can only be aggregated at the ride-level, which is too granular. We will want to add some additional columns of data – such as day, month, year – that provide additional opportunities to aggregate the data.
  • We will want to add a calculated field for length of ride since the 2020Q1 data did not have the “tripduration” column. We will add “ride_length” to the entire dataframe for consistency.
  • There are some rides where tripduration shows up as negative, including several hundred rides where Divvy took bikes out of circulation for Quality Control reasons. We will want to delete these rides.
In the “member_casual” column, replace “Subscriber” with “member” and “Customer” with “casual”
Before 2020, Divvy used different labels for these two types of riders … we will want to make our dataframe consistent with their current nomenclature
table(all_trips$member_casual)
## 
##     casual   Customer     member Subscriber 
##      48480     857474     378407    2595461
Reassigning to the desired values
all_trips <-  all_trips %>% 
  mutate(member_casual = recode(member_casual
                           ,"Subscriber" = "member"
                           ,"Customer" = "casual"))
Checking to make sure the proper number of observations were reassigned
table(all_trips$member_casual)
## 
##  casual  member 
##  905954 2973868
all_trips$date <- as.Date(all_trips$started_at) #The default format is yyyy-mm-dd
all_trips$month <- format(as.Date(all_trips$date), "%m")
all_trips$day <- format(as.Date(all_trips$date), "%d")
all_trips$year <- format(as.Date(all_trips$date), "%Y")
all_trips$day_of_week <- format(as.Date(all_trips$date), "%A")
Adding a “ride_length” calculation to all_trips (in seconds)
all_trips$ride_length <- difftime(all_trips$ended_at,all_trips$started_at)
Inspecting the structure of the columns
str(all_trips)
## tibble [3,879,822 x 15] (S3: tbl_df/tbl/data.frame)
##  $ ride_id           : chr [1:3879822] "22178529" "22178530" "22178531" "22178532" ...
##  $ started_at        : POSIXct[1:3879822], format: "2019-04-01 00:02:22" "2019-04-01 00:03:02" ...
##  $ ended_at          : POSIXct[1:3879822], format: "2019-04-01 00:09:48" "2019-04-01 00:20:30" ...
##  $ rideable_type     : chr [1:3879822] "6251" "6226" "5649" "4151" ...
##  $ start_station_id  : num [1:3879822] 81 317 283 26 202 420 503 260 211 211 ...
##  $ start_station_name: chr [1:3879822] "Daley Center Plaza" "Wood St & Taylor St" "LaSalle St & Jackson Blvd" "McClurg Ct & Illinois St" ...
##  $ end_station_id    : num [1:3879822] 56 59 174 133 129 426 500 499 211 211 ...
##  $ end_station_name  : chr [1:3879822] "Desplaines St & Kinzie St" "Wabash Ave & Roosevelt Rd" "Canal St & Madison St" "Kingsbury St & Kinzie St" ...
##  $ member_casual     : chr [1:3879822] "member" "member" "member" "member" ...
##  $ date              : Date[1:3879822], format: "2019-04-01" "2019-04-01" ...
##  $ month             : chr [1:3879822] "04" "04" "04" "04" ...
##  $ day               : chr [1:3879822] "01" "01" "01" "01" ...
##  $ year              : chr [1:3879822] "2019" "2019" "2019" "2019" ...
##  $ day_of_week       : chr [1:3879822] "Monday" "Monday" "Monday" "Monday" ...
##  $ ride_length       : 'difftime' num [1:3879822] 446 1048 252 357 ...
##   ..- attr(*, "units")= chr "secs"
Converting “ride_length” from Factor to numeric
is.factor(all_trips$ride_length)
## [1] FALSE
all_trips$ride_length <- as.numeric(as.character(all_trips$ride_length))
is.numeric(all_trips$ride_length)
## [1] TRUE
Removeing “bad” data
The dataframe includes a few hundred entries when bikes were taken out of docks and checked for quality by Divvy or ride_length was negative
We will create a new version of the dataframe (v2) since data is being removed
all_trips_v2 <- all_trips[!(all_trips$start_station_name == "HQ QR" | all_trips$ride_length<0),]

