Introduction The primary goal of this data exercise is to explore the data provided in the Las Vegas open data portal on restaurant grading, fit a MVP prediction model- predicting the NEXT_INSPECTION_GRADE_C_OR_BELOW as the response.
Data Source: https://opendataportal-lasvegas.opendata.arcgis.com/datasets/restaurant-inspections-open-data I have downloaded the data from the open data portal, and stored in csv in my repository.
Challenges:
The preliminary challenge is that the data description is not available, and in the absence of such a dictionary, we might need to make some assumptions about the data. The second challenge is that data is dirty- a lot of data columns has abnormal values which we need to check from various descriptive statistics, and the distributions.
We need to validate with common sense and business knowledge which abnormal values to treat, remove and which to retain
The R packages used for data analysis in this project are:
• data.table - To import data • tidyverse - Fortidy data, visualisation, transformation • tibble - To create tibbles • plotrix - For 3D Exploded Pie Chart • tidyr - For tidy data • dplyr - For data analysis • DT - To display data set • ggplot2 - For data visualization • magrittr - For pipe oprator • knitr - To display tables • ROCR - For creating ROC curve • Scales -To demonstrate ggplot2 style scales for specific types of data • Pander -To produce simple tables from summary() output • Plotly -For creating interactive charts • visdata -For creating interactive charts • caret -For ML tasks • recipes -For Feature Engineering tasks
Loading libraries
options(warnings=-1)
# install.packages("tidyverse")
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.1
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readr)
## Warning: package 'readr' was built under R version 4.1.1
# Helper packages
library(dplyr) # for data manipulation
library(ggplot2) # for awesome graphics
## Warning: package 'ggplot2' was built under R version 4.1.2
library(visdat) # for additional visualizations
## Warning: package 'visdat' was built under R version 4.1.2
# Feature engineering packages
library(caret) # for various ML tasks
## Warning: package 'caret' was built under R version 4.1.2
## Loading required package: lattice
library(recipes) # for feature engineering tasks
## Warning: package 'recipes' was built under R version 4.1.2
##
## Attaching package: 'recipes'
## The following object is masked from 'package:stats':
##
## step
# Helper packages
library(dplyr) # for data wrangling
library(ggplot2) # for awesome graphics
library(rsample) # for creating validation splits
## Warning: package 'rsample' was built under R version 4.1.2
library(recipes) # for feature engineering
# Modeling packages
library(caret) # for fitting KNN models
# Helper packages
library(dplyr) # for data wrangling
library(ggplot2) # for awesome plotting
# Modeling packages
library(rpart) # direct engine for decision tree application
library(caret) # meta engine for decision tree application
# Model interpretability packages
library(rpart.plot) # for plotting decision trees
## Warning: package 'rpart.plot' was built under R version 4.1.2
library(vip) # for feature importance
## Warning: package 'vip' was built under R version 4.1.2
##
## Attaching package: 'vip'
## The following object is masked from 'package:utils':
##
## vi
library(pdp) # for feature effects
## Warning: package 'pdp' was built under R version 4.1.2
##Import the data
The data has 15627 observations on 34 features.
df=read.csv("C:\\Users\\shree\\OneDrive\\Desktop\\LastVegasRestaurantData.csv")
##Feature Creation We have created some additional features: • Split the latitude, longitude column to 2 separate columns • Hour of Inspection - Hour of the day when the last inspection was made • Hour of Record - Hour of the day when the last record was made • Days past since last inspection - difference of today and the last inspection day • Days past since last record - difference of today and the last record day
Data At a glance
glimpse(df)
## Rows: 15,673
## Columns: 34
## $ RESTAURANT_SERIAL_NUMBER <chr> "DA0630765", "DAJI61TX5", "DAO2OUCAK"~
## $ RESTAURANT_PERMIT_NUMBER <chr> "PR0023771", "PR0110047", "PR0110047"~
## $ RESTAURANT_NAME <chr> "#1 Hawaiian Barbecue", "#1 HAWAIIAN ~
## $ RESTAURANT_LOCATION <chr> "#1 Hawaiian Barbecue", "CHINA DRAGON~
## $ RESTAURANT_CATEGORY <chr> "Restaurant", "Restaurant", "Restaura~
## $ ADDRESS <chr> "5870 Losee Rd", "5905 S EASTERN Ave ~
## $ CITY <chr> "North Las Vegas", "Las Vegas", "Las ~
## $ STATE <chr> "Nevada", "Nevada", "Nevada", "Nevada~
## $ ZIP <chr> "89081-6593", "89119", "89119", "8911~
## $ CURRENT_DEMERITS <dbl> 0, 0, 3, 3, 8, 3, 9, 9, 3, 3, 3, 6, 6~
## $ CURRENT_GRADE <chr> "A", "A", "A", "A", "A", "A", "A", "A~
## $ EMPLOYEE_COUNT <int> 10, 14, 31, 22, 5, 3, 4, 13, 20, 25, ~
## $ MEDIAN_EMPLOYEE_AGE <dbl> 29.37515, 27.57530, 33.98700, 26.5918~
## $ MEDIAN_EMPLOYEE_TENURE <dbl> 1.435599, 1.436292, 2.041849, 4.86729~
## $ INSPECTION_TIME <chr> "4/19/2010 13:45", "8/18/2017 12:30",~
## $ Inspection_hr <chr> "13.00", "12.00", "11.00", "13.00", "~
## $ last_Inspection <chr> "4305.00", "1627.00", "1965.00", "270~
## $ INSPECTION_TYPE <chr> "Routine Inspection", "Routine Inspec~
## $ INSPECTION_DEMERITS <chr> "19", "20", "27", "20", NA, "5", "10"~
## $ VIOLATIONS_RAW <chr> "14,26,27,36,64,114", "2,092,112,122,~
## $ RECORD_UPDATED <chr> "2/21/2013 22:26", "8/18/2017 16:03",~
## $ Record_hr <chr> "22.00", "16.00", "13.00", "9.00", "2~
## $ last_record <chr> "3266", "1627", "1965", "2694", "3266~
## $ LAT_LONG_RAW <chr> "(36.2666713, 115.1166619)", "(36.082~
## $ FIRST_VIOLATION <int> 14, 209, 202, 208, 10, 214, 206, 211,~
## $ SECOND_VIOLATION <int> 26, 211, 208, 211, 14, 232, 214, 212,~
## $ THIRD_VIOLATION <int> 27, 212, 209, 212, 30, 233, 229, 214,~
## $ FIRST_VIOLATION_TYPE <chr> "Major", "Critical", "Critical", "Cri~
## $ SECOND_VIOLATION_TYPE <chr> "Major", "Major", "Critical", "Major"~
## $ THIRD_VIOLATION_TYPE <chr> NA, "Major", "Critical", "Major", "No~
## $ NUMBER_OF_VIOLATIONS <chr> "6", "8", "7", "7", "6", "3", "4", "7~
## $ NEXT_INSPECTION_GRADE_C_OR_BELOW <chr> "0", "0", "0", "0", "0", "0", "0", "0~
## $ LAT_LONG_RAW.1 <dbl> 36.26667, 36.08201, 36.08201, 36.0820~
## $ Long.Raw <dbl> 115.1167, 115.1196, 115.1196, 115.119~
The description for Las Vegas Data variables is not available. In the absence of that, I have tried to best explain it as per my understanding of the form shared.
data.type <- lapply(data, class)
Description <- c("SERIAL NUMBER OF THE RESTAURANT-ID COLUMN",
"PERMIT NUMBER OF THE RESTAURANT- ID COLUMN",
"NAME OF THE RESTAURANT",
"LOCATION OF THE RESTAURANT",
"WHICH TYPE OF RESTAURANT",
"ADDRESS OF THE RESTAURANT",
"CITY",
"STATE",
"ZIP",
"CURRENT DEMERITS OF THE INSPECTION",
"CURRENT GRADE",
"NUMBER OF EMPLOYEES",
"MEDIAN AGE OF THE EMPLOYEES",
"TIME OF INSPECTION",
"HOUR OF INSPECTION",
"DAYS PASSED SINCE LAST INSPECTION",
"TYPE OF INSPECTION",
"DEMERITS OF CURRENT INSPECTION",
"NO OF SAFETY REGULATIONS VIOLATED",
"LAST TIME OF RECORD",
"HOUR WHEN IT WAS RECORDED",
"DAYS PASSED SINCE LAST RECORD",
"LATITUDE,LONGITUDE",
"FIRST HEALTH CODE VIOLATED",
"SECOND HEALTH CODE VIOLATED",
"THIRD HEALTH CODE VIOLATED",
"FIRST VIOLATION TYPE",
"SECOND VIOLATION TYPE",
"NUMBER OF VIOLATIONS",
"NEXT INSPECTION GRADE C OR BELOW",
"LATITUDE",
"LONGITUDE"
)
Variable <- colnames(data)
data.description <- as.data.frame(cbind(Variable, Description))
options(warn=-1)
data.description
## Description
## 1 SERIAL NUMBER OF THE RESTAURANT-ID COLUMN
## 2 PERMIT NUMBER OF THE RESTAURANT- ID COLUMN
## 3 NAME OF THE RESTAURANT
## 4 LOCATION OF THE RESTAURANT
## 5 WHICH TYPE OF RESTAURANT
## 6 ADDRESS OF THE RESTAURANT
## 7 CITY
## 8 STATE
## 9 ZIP
## 10 CURRENT DEMERITS OF THE INSPECTION
## 11 CURRENT GRADE
## 12 NUMBER OF EMPLOYEES
## 13 MEDIAN AGE OF THE EMPLOYEES
## 14 TIME OF INSPECTION
## 15 HOUR OF INSPECTION
## 16 DAYS PASSED SINCE LAST INSPECTION
## 17 TYPE OF INSPECTION
## 18 DEMERITS OF CURRENT INSPECTION
## 19 NO OF SAFETY REGULATIONS VIOLATED
## 20 LAST TIME OF RECORD
## 21 HOUR WHEN IT WAS RECORDED
## 22 DAYS PASSED SINCE LAST RECORD
## 23 LATITUDE,LONGITUDE
## 24 FIRST HEALTH CODE VIOLATED
## 25 SECOND HEALTH CODE VIOLATED
## 26 THIRD HEALTH CODE VIOLATED
## 27 FIRST VIOLATION TYPE
## 28 SECOND VIOLATION TYPE
## 29 NUMBER OF VIOLATIONS
## 30 NEXT INSPECTION GRADE C OR BELOW
## 31 LATITUDE
## 32 LONGITUDE
###Feature Classification
We are trying to break the feature space into: Identifiers, Numerical, Categorical-Nominal, Ordinal and Target Varible.
Nominal Categories: Restaurant Category Ordinal Categories: Current Grade, Inspection Type, First, Second and Third Violation Type Numeric Variables:Employee Count,Median Employee Age,Median Employee Tenure, Inspection Demerits, First, Second, Third Violation,Number of Violations Target: Grade C or Below in the Next Inspection Time Variables: Record Updated Time, Inspection Time
identifier_feature = c('RESTAURANT_SERIAL_NUMBER')
continuous_features = c('MEDIAN_EMPLOYEE_AGE', 'MEDIAN_EMPLOYEE_TENURE','Lat','Long')
nominal_features = c('RESTAURANT_CATEGORY', 'CITY', 'STATE', 'INSPECTION_TYPE')
ordinal_feactures = c('CURRENT_GRADE','THIRD_VIOLATION_TYPE','FIRST_VIOLATION_TYPE','SECOND_VIOLATION_TYPE')
numeric_features=c('EMPLOYEE_COUNT','CURRENT_DEMERITS', 'EMPLOYEE_COUNT', 'INSPECTION_DEMERITS','NUMBER_OF_VIOLATIONS')
target = c('NEXT_INSPECTION_GRADE_C_OR_BELOW')
We have used an automated EDA package ‘DataExplorer’ to have a look at all the variables, their univariate EDA, relationships with each other, identify data anomalies, and also find variable importance based on some statitiscal tests.
Data preprocessing and engineering techniques generally refer to the addition, deletion, or transformation of data. Feature Engineering step is essential here, as the data at hand is dirty.I spent a substantial time in understanding the data before I went ahead with the modelling.
##Feature Extraction: To iterate, we have created some additional features: • Split the latitude, longitude column to 2 separate columns • Hour of Inspection - Hour of the day when the last inspection was made • Hour of Record - Hour of the day when the last record was made • Days past since last inspection - difference of today and the last inspection day • Days past since last record - difference of today and the last record day
###Feature Cleaning: • Only consider the NEXT_INSPECTION_GRADE_C_OR_BELOW as 0 or 1 • We can drop columns that we will not be analyzing: ID columns like RESTAURANT_SERIAL_NUMBER,RESTAURANT_PERMIT_NUMBER, RESTAURANT_NAME • Location Columns like ‘ADDRESS’, ‘CITY’, ‘STATE’, ‘ZIP’ as we have Lat Long information already • ‘CURRENT_GRADE should be in [“a”, “b”, “c”, “x”, “o”, “n”] • ’INSPECTION_TYPE’ should be in [“routineinspection”, “reinspection”] • Treat unnaturally high values in Employee Count and negative employee count values • Treat Latitude Longitude columns so that both the columns having some values
df<-df%>%filter(NEXT_INSPECTION_GRADE_C_OR_BELOW %in% c(0,1))
data=df
df<-df%>%filter(NEXT_INSPECTION_GRADE_C_OR_BELOW %in% c(0,1))
df<-df%>%filter(STATE=="Nevada")
df<-df%>%select(-c('ADDRESS','CITY', 'STATE','RESTAURANT_SERIAL_NUMBER','RESTAURANT_PERMIT_NUMBER','RESTAURANT_NAME','RESTAURANT_LOCATION','ADDRESS','CITY','STATE','ZIP','VIOLATIONS_RAW','LAT_LONG_RAW'))
df<-df%>%filter(CURRENT_GRADE %in% c("A","B","C","X","O","N"))
df<-df%>%filter(INSPECTION_TYPE %in% c("Re-inspection", "Routine Inspection"))
df<-df%>%filter(FIRST_VIOLATION_TYPE %in% c("Major","Non-Major","Critical"))
df<-df%>%filter(SECOND_VIOLATION_TYPE %in% c("Major","Non-Major","Critical"))
df<-df%>%filter(THIRD_VIOLATION_TYPE %in% c("Major","Non-Major","Critical"))
df<-df %>%filter(EMPLOYEE_COUNT<=100)
df<-df %>%filter(CURRENT_DEMERITS<=100)
df<-df %>%filter(Long.Raw>0)
###Dealing With Missingness: Our data clearly suffers from missing values. We would think since the proportion of missing values is less, we might as well omit them. Since our data-set is unbalanced, with 16% of times as the target variable as 1, we should study the pattern of missingness and then decide.
sum(is.na(df))
## [1] 1378
colSums(is.na(df))
## RESTAURANT_CATEGORY CURRENT_DEMERITS
## 113 0
## CURRENT_GRADE EMPLOYEE_COUNT
## 0 0
## MEDIAN_EMPLOYEE_AGE MEDIAN_EMPLOYEE_TENURE
## 31 269
## INSPECTION_TIME Inspection_hr
## 158 0
## last_Inspection INSPECTION_TYPE
## 0 0
## INSPECTION_DEMERITS RECORD_UPDATED
## 228 109
## Record_hr last_record
## 0 0
## FIRST_VIOLATION SECOND_VIOLATION
## 189 75
## THIRD_VIOLATION FIRST_VIOLATION_TYPE
## 56 0
## SECOND_VIOLATION_TYPE THIRD_VIOLATION_TYPE
## 0 0
## NUMBER_OF_VIOLATIONS NEXT_INSPECTION_GRADE_C_OR_BELOW
## 150 0
## LAT_LONG_RAW.1 Long.Raw
## 0 0
Data can be missing for many different reasons; however, these reasons are usually lumped into two categories: informative missingness and missingness at random .
Informative missingness implies a structural cause for the missing value that can provide insight in its own right; whether this be deficiencies in how the data was collected or abnormalities in the observational environment. Missingness at random implies that missing values occur independent of the data collection process.
Missingness Charts- The HEAT MAP:
df %>%
is.na() %>%
reshape2::melt() %>%
ggplot(aes(Var2, Var1, fill=value)) +
geom_raster() +
coord_flip() +
scale_y_continuous(NULL, expand = c(0, 0)) +
scale_fill_grey(name = "",
labels = c("Present",
"Missing")) +
xlab("Observation") +
theme(axis.text.y = element_text(size = 4))
The CLuster Chart:
vis_miss(df, cluster = TRUE)
Upon careful inspection on both the charts, we fail to see any patterns in the missingness of the data.We can go ahead with omitting NAs
df<-na.omit(df)
###Feature Lumping: Our data is primarily dominated by categorical Variables.
Most models require that the predictors take numeric form. There are exceptions; for example, tree-based models naturally handle numeric or categorical features. However, even tree-based models can benefit from preprocessing categorical features.
Sometimes features will contain levels that have very few observations. In our example, the restaurant category has several levels, but they contain very less values. An ideal way to deal with this is to, club levels having very few values into 1.