STEP 4: CONDUCT DESCRIPTIVE ANALYSIS

Descriptive analysis on ride_length (all figures in seconds)
mean(all_trips_v2$ride_length) #straight average (total ride length / rides)
## [1] 1479.139
median(all_trips_v2$ride_length) #midpoint number in the ascending array of ride lengths
## [1] 712
max(all_trips_v2$ride_length) #longest ride
## [1] 9387024
min(all_trips_v2$ride_length) #shortest ride
## [1] 1
Summarzing on the specific attribute
summary(all_trips_v2$ride_length)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       1     412     712    1479    1289 9387024
Comparing members and casual users
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual, FUN = mean)
##   all_trips_v2$member_casual all_trips_v2$ride_length
## 1                     casual                3552.7502
## 2                     member                 850.0662
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual, FUN = median)
##   all_trips_v2$member_casual all_trips_v2$ride_length
## 1                     casual                     1546
## 2                     member                      589
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual, FUN = max)
##   all_trips_v2$member_casual all_trips_v2$ride_length
## 1                     casual                  9387024
## 2                     member                  9056634
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual, FUN = min)
##   all_trips_v2$member_casual all_trips_v2$ride_length
## 1                     casual                        2
## 2                     member                        1
Average ride time by each day for members vs casual users
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual + all_trips_v2$day_of_week, FUN = mean)
##    all_trips_v2$member_casual all_trips_v2$day_of_week all_trips_v2$ride_length
## 1                      casual                   Friday                3773.8351
## 2                      member                   Friday                 824.5305
## 3                      casual                   Monday                3372.2869
## 4                      member                   Monday                 842.5726
## 5                      casual                 Saturday                3331.9138
## 6                      member                 Saturday                 968.9337
## 7                      casual                   Sunday                3581.4054
## 8                      member                   Sunday                 919.9746
## 9                      casual                 Thursday                3682.9847
## 10                     member                 Thursday                 823.9278
## 11                     casual                  Tuesday                3596.3599
## 12                     member                  Tuesday                 826.1427
## 13                     casual                Wednesday                3718.6619
## 14                     member                Wednesday                 823.9996
Noticed that the days of the week are out of order; fixing that.
all_trips_v2$day_of_week <- ordered(all_trips_v2$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
Again running, Average ride time by each day for members vs casual users
aggregate(all_trips_v2$ride_length ~ all_trips_v2$member_casual + all_trips_v2$day_of_week, FUN = mean)
##    all_trips_v2$member_casual all_trips_v2$day_of_week all_trips_v2$ride_length
## 1                      casual                   Sunday                3581.4054
## 2                      member                   Sunday                 919.9746
## 3                      casual                   Monday                3372.2869
## 4                      member                   Monday                 842.5726
## 5                      casual                  Tuesday                3596.3599
## 6                      member                  Tuesday                 826.1427
## 7                      casual                Wednesday                3718.6619
## 8                      member                Wednesday                 823.9996
## 9                      casual                 Thursday                3682.9847
## 10                     member                 Thursday                 823.9278
## 11                     casual                   Friday                3773.8351
## 12                     member                   Friday                 824.5305
## 13                     casual                 Saturday                3331.9138
## 14                     member                 Saturday                 968.9337
Analyzing ridership data by type and weekday
all_trips_v2 %>% 
  mutate(weekday = wday(started_at, label = TRUE)) %>%  #creates weekday field using wday()
  group_by(member_casual, weekday) %>%  #groups by usertype and weekday
  summarise(number_of_rides = n()                           #calculates the number of rides and average duration 
  ,average_duration = mean(ride_length)) %>%        # calculates the average duration
  arrange(member_casual, weekday)                               # sorts
## `summarise()` has grouped output by 'member_casual'. You can override using the `.groups` argument.
## # A tibble: 14 x 4
## # Groups:   member_casual [2]
##    member_casual weekday number_of_rides average_duration
##    <chr>         <ord>             <int>            <dbl>
##  1 casual        Sun              181293            3581.
##  2 casual        Mon              103296            3372.
##  3 casual        Tue               90510            3596.
##  4 casual        Wed               92457            3719.
##  5 casual        Thu              102679            3683.
##  6 casual        Fri              122404            3774.
##  7 casual        Sat              209543            3332.
##  8 member        Sun              267965             920.
##  9 member        Mon              472196             843.
## 10 member        Tue              508445             826.
## 11 member        Wed              500329             824.
## 12 member        Thu              484177             824.
## 13 member        Fri              452790             825.
## 14 member        Sat              287958             969.

Visualizing the Number of Rides by Rider Type

all_trips_v2 %>% 
  mutate(weekday = wday(started_at, label = TRUE)) %>% 
  group_by(member_casual, weekday) %>% 
  summarise(number_of_rides = n()
            ,average_duration = mean(ride_length)) %>% 
  arrange(member_casual, weekday)  %>% 
  ggplot(aes(x = weekday, y = number_of_rides, fill = member_casual)) +
  geom_col(position = "dodge")
## `summarise()` has grouped output by 'member_casual'. You can override using the `.groups` argument.

Creating a Visualization for Average Duration

all_trips_v2 %>% 
  mutate(weekday = wday(started_at, label = TRUE)) %>% 
  group_by(member_casual, weekday) %>% 
  summarise(number_of_rides = n()
            ,average_duration = mean(ride_length)) %>% 
  arrange(member_casual, weekday)  %>% 
  ggplot(aes(x = weekday, y = average_duration, fill = member_casual)) +
  geom_col(position = "dodge")
## `summarise()` has grouped output by 'member_casual'. You can override using the `.groups` argument.

Summary:

Based on the above findings,
  1. The first chart describes that the Subscription Members are in high but the Casual Members - no. of rides surpasses during weekends.

  2. The second chart average duration of rides, casual riders duration is higher throughout the week when compared to Subscribed Members.

It clearly states that Subscription Members taking more rides during weekdays and the Casual riders takes more duration when comparing to Subscribed Members.

Suggestions:

My some suggestions to the company for converting the Casual Riders to Subscribed Members.
Discounts
  • Who is taking more duration time - since casual riders taking more duration when a discount applied to them, they may think to switch Casual rider to Subscribed Member
  • Additional discount for who is newly enrolling to Subscription (Only for new member and its one time offer)
  • Rewards - some kind of rewards for the existing subscribers may be based on the tenure. (to keep the existing subscribers)