Variables we lumped: Restaurant Category, Inspection Hour, Record Hour.
count(df, RESTAURANT_CATEGORY) %>% arrange(n)
## RESTAURANT_CATEGORY n
## 1 Self-Service Food Truck 1
## 2 Farmers Market 2
## 3 Main Kitchen 8
## 4 Barbeque 12
## 5 Childcare Kitchens 12
## 6 Banquet Support 13
## 7 Elementary School Kitchen 14
## 8 Portable Bar 14
## 9 Grocery Store Sampling 19
## 10 Confection 23
## 11 Institutional Food Service 24
## 12 Concessions 26
## 13 Produce Market 27
## 14 Vegetable Prep 35
## 15 Garde Manger 38
## 16 Bakery Sales 39
## 17 Kitchen Bakery 51
## 18 Banquet Kitchen 53
## 19 Caterer 57
## 20 Food Trucks / Mobile Vendor 81
## 21 Meat/Poultry/Seafood 107
## 22 Pantry 126
## 23 Portable Unit 159
## 24 Buffet 180
## 25 Special Kitchen 938
## 26 Snack Bar 1053
## 27 Bar / Tavern 1926
## 28 Restaurant 7495
# Lump levels for TOP features
lumping <- recipe(NEXT_INSPECTION_GRADE_C_OR_BELOW ~ ., data = df) %>%
step_other(RESTAURANT_CATEGORY, threshold = 0.01,
other = "other")
# Apply this blue print
df <- prep(lumping, training = df) %>%
bake(df)
# New distribution of RESTAURANT_CATEGORY
count(df, RESTAURANT_CATEGORY) %>% arrange(n)
## # A tibble: 8 x 2
## RESTAURANT_CATEGORY n
## <fct> <int>
## 1 Pantry 126
## 2 Portable Unit 159
## 3 Buffet 180
## 4 other 656
## 5 Special Kitchen 938
## 6 Snack Bar 1053
## 7 Bar / Tavern 1926
## 8 Restaurant 7495
###INSPECTION HOUR CLUBBING###
# Lump levels for TOP features
lumping1 <- recipe(NEXT_INSPECTION_GRADE_C_OR_BELOW ~ ., data = df) %>%
step_other(Inspection_hr, threshold = 0.01,
other = "other")
# Apply this blue print
df <- prep(lumping1, training = df) %>%
bake(df)
# New distribution
count(df, RESTAURANT_CATEGORY) %>% arrange(n)
## # A tibble: 8 x 2
## RESTAURANT_CATEGORY n
## <fct> <int>
## 1 Pantry 126
## 2 Portable Unit 159
## 3 Buffet 180
## 4 other 656
## 5 Special Kitchen 938
## 6 Snack Bar 1053
## 7 Bar / Tavern 1926
## 8 Restaurant 7495
count(df, Inspection_hr) %>% arrange(n)
## # A tibble: 14 x 2
## Inspection_hr n
## <fct> <int>
## 1 7.00 135
## 2 19.00 159
## 3 18.00 194
## 4 other 264
## 5 17.00 321
## 6 16.00 486
## 7 9.00 656
## 8 8.00 762
## 9 10.00 1087
## 10 12.00 1468
## 11 11.00 1487
## 12 15.00 1754
## 13 13.00 1829
## 14 14.00 1931
###RECORD HOUR CLUBBING###
# Lump levels for TOP features
lumping2 <- recipe(NEXT_INSPECTION_GRADE_C_OR_BELOW ~ ., data = df) %>%
step_other(Record_hr, threshold = 0.01,
other = "other")
# Apply this blue print
df <- prep(lumping2, training = df) %>%
bake(df)
# New distribution
count(df, RESTAURANT_CATEGORY) %>% arrange(n)
## # A tibble: 8 x 2
## RESTAURANT_CATEGORY n
## <fct> <int>
## 1 Pantry 126
## 2 Portable Unit 159
## 3 Buffet 180
## 4 other 656
## 5 Special Kitchen 938
## 6 Snack Bar 1053
## 7 Bar / Tavern 1926
## 8 Restaurant 7495
count(df, Record_hr) %>% arrange(n)
## # A tibble: 11 x 2
## Record_hr n
## <fct> <int>
## 1 other 217
## 2 8.00 354
## 3 13.00 388
## 4 12.00 425
## 5 16.00 446
## 6 11.00 469
## 7 10.00 474
## 8 9.00 489
## 9 14.00 504
## 10 15.00 541
## 11 22.00 8226
##Dummy Encoding for Numerical Variables
# Lump levels for two features
recipe(NEXT_INSPECTION_GRADE_C_OR_BELOW ~ ., data = df) %>%
step_dummy(all_nominal(), one_hot = TRUE)
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 23
##
## Operations:
##
## Dummy variables from all_nominal()
Label Encoding for Ordinal Features
# Label encoded
df<-recipe(NEXT_INSPECTION_GRADE_C_OR_BELOW ~ ., data = df) %>%
step_integer(CURRENT_GRADE) %>%
prep(df) %>%
bake(df)
df<-recipe(NEXT_INSPECTION_GRADE_C_OR_BELOW ~ ., data = df) %>%
step_integer(INSPECTION_TYPE) %>%
prep(df) %>%
bake(df)
df<-recipe(FIRST_VIOLATION_TYPE ~ ., data = df) %>%
step_integer(FIRST_VIOLATION_TYPE) %>%
prep(df) %>%
bake(df)
df<-recipe(SECOND_VIOLATION_TYPE ~ ., data = df) %>%
step_integer(SECOND_VIOLATION_TYPE) %>%
prep(df) %>%
bake(df)
df<-recipe(THIRD_VIOLATION_TYPE ~ ., data = df) %>%
step_integer(THIRD_VIOLATION_TYPE) %>%
prep(df) %>%
bake(df)
data1<-df%>%select(-c('INSPECTION_TIME','RECORD_UPDATED'))
ames_dt1 <- rpart(
formula = NEXT_INSPECTION_GRADE_C_OR_BELOW ~ .,
data = data1,
method='anova')
ames_dt1
## n= 12533
##
## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 12533 1680.843000 1.159579
## 2) last_Inspection=1573.00,1578.00,1579.00,1580.00,1581.00,1582.00,1585.00,1586.00,1587.00,1588.00,1589.00,1593.00,1594.00,1595.00,1599.00,1600.00,1601.00,1606.00,1607.00,1608.00,1612.00,1614.00,1615.00,1617.00,1620.00,1622.00,1627.00,1628.00,1630.00,1631.00,1632.00,1635.00,1636.00,1637.00,1639.00,1641.00,1643.00,1644.00,1645.00,1648.00,1649.00,1651.00,1652.00,1657.00,1658.00,1659.00,1663.00,1665.00,1666.00,1669.00,1670.00,1673.00,1675.00,1676.00,1680.00,1683.00,1684.00,1686.00,1689.00,1693.00,1697.00,1698.00,1700.00,1701.00,1706.00,1707.00,1711.00,1712.00,1714.00,1715.00,1720.00,1721.00,1722.00,1726.00,1728.00,1731.00,1733.00,1734.00,1737.00,1739.00,1740.00,1746.00,1748.00,1750.00,1753.00,1754.00,1757.00,1761.00,1763.00,1764.00,1767.00,1770.00,1774.00,1775.00,1776.00,1778.00,1782.00,1783.00,1785.00,1788.00,1790.00,1791.00,1794.00,1795.00,1796.00,1797.00,1799.00,1802.00,1805.00,1809.00,1813.00,1818.00,1819.00,1824.00,1827.00,1831.00,1832.00,1833.00,1834.00,1837.00,1843.00,1844.00,1845.00,1851.00,1852.00,1854.00,1866.00,1867.00,1868.00,1872.00,1873.00,1876.00,1880.00,1881.00,1882.00,1886.00,1896.00,1900.00,1901.00,1902.00,1903.00,1908.00,1909.00,1911.00,1915.00,1916.00,1918.00,1924.00,1927.00,1930.00,1931.00,1938.00,1939.00,1943.00,1945.00,1946.00,1948.00,1950.00,1951.00,1953.00,1956.00,1958.00,1959.00,1960.00,1961.00,1963.00,1964.00,1965.00,1967.00,1969.00,1970.00,1975.00,1977.00,1978.00,1979.00,1980.00,1981.00,1985.00,1988.00,1990.00,1991.00,1999.00,2002.00,2005.00,2006.00,2008.00,2009.00,2013.00,2014.00,2015.00,2016.00,2021.00,2022.00,2023.00,2027.00,2034.00,2035.00,2036.00,2041.00,2043.00,2044.00,2047.00,2048.00,2053.00,2054.00,2055.00,2056.00,2057.00,2058.00,2061.00,2062.00,2063.00,2064.00,2065.00,2068.00,2069.00,2070.00,2071.00,2077.00,2079.00,2084.00,2086.00,2088.00,2091.00,2092.00,2098.00,2099.00,2100.00,2108.00,2109.00,2110.00,2111.00,2113.00,2114.00,2118.00,2119.00,2120.00,2125.00,2126.00,2127.00,2128.00,2131.00,2133.00,2135.00,2139.00,2140.00,2141.00,2146.00,2147.00,2148.00,2153.00,2154.00,2155.00,2158.00,2160.00,2163.00,2166.00,2168.00,2169.00,2170.00,2173.00,2174.00,2175.00,2180.00,2183.00,2184.00,2187.00,2188.00,2189.00,2190.00,2196.00,2197.00,2198.00,2201.00,2202.00,2203.00,2204.00,2207.00,2208.00,2209.00,2210.00,2212.00,2216.00,2218.00,2219.00,2224.00,2231.00,2233.00,2236.00,2238.00,2240.00,2243.00,2244.00,2245.00,2246.00,2247.00,2249.00,2251.00,2254.00,2259.00,2260.00,2261.00,2266.00,2267.00,2268.00,2271.00,2272.00,2274.00,2275.00,2278.00,2281.00,2286.00,2287.00,2288.00,2291.00,2292.00,2293.00,2294.00,2296.00,2298.00,2302.00,2303.00,2306.00,2307.00,2308.00,2309.00,2311.00,2312.00,2313.00,2314.00,2317.00,2321.00,2323.00,2326.00,2327.00,2329.00,2330.00,2331.00,2334.00,2335.00,2340.00,2342.00,2344.00,2351.00,2352.00,2356.00,2358.00,2363.00,2364.00,2365.00,2366.00,2368.00,2369.00,2370.00,2373.00,2375.00,2380.00,2381.00,2382.00,2387.00,2391.00,2392.00,2393.00,2397.00,2398.00,2399.00,2405.00,2406.00,2407.00,2408.00,2412.00,2413.00,2418.00,2419.00,2421.00,2422.00,2427.00,2428.00,2433.00,2434.00,2435.00,2436.00,2440.00,2442.00,2448.00,2449.00,2450.00,2454.00,2455.00,2456.00,2460.00,2461.00,2462.00,2464.00,2468.00,2469.00,2475.00,2477.00,2479.00,2482.00,2484.00,2488.00,2491.00,2492.00,2495.00,2497.00,2498.00,2499.00,2503.00,2504.00,2505.00,2514.00,2518.00,2520.00,2523.00,2524.00,2526.00,2527.00,2531.00,2533.00,2534.00,2537.00,2540.00,2542.00,2545.00,2548.00,2551.00,2552.00,2553.00,2554.00,2555.00,2558.00,2560.00,2561.00,2562.00,2565.00,2566.00,2567.00,2568.00,2570.00,2572.00,2574.00,2576.00,2579.00,2581.00,2583.00,2586.00,2589.00,2602.00,2603.00,2604.00,2607.00,2608.00,2609.00,2611.00,2617.00,2618.00,2624.00,2629.00,2634.00,2635.00,2637.00,2639.00,2646.00,2650.00,2653.00,2657.00,2658.00,2659.00,2663.00,2664.00,2666.00,2670.00,2672.00,2674.00,2678.00,2679.00,2680.00,2681.00,2685.00,2687.00,2688.00,2693.00,2698.00,2699.00,2702.00,2706.00,2707.00,2713.00,2714.00,2715.00,2716.00,2717.00,2720.00,2721.00,2723.00,2727.00,2734.00,2735.00,2736.00,2737.00,2739.00,2740.00,2741.00,2743.00,2744.00,2748.00,2749.00,2750.00,2751.00,2755.00,2757.00,2758.00,2760.00,2763.00,2764.00,2765.00,2769.00,2771.00,2772.00,2777.00,2778.00,2779.00,2783.00,2784.00,2789.00,2790.00,2791.00,2795.00,2796.00,2799.00,2800.00,2802.00,2806.00,2811.00,2812.00,2814.00,2818.00,2819.00,2820.00,2826.00,2827.00,2828.00,2831.00,2833.00,2838.00,2840.00,2845.00,2847.00,2848.00,2849.00,2852.00,2854.00,2856.00,2857.00,2859.00,2860.00,2862.00,2866.00,2867.00,2868.00,2869.00,2880.00,2881.00,2882.00,2883.00,2884.00,2888.00,2889.00,2890.00,2891.00,2894.00,2895.00,2896.00,2901.00,2904.00,2908.00,2909.00,2911.00,2912.00,2917.00,2918.00,2919.00,2922.00,2923.00,2924.00,2925.00,2928.00,2929.00,2931.00,2932.00,2935.00,2937.00,2938.00,2939.00,2943.00,2944.00,2946.00,2955.00,2957.00,2958.00,2961.00,2966.00,2967.00,2971.00,2972.00,2973.00,2974.00,2978.00,2979.00,2988.00,2991.00,2992.00,2993.00,2994.00,2995.00,2996.00,2999.00,3000.00,3003.00,3005.00,3006.00,3007.00,3009.00,3010.00,3013.00,3015.00,3017.00,3021.00,3022.00,3027.00,3028.00,3030.00,3034.00,3035.00,3037.00,3038.00,3041.00,3044.00,3045.00,3048.00,3049.00,3050.00,3052.00,3055.00,3056.00,3057.00,3059.00,3063.00,3065.00,3066.00,3069.00,3072.00,3073.00,3074.00,3076.00,3077.00,3079.00,3080.00,3083.00,3084.00,3085.00,3086.00,3087.00,3093.00,3094.00,3097.00,3098.00,3100.00,3102.00,3105.00,3106.00,3115.00,3119.00,3120.00,3121.00,3126.00,3127.00,3129.00,3134.00,3135.00,3136.00,3139.00,3140.00,3141.00,3142.00,3143.00,3144.00,3146.00,3147.00,3148.00,3150.00,3153.00,3154.00,3156.00,3157.00,3160.00,3161.00,3162.00,3163.00,3164.00,3167.00,3169.00,3170.00,3175.00,3176.00,3177.00,3178.00,3181.00,3182.00,3183.00,3185.00,3188.00,3189.00,3190.00,3192.00,3197.00,3198.00,3203.00,3205.00,3209.00,3213.00,3216.00,3219.00,3225.00,3226.00,3230.00,3231.00,3232.00,3233.00,3234.00,3235.00,3236.00,3237.00,3238.00,3241.00,3244.00,3245.00,3246.00,3247.00,3248.00,3251.00,3252.00,3254.00,3255.00,3257.00,3258.00,3259.00,3260.00,3262.00,3266.00,3267.00,3271.00,3272.00,3273.00,3275.00,3280.00,3281.00,3282.00,3283.00,3286.00,3287.00,3290.00,3291.00,3293.00,3294.00,3295.00,3300.00,3303.00,3309.00,3311.00,3315.00,3318.00,3321.00,3328.00,3330.00,3331.00,3332.00,3336.00,3337.00,3338.00,3339.00,3342.00,3343.00,3344.00,3347.00,3349.00,3350.00,3351.00,3353.00,3355.00,3358.00,3360.00,3364.00,3365.00,3368.00,3370.00,3372.00,3373.00,3375.00,3378.00,3380.00,3381.00,3382.00,3384.00,3386.00,3387.00,3388.00,3389.00,3390.00,3392.00,3393.00,3394.00,3395.00,3400.00,3401.00,3402.00,3403.00,3404.00,3405.00,3406.00,3409.00,3411.00,3412.00,3413.00,3414.00,3415.00,3418.00,3419.00,3420.00,3421.00,3422.00,3425.00,3426.00,3427.00,3428.00,3429.00,3430.00,3431.00,3432.00,3434.00,3436.00,3438.00,3439.00,3440.00,3441.00,3442.00,3443.00,3444.00,3446.00,3448.00,3449.00,3450.00,3451.00,3452.00,3453.00,3454.00,3455.00,3456.00,3457.00,3458.00,3463.00,3464.00,3467.00,3468.00,3474.00,3475.00,3476.00,3477.00,3478.00,3479.00,3482.00,3483.00,3484.00,3486.00,3492.00,3493.00,3495.00,3496.00,3497.00,3499.00,3500.00,3502.00,3503.00,3506.00,3507.00,3510.00,3511.00,3512.00,3513.00,3514.00,3517.00,3518.00,3519.00,3520.00,3523.00,3524.00,3525.00,3526.00,3527.00,3528.00,3529.00,3530.00,3531.00,3533.00,3537.00,3538.00,3539.00,3540.00,3541.00,3542.00,3544.00,3546.00,3547.00,3548.00,3549.00,3551.00,3553.00,3556.00,3559.00,3560.00,3561.00,3562.00,3566.00,3567.00,3569.00,3570.00,3573.00,3574.00,3575.00,3577.00,3578.00,3581.00,3582.00,3585.00,3587.00,3588.00,3589.00,3590.00,3591.00,3594.00,3599.00,3600.00,3601.00,3602.00,3603.00,3604.00,3605.00,3610.00,3611.00,3615.00,3616.00,3617.00,3619.00,3623.00,3624.00,3625.00,3629.00,3630.00,3631.00,3632.00,3634.00,3638.00,3640.00,3643.00,3644.00,3645.00,3646.00,3647.00,3650.00,3651.00,3652.00,3653.00,3657.00,3659.00,3660.00,3661.00,3663.00,3665.00,3667.00,3671.00,3672.00,3675.00,3679.00,3680.00,3681.00,3686.00,3687.00,3688.00,3691.00,3693.00,3694.00,3695.00,3696.00,3698.00,3699.00,3703.00,3706.00,3707.00,3708.00,3709.00,3711.00,3712.00,3713.00,3714.00,3715.00,3717.00,3718.00,3722.00,3723.00,3724.00,3725.00,3726.00,3727.00,3728.00,3729.00,3730.00,3731.00,3733.00,3735.00,3736.00,3737.00,3738.00,3739.00,3741.00,3742.00,3743.00,3744.00,3748.00,3751.00,3752.00,3754.00,3755.00,3756.00,3757.00,3760.00,3761.00,3764.00,3765.00,3766.00,3767.00,3769.00,3770.00,3773.00,3775.00,3776.00,3777.00,3778.00,3779.00,3780.00,3781.00,3783.00,3785.00,3789.00,3791.00,3792.00,3793.00,3794.00,3796.00,3797.00,3798.00,3799.00,3800.00,3803.00,3804.00,3805.00,3806.00,3811.00,3814.00,3815.00,3816.00,3821.00,3825.00,3834.00,3836.00,3839.00,3840.00,3841.00,3843.00,3844.00,3846.00,3847.00,3848.00,3849.00,3850.00,3851.00,3853.00,3854.00,3855.00,3860.00,3861.00,3862.00,3863.00,3867.00,3868.00,3869.00,3870.00,3875.00,3876.00,3877.00,3882.00,3883.00,3884.00,3890.00,3892.00,3897.00,3898.00,3900.00,3902.00,3904.00,3919.00,3920.00,3925.00,3979.00,3988.00,4016.00,4045.00,4080.00,4088.00,4091.00,4092.00,4100.00,4106.00,4114.00,4115.00,4116.00,4118.00,4119.00,4120.00,4122.00,4123.00,4127.00,4128.00,4129.00,4130.00,4132.00,4133.00,4134.00,4135.00,4136.00,4137.00,4142.00,4143.00,4146.00,4147.00,4148.00,4150.00,4151.00,4156.00,4160.00,4161.00,4162.00,4164.00,4166.00,4167.00,4168.00,4169.00,4170.00,4171.00,4174.00,4176.00,4177.00,4179.00,4181.00,4182.00,4183.00,4184.00,4185.00,4186.00,4188.00,4189.00,4190.00,4191.00,4192.00,4193.00,4195.00,4196.00,4197.00,4198.00,4199.00,4200.00,4202.00,4203.00,4207.00,4209.00,4210.00,4212.00,4215.00,4216.00,4219.00,4220.00,4222.00,4223.00,4225.00,4226.00,4230.00,4231.00,4232.00,4233.00,4235.00,4236.00,4238.00,4239.00,4240.00,4241.00,4242.00,4244.00,4245.00,4248.00,4250.00,4253.00,4255.00,4256.00,4259.00,4260.00,4264.00,4265.00,4266.00,4268.00,4269.00,4270.00,4273.00,4274.00,4275.00,4276.00,4277.00,4279.00,4280.00,4282.00,4284.00,4285.00,4288.00,4289.00,4290.00,4291.00,4294.00,4295.00,4298.00,4301.00,4302.00,4303.00,4304.00,4305.00,4307.00,4308.00,4309.00,4310.00,4311.00,4313.00,4315.00,4316.00,4317.00,4318.00,4319.00,4322.00,4324.00,4325.00,4326.00,4330.00,4331.00,4332.00,4334.00,4335.00,4336.00,4338.00,4339.00,4342.00,4344.00,4345.00,4346.00,4347.00,4349.00,4350.00,4351.00,4352.00,4354.00,4356.00,4358.00,4359.00,4361.00,4363.00,4364.00,4365.00,4366.00,4367.00,4370.00,4372.00,4373.00,4374.00,4375.00,4379.00,4380.00,4381.00,4384.00,4385.00,4386.00,4387.00,4388.00,4389.00,4391.00,4392.00,4393.00,4394.00,4395.00,4399.00,4400.00,4401.00,4402.00,4405.00,4406.00,4407.00,4408.00,4409.00,4410.00,44591.00,44592.00 8875 715.566200 1.088451
## 4) last_Inspection=1573.00,1578.00,1579.00,1580.00,1581.00,1582.00,1585.00,1586.00,1587.00,1588.00,1589.00,1595.00,1599.00,1600.00,1601.00,1606.00,1607.00,1608.00,1612.00,1614.00,1615.00,1617.00,1620.00,1622.00,1628.00,1630.00,1631.00,1632.00,1635.00,1636.00,1637.00,1639.00,1641.00,1643.00,1644.00,1645.00,1648.00,1649.00,1651.00,1658.00,1659.00,1665.00,1666.00,1669.00,1670.00,1673.00,1675.00,1676.00,1680.00,1683.00,1684.00,1686.00,1689.00,1697.00,1698.00,1700.00,1701.00,1706.00,1707.00,1711.00,1714.00,1715.00,1720.00,1721.00,1722.00,1726.00,1728.00,1731.00,1734.00,1737.00,1739.00,1740.00,1746.00,1748.00,1750.00,1753.00,1754.00,1763.00,1764.00,1767.00,1770.00,1774.00,1775.00,1776.00,1778.00,1782.00,1783.00,1788.00,1790.00,1794.00,1795.00,1796.00,1797.00,1799.00,1802.00,1809.00,1813.00,1818.00,1819.00,1827.00,1831.00,1832.00,1834.00,1837.00,1843.00,1844.00,1845.00,1851.00,1852.00,1854.00,1866.00,1867.00,1868.00,1872.00,1876.00,1880.00,1881.00,1886.00,1896.00,1900.00,1901.00,1902.00,1903.00,1908.00,1909.00,1916.00,1918.00,1927.00,1930.00,1938.00,1939.00,1943.00,1946.00,1948.00,1950.00,1951.00,1953.00,1956.00,1958.00,1959.00,1960.00,1961.00,1963.00,1967.00,1969.00,1975.00,1977.00,1979.00,1980.00,1981.00,1985.00,1990.00,1991.00,1999.00,2002.00,2005.00,2006.00,2008.00,2009.00,2013.00,2016.00,2021.00,2023.00,2034.00,2035.00,2036.00,2041.00,2044.00,2047.00,2048.00,2053.00,2054.00,2055.00,2056.00,2057.00,2058.00,2061.00,2062.00,2064.00,2065.00,2068.00,2069.00,2070.00,2071.00,2077.00,2079.00,2084.00,2088.00,2091.00,2092.00,2098.00,2099.00,2100.00,2108.00,2109.00,2110.00,2111.00,2113.00,2114.00,2118.00,2120.00,2125.00,2126.00,2127.00,2131.00,2133.00,2135.00,2141.00,2146.00,2147.00,2148.00,2154.00,2158.00,2160.00,2163.00,2166.00,2168.00,2169.00,2170.00,2173.00,2174.00,2175.00,2183.00,2184.00,2189.00,2190.00,2196.00,2197.00,2201.00,2203.00,2204.00,2207.00,2208.00,2216.00,2218.00,2219.00,2224.00,2231.00,2233.00,2236.00,2238.00,2240.00,2243.00,2244.00,2245.00,2246.00,2247.00,2249.00,2251.00,2259.00,2260.00,2261.00,2266.00,2267.00,2268.00,2271.00,2272.00,2274.00,2275.00,2278.00,2281.00,2286.00,2288.00,2291.00,2292.00,2293.00,2294.00,2296.00,2298.00,2302.00,2303.00,2306.00,2307.00,2308.00,2309.00,2311.00,2312.00,2313.00,2314.00,2317.00,2321.00,2323.00,2326.00,2327.00,2329.00,2330.00,2334.00,2335.00,2340.00,2342.00,2351.00,2352.00,2356.00,2358.00,2363.00,2364.00,2366.00,2368.00,2369.00,2370.00,2373.00,2375.00,2380.00,2381.00,2382.00,2387.00,2391.00,2392.00,2393.00,2397.00,2399.00,2405.00,2406.00,2408.00,2412.00,2419.00,2421.00,2422.00,2427.00,2433.00,2435.00,2442.00,2448.00,2449.00,2454.00,2455.00,2456.00,2460.00,2462.00,2464.00,2468.00,2469.00,2475.00,2477.00,2479.00,2482.00,2484.00,2491.00,2492.00,2495.00,2497.00,2498.00,2499.00,2503.00,2505.00,2514.00,2518.00,2523.00,2524.00,2527.00,2531.00,2533.00,2534.00,2540.00,2542.00,2545.00,2548.00,2551.00,2552.00,2553.00,2554.00,2555.00,2558.00,2562.00,2565.00,2566.00,2568.00,2570.00,2572.00,2574.00,2576.00,2579.00,2581.00,2583.00,2586.00,2589.00,2602.00,2603.00,2604.00,2607.00,2608.00,2609.00,2611.00,2617.00,2618.00,2624.00,2629.00,2634.00,2635.00,2637.00,2639.00,2646.00,2650.00,2653.00,2657.00,2658.00,2659.00,2663.00,2664.00,2666.00,2670.00,2672.00,2674.00,2678.00,2679.00,2680.00,2681.00,2687.00,2688.00,2693.00,2698.00,2702.00,2706.00,2707.00,2713.00,2714.00,2715.00,2716.00,2717.00,2720.00,2721.00,2734.00,2735.00,2739.00,2740.00,2741.00,2743.00,2744.00,2748.00,2749.00,2750.00,2751.00,2757.00,2758.00,2760.00,2763.00,2764.00,2765.00,2769.00,2771.00,2772.00,2777.00,2779.00,2784.00,2789.00,2790.00,2795.00,2796.00,2799.00,2802.00,2806.00,2811.00,2814.00,2818.00,2820.00,2827.00,2831.00,2833.00,2838.00,2847.00,2849.00,2852.00,2857.00,2860.00,2866.00,2867.00,2869.00,2880.00,2882.00,2884.00,2890.00,2891.00,2894.00,2896.00,2901.00,2904.00,2908.00,2912.00,2917.00,2918.00,2919.00,2923.00,2925.00,2928.00,2929.00,2932.00,2935.00,2938.00,2939.00,2943.00,2944.00,2946.00,2955.00,2957.00,2958.00,2961.00,2966.00,2967.00,2971.00,2972.00,2973.00,2978.00,2979.00,2991.00,2992.00,2993.00,2995.00,2999.00,3000.00,3003.00,3005.00,3006.00,3007.00,3009.00,3010.00,3013.00,3015.00,3017.00,3021.00,3022.00,3028.00,3030.00,3034.00,3037.00,3041.00,3044.00,3045.00,3048.00,3049.00,3050.00,3052.00,3055.00,3056.00,3057.00,3059.00,3063.00,3065.00,3066.00,3069.00,3072.00,3073.00,3074.00,3076.00,3077.00,3080.00,3083.00,3084.00,3085.00,3086.00,3087.00,3093.00,3094.00,3097.00,3098.00,3100.00,3102.00,3105.00,3106.00,3115.00,3119.00,3120.00,3121.00,3126.00,3127.00,3129.00,3134.00,3135.00,3136.00,3139.00,3140.00,3141.00,3143.00,3144.00,3146.00,3148.00,3150.00,3153.00,3154.00,3157.00,3160.00,3161.00,3162.00,3163.00,3164.00,3169.00,3170.00,3177.00,3178.00,3181.00,3188.00,3189.00,3190.00,3192.00,3197.00,3198.00,3203.00,3205.00,3209.00,3213.00,3219.00,3225.00,3226.00,3230.00,3231.00,3232.00,3235.00,3236.00,3237.00,3238.00,3241.00,3244.00,3245.00,3246.00,3247.00,3251.00,3252.00,3254.00,3255.00,3257.00,3258.00,3259.00,3260.00,3262.00,3266.00,3267.00,3271.00,3272.00,3273.00,3275.00,3280.00,3281.00,3282.00,3283.00,3286.00,3287.00,3290.00,3291.00,3293.00,3294.00,3295.00,3303.00,3309.00,3311.00,3315.00,3318.00,3321.00,3330.00,3331.00,3338.00,3339.00,3344.00,3347.00,3350.00,3353.00,3355.00,3358.00,3368.00,3370.00,3375.00,3382.00,3384.00,3388.00,3389.00,3392.00,3395.00,3402.00,3403.00,3404.00,3409.00,3411.00,3413.00,3418.00,3422.00,3425.00,3431.00,3432.00,3436.00,3438.00,3439.00,3442.00,3446.00,3450.00,3452.00,3453.00,3455.00,3457.00,3464.00,3467.00,3474.00,3479.00,3495.00,3499.00,3502.00,3507.00,3512.00,3517.00,3518.00,3520.00,3523.00,3526.00,3529.00,3530.00,3533.00,3537.00,3539.00,3544.00,3551.00,3560.00,3566.00,3569.00,3577.00,3578.00,3581.00,3585.00,3587.00,3594.00,3599.00,3600.00,3602.00,3605.00,3610.00,3615.00,3617.00,3623.00,3625.00,3631.00,3634.00,3640.00,3643.00,3647.00,3651.00,3653.00,3663.00,3687.00,3688.00,3691.00,3694.00,3696.00,3698.00,3699.00,3707.00,3711.00,3712.00,3713.00,3715.00,3717.00,3718.00,3722.00,3723.00,3724.00,3725.00,3726.00,3728.00,3730.00,3733.00,3736.00,3739.00,3741.00,3743.00,3744.00,3748.00,3751.00,3754.00,3760.00,3761.00,3767.00,3773.00,3775.00,3779.00,3781.00,3789.00,3792.00,3793.00,3796.00,3800.00,3803.00,3804.00,3805.00,3811.00,3816.00,3825.00,3839.00,3841.00,3844.00,3846.00,3847.00,3848.00,3851.00,3855.00,3860.00,3869.00,3876.00,3877.00,3882.00,3883.00,3884.00,3890.00,3892.00,3897.00,3898.00,3900.00,3902.00,3904.00,3919.00,3920.00,3925.00,3979.00,3988.00,4016.00,4045.00,4080.00,4088.00,4091.00,4092.00,4100.00,4106.00,4114.00,4115.00,4118.00,4119.00,4122.00,4123.00,4127.00,4128.00,4132.00,4133.00,4134.00,4135.00,4143.00,4147.00,4160.00,4164.00,4166.00,4167.00,4168.00,4170.00,4174.00,4176.00,4179.00,4181.00,4189.00,4190.00,4195.00,4196.00,4197.00,4199.00,4200.00,4202.00,4209.00,4212.00,4215.00,4216.00,4219.00,4220.00,4222.00,4223.00,4225.00,4230.00,4235.00,4236.00,4244.00,4245.00,4248.00,4250.00,4253.00,4255.00,4259.00,4264.00,4265.00,4274.00,4276.00,4277.00,4279.00,4282.00,4285.00,4291.00,4301.00,4302.00,4304.00,4307.00,4308.00,4309.00,4310.00,4313.00,4318.00,4319.00,4324.00,4330.00,4332.00,4334.00,4335.00,4342.00,4349.00,4356.00,4358.00,4363.00,4364.00,4366.00,4370.00,4380.00,4381.00,4384.00,4387.00,4391.00,4400.00,4401.00,4402.00,4405.00,4407.00,4410.00,44591.00,44592.00 3910 65.851920 1.017136 *
## 5) last_Inspection=1593.00,1594.00,1627.00,1652.00,1657.00,1663.00,1693.00,1712.00,1733.00,1757.00,1761.00,1785.00,1791.00,1805.00,1824.00,1833.00,1873.00,1882.00,1911.00,1915.00,1924.00,1931.00,1945.00,1964.00,1965.00,1970.00,1978.00,1988.00,2014.00,2015.00,2022.00,2027.00,2043.00,2063.00,2086.00,2119.00,2128.00,2139.00,2140.00,2153.00,2155.00,2180.00,2187.00,2188.00,2198.00,2202.00,2209.00,2210.00,2212.00,2254.00,2287.00,2331.00,2344.00,2365.00,2398.00,2407.00,2413.00,2418.00,2428.00,2434.00,2436.00,2440.00,2450.00,2461.00,2488.00,2504.00,2520.00,2526.00,2537.00,2560.00,2561.00,2567.00,2685.00,2699.00,2723.00,2727.00,2736.00,2737.00,2755.00,2778.00,2783.00,2791.00,2800.00,2812.00,2819.00,2826.00,2828.00,2840.00,2845.00,2848.00,2854.00,2856.00,2859.00,2862.00,2868.00,2881.00,2883.00,2888.00,2889.00,2895.00,2909.00,2911.00,2922.00,2924.00,2931.00,2937.00,2974.00,2988.00,2994.00,2996.00,3027.00,3035.00,3038.00,3079.00,3142.00,3147.00,3156.00,3167.00,3175.00,3176.00,3182.00,3183.00,3185.00,3216.00,3233.00,3234.00,3248.00,3300.00,3328.00,3332.00,3336.00,3337.00,3342.00,3343.00,3349.00,3351.00,3360.00,3364.00,3365.00,3372.00,3373.00,3378.00,3380.00,3381.00,3386.00,3387.00,3390.00,3393.00,3394.00,3400.00,3401.00,3405.00,3406.00,3412.00,3414.00,3415.00,3419.00,3420.00,3421.00,3426.00,3427.00,3428.00,3429.00,3430.00,3434.00,3440.00,3441.00,3443.00,3444.00,3448.00,3449.00,3451.00,3454.00,3456.00,3458.00,3463.00,3468.00,3475.00,3476.00,3477.00,3478.00,3482.00,3483.00,3484.00,3486.00,3492.00,3493.00,3496.00,3497.00,3500.00,3503.00,3506.00,3510.00,3511.00,3513.00,3514.00,3519.00,3524.00,3525.00,3527.00,3528.00,3531.00,3538.00,3540.00,3541.00,3542.00,3546.00,3547.00,3548.00,3549.00,3553.00,3556.00,3559.00,3561.00,3562.00,3567.00,3570.00,3573.00,3574.00,3575.00,3582.00,3588.00,3589.00,3590.00,3591.00,3601.00,3603.00,3604.00,3611.00,3616.00,3619.00,3624.00,3629.00,3630.00,3632.00,3638.00,3644.00,3645.00,3646.00,3650.00,3652.00,3657.00,3659.00,3660.00,3661.00,3665.00,3667.00,3671.00,3672.00,3675.00,3679.00,3680.00,3681.00,3686.00,3693.00,3695.00,3703.00,3706.00,3708.00,3709.00,3714.00,3727.00,3729.00,3731.00,3735.00,3737.00,3738.00,3742.00,3752.00,3755.00,3756.00,3757.00,3764.00,3765.00,3766.00,3769.00,3770.00,3776.00,3777.00,3778.00,3780.00,3783.00,3785.00,3791.00,3794.00,3797.00,3798.00,3799.00,3806.00,3814.00,3815.00,3821.00,3834.00,3836.00,3840.00,3843.00,3849.00,3850.00,3853.00,3854.00,3861.00,3862.00,3863.00,3867.00,3868.00,3870.00,3875.00,4116.00,4120.00,4129.00,4130.00,4136.00,4137.00,4142.00,4146.00,4148.00,4150.00,4151.00,4156.00,4161.00,4162.00,4169.00,4171.00,4177.00,4182.00,4183.00,4184.00,4185.00,4186.00,4188.00,4191.00,4192.00,4193.00,4198.00,4203.00,4207.00,4210.00,4226.00,4231.00,4232.00,4233.00,4238.00,4239.00,4240.00,4241.00,4242.00,4256.00,4260.00,4266.00,4268.00,4269.00,4270.00,4273.00,4275.00,4280.00,4284.00,4288.00,4289.00,4290.00,4294.00,4295.00,4298.00,4303.00,4305.00,4311.00,4315.00,4316.00,4317.00,4322.00,4325.00,4326.00,4331.00,4336.00,4338.00,4339.00,4344.00,4345.00,4346.00,4347.00,4350.00,4351.00,4352.00,4354.00,4359.00,4361.00,4365.00,4367.00,4372.00,4373.00,4374.00,4375.00,4379.00,4385.00,4386.00,4388.00,4389.00,4392.00,4393.00,4394.00,4395.00,4399.00,4406.00,4408.00,4409.00 4965 614.168400 1.144612
## 10) last_record=1592,1593,1594,1627,1651,1652,1656,1657,1662,1663,1692,1693,1712,1732,1733,1757,1761,1784,1785,1790,1791,1805,1824,1827,1832,1833,1872,1873,1881,1882,1888,1897,1911,1914,1915,1924,1931,1944,1945,1951,1959,1960,1963,1964,1965,1967,1970,1978,1987,1988,1992,2006,2009,2014,2015,2022,2026,2027,2034,2035,2041,2043,2048,2057,2058,2062,2069,2082,2085,2089,2092,2111,2114,2120,2121,2126,2131,2132,2133,2134,2138,2139,2149,2152,2154,2169,2175,2176,2180,2183,2184,2187,2188,2189,2190,2198,2201,2202,2203,2208,2209,2210,2223,2246,2250,2252,2275,2279,2281,2282,2306,2328,2330,2334,2335,2357,2359,2362,2363,2364,2377,2378,2385,2386,2391,2394,2397,2405,2406,2407,2408,2411,2412,2414,2415,2418,2419,2420,2425,2426,2428,2429,2434,2435,2436,2439,2446,2448,2449,2454,2455,2457,2471,2477,2478,2484,2485,2488,2489,2490,2492,2497,2499,2503,2504,2506,2512,2516,2518,2519,2523,2525,2527,2532,2533,2534,2537,2538,2544,2547,2551,2555,2558,2559,2560,2562,2565,2566,2572,2575,2580,2582,2589,2601,2608,2610,2614,2616,2618,2678,2679,2681,2684,2692,2693,2698,2708,2712,2713,2716,2721,2722,2723,2726,2733,2735,2736,2749,2751,2762,2771,2776,2777,2779,2782,2783,2785,2786,2790,2791,2798,2799,2811,2812,2814,2818,2819,2820,2821,2825,2826,2827,2833,2835,2838,2839,2840,2845,2846,2847,2849,2852,2853,2855,2859,2860,2863,2866,2867,2870,2876,2877,2880,2881,2882,2883,2884,2887,2888,2889,2891,2894,2896,2898,2902,2903,2908,2910,2912,2918,2919,2926,2930,2931,2936,2972,2973,2974,2979,2980,2981,2982,2988,2993,2995,3023,3024,3030,3031,3034,3036,3037,3048,3076,3077,3078,3119,3135,3140,3146,3149,3155,3156,3162,3163,3169,3174,3175,3182,3183,3212,3217,3223,3225,3231,3232,3233,3245,3247,3248,3265,3266 4850 559.221600 1.132990 *
## 11) last_record=1760,1879,1923,1932,1958,1986,2063,2079,2117,2125,2135,2166,2181,2182,2191,2204,2268,2323,2351,2393,2433,2460,2483,2517,2524,2561,2604,2639,2685,2694,2695,2734,2747,2772,2789,2810,2813,2842,2854,2861,2869,2897,2904,2909,2916,2922,2929,2954,2971,2987,3000,3027,3066,3071,3141,3143,3153,3164,3170,3178,3213,3230 115 26.660870 1.634783 *
## 3) last_Inspection=1574.00,1575.00,1596.00,1602.00,1603.00,1609.00,1613.00,1616.00,1621.00,1623.00,1624.00,1629.00,1634.00,1638.00,1640.00,1642.00,1650.00,1655.00,1656.00,1662.00,1664.00,1671.00,1677.00,1678.00,1679.00,1685.00,1687.00,1690.00,1691.00,1692.00,1694.00,1699.00,1704.00,1705.00,1713.00,1718.00,1719.00,1727.00,1729.00,1735.00,1736.00,1741.00,1742.00,1743.00,1747.00,1749.00,1755.00,1756.00,1762.00,1768.00,1769.00,1771.00,1777.00,1780.00,1781.00,1784.00,1789.00,1792.00,1798.00,1803.00,1804.00,1808.00,1810.00,1812.00,1817.00,1820.00,1822.00,1823.00,1826.00,1830.00,1838.00,1839.00,1840.00,1846.00,1847.00,1848.00,1853.00,1869.00,1874.00,1875.00,1887.00,1888.00,1889.00,1904.00,1910.00,1914.00,1917.00,1922.00,1923.00,1925.00,1928.00,1932.00,1935.00,1936.00,1937.00,1942.00,1944.00,1949.00,1952.00,1957.00,1966.00,1971.00,1972.00,1973.00,1984.00,1986.00,1987.00,1992.00,1993.00,1994.00,1995.00,2000.00,2007.00,2012.00,2019.00,2020.00,2026.00,2028.00,2029.00,2030.00,2033.00,2042.00,2049.00,2050.00,2051.00,2074.00,2075.00,2076.00,2078.00,2082.00,2083.00,2085.00,2090.00,2093.00,2097.00,2103.00,2107.00,2117.00,2121.00,2123.00,2124.00,2132.00,2134.00,2138.00,2142.00,2145.00,2149.00,2152.00,2156.00,2159.00,2161.00,2162.00,2167.00,2176.00,2181.00,2182.00,2195.00,2211.00,2215.00,2217.00,2237.00,2250.00,2252.00,2253.00,2264.00,2265.00,2279.00,2280.00,2282.00,2289.00,2290.00,2295.00,2299.00,2300.00,2301.00,2310.00,2315.00,2316.00,2320.00,2322.00,2328.00,2333.00,2336.00,2337.00,2341.00,2343.00,2345.00,2348.00,2349.00,2350.00,2355.00,2357.00,2362.00,2371.00,2372.00,2374.00,2376.00,2377.00,2379.00,2383.00,2384.00,2385.00,2390.00,2394.00,2400.00,2401.00,2411.00,2414.00,2415.00,2420.00,2425.00,2426.00,2429.00,2432.00,2439.00,2441.00,2447.00,2453.00,2457.00,2463.00,2467.00,2470.00,2471.00,2478.00,2481.00,2483.00,2485.00,2489.00,2490.00,2496.00,2502.00,2509.00,2511.00,2512.00,2513.00,2516.00,2517.00,2519.00,2525.00,2530.00,2532.00,2538.00,2539.00,2544.00,2546.00,2547.00,2559.00,2575.00,2580.00,2582.00,2590.00,2600.00,2610.00,2614.00,2616.00,2630.00,2631.00,2632.00,2636.00,2642.00,2643.00,2644.00,2645.00,2651.00,2652.00,2656.00,2660.00,2667.00,2671.00,2677.00,2684.00,2686.00,2691.00,2692.00,2694.00,2695.00,2700.00,2701.00,2705.00,2708.00,2711.00,2712.00,2719.00,2722.00,2726.00,2728.00,2729.00,2730.00,2733.00,2742.00,2747.00,2754.00,2756.00,2761.00,2770.00,2775.00,2776.00,2782.00,2785.00,2786.00,2792.00,2793.00,2797.00,2798.00,2803.00,2804.00,2805.00,2810.00,2813.00,2817.00,2824.00,2825.00,2832.00,2834.00,2835.00,2839.00,2841.00,2842.00,2843.00,2853.00,2855.00,2861.00,2863.00,2870.00,2873.00,2874.00,2875.00,2876.00,2877.00,2887.00,2897.00,2898.00,2902.00,2903.00,2910.00,2915.00,2916.00,2926.00,2930.00,2936.00,2940.00,2945.00,2947.00,2951.00,2953.00,2964.00,2965.00,2975.00,2977.00,2980.00,2981.00,2982.00,2987.00,2989.00,3001.00,3002.00,3008.00,3023.00,3024.00,3029.00,3031.00,3033.00,3042.00,3051.00,3058.00,3064.00,3070.00,3071.00,3078.00,3091.00,3092.00,3099.00,3101.00,3104.00,3107.00,3108.00,3111.00,3118.00,3122.00,3128.00,3149.00,3155.00,3159.00,3168.00,3174.00,3184.00,3191.00,3195.00,3196.00,3199.00,3202.00,3204.00,3206.00,3210.00,3211.00,3212.00,3217.00,3218.00,3220.00,3223.00,3224.00,3239.00,3240.00,3253.00,3261.00,3274.00,3279.00,3288.00,3289.00,3296.00,3301.00,3302.00,3307.00,3308.00,3310.00,3314.00,3322.00,3323.00,3329.00,3334.00,3335.00,3345.00,3346.00,3352.00,3359.00,3362.00,3363.00,3366.00,3369.00,3371.00,3374.00,3376.00,3377.00,3379.00,3385.00,3391.00,3396.00,3397.00,3398.00,3399.00,3407.00,3408.00,3416.00,3423.00,3424.00,3433.00,3435.00,3447.00,3461.00,3462.00,3465.00,3472.00,3485.00,3489.00,3490.00,3491.00,3504.00,3505.00,3521.00,3532.00,3534.00,3545.00,3552.00,3554.00,3555.00,3563.00,3568.00,3572.00,3576.00,3580.00,3583.00,3584.00,3595.00,3596.00,3597.00,3598.00,3608.00,3609.00,3612.00,3614.00,3618.00,3622.00,3626.00,3636.00,3637.00,3639.00,3654.00,3658.00,3664.00,3666.00,3673.00,3674.00,3678.00,3685.00,3692.00,3700.00,3701.00,3702.00,3705.00,3710.00,3716.00,3745.00,3749.00,3750.00,3758.00,3759.00,3762.00,3763.00,3771.00,3772.00,3782.00,3784.00,3786.00,3787.00,3790.00,3802.00,3807.00,3808.00,3809.00,3812.00,3813.00,3818.00,3819.00,3820.00,3822.00,3829.00,3832.00,3833.00,3835.00,3842.00,3856.00,3857.00,3859.00,3871.00,3873.00,3874.00,3878.00,3880.00,3881.00,3889.00,4078.00,4109.00,4113.00,4121.00,4126.00,4141.00,4144.00,4149.00,4154.00,4155.00,4157.00,4158.00,4163.00,4172.00,4175.00,4178.00,4187.00,4211.00,4213.00,4214.00,4217.00,4218.00,4221.00,4224.00,4227.00,4228.00,4234.00,4246.00,4247.00,4249.00,4252.00,4254.00,4258.00,4261.00,4262.00,4267.00,4281.00,4283.00,4287.00,4296.00,4297.00,4312.00,4323.00,4327.00,4329.00,4333.00,4337.00,4340.00,4343.00,4353.00,4357.00,4360.00,4362.00,4371.00,4378.00,4382.00,4403.00,4411.00,4412.00 3658 811.439300 1.332149
## 6) last_record=1596,1609,1621,1624,1634,1648,1650,1651,1656,1662,1677,1678,1679,1685,1690,1694,1699,1701,1705,1712,1718,1719,1728,1729,1735,1736,1740,1743,1747,1748,1755,1762,1771,1777,1781,1789,1791,1792,1797,1798,1812,1816,1817,1820,1826,1830,1833,1834,1838,1839,1840,1846,1848,1887,1889,1900,1904,1914,1917,1922,1923,1925,1935,1936,1937,1944,1956,1970,1971,1985,1986,1987,1988,1991,1992,1993,1995,1999,2005,2007,2015,2029,2030,2042,2068,2077,2078,2082,2083,2084,2085,2089,2096,2099,2120,2121,2124,2128,2133,2134,2138,2142,2149,2152,2154,2155,2156,2160,2161,2163,2166,2169,2175,2181,2183,2187,2191,2202,2208,2209,2236,2238,2240,2244,2247,2250,2251,2252,2259,2260,2264,2266,2272,2281,2293,2294,2296,2303,2306,2307,2309,2310,2313,2314,2316,2317,2323,2331,2351,2357,2358,2359,2364,2369,2371,2377,2378,2379,2380,2383,2387,2391,2392,2393,2394,2400,2405,2407,2408,2413,2415,2421,2422,2425,2428,2429,2439,2446,2447,2450,2454,2460,2462,2467,2469,2470,2471,2476,2477,2481,2483,2485,2488,2489,2491,2492,2495,2503,2505,2509,2510,2513,2516,2520,2523,2524,2525,2527,2530,2533,2534,2544,2545,2567,2573,2575,2581,2607,2609,2611,2615,2616,2617,2628,2631,2635,2636,2637,2642,2646,2653,2656,2664,2665,2671,2672,2674,2678,2684,2685,2687,2688,2694,2698,2701,2706,2708,2713,2715,2716,2720,2722,2723,2727,2728,2730,2743,2755,2756,2757,2771,2772,2776,2778,2783,2785,2786,2791,2792,2793,2796,2797,2803,2806,2810,2812,2813,2824,2827,2831,2833,2835,2838,2839,2849,2852,2853,2861,2862,2867,2868,2869,2873,2876,2884,2887,2888,2890,2895,2896,2897,2909,2910,2915,2916,2924,2925,2929,2930,2931,2938,2939,2945,2947,2954,2958,2978,2982,2994,3000,3006,3016,3023,3027,3031,3043,3051,3063,3066,3069,3079,3080,3087,3091,3100,3104,3105,3115,3121,3127,3143,3147,3150,3153,3170,3178,3192,3197,3198,3199,3202,3210,3211,3212,3217,3220,3223,3231,3251,3252,3255,3258,3259,3266 2956 564.600800 1.257104
## 12) last_record=1596,1648,1651,1656,1690,1701,1712,1728,1736,1740,1748,1755,1792,1797,1816,1826,1830,1833,1834,1889,1900,1904,1925,1956,1970,1985,1986,1988,1999,2005,2015,2029,2068,2077,2082,2083,2084,2099,2121,2124,2128,2133,2134,2138,2142,2149,2152,2155,2156,2161,2163,2166,2169,2183,2187,2191,2202,2208,2209,2236,2238,2240,2247,2251,2252,2259,2260,2264,2272,2281,2293,2296,2303,2306,2307,2313,2314,2323,2351,2357,2364,2377,2379,2380,2383,2387,2391,2393,2400,2405,2407,2413,2415,2425,2428,2446,2447,2450,2454,2460,2462,2467,2470,2471,2476,2481,2483,2485,2489,2495,2503,2505,2509,2520,2523,2530,2533,2534,2567,2573,2575,2581,2607,2609,2615,2616,2617,2628,2631,2635,2637,2646,2656,2664,2665,2671,2672,2678,2684,2687,2698,2701,2708,2713,2715,2716,2720,2722,2728,2730,2743,2755,2756,2757,2776,2778,2783,2785,2786,2793,2796,2797,2803,2806,2810,2812,2824,2827,2831,2838,2852,2853,2861,2867,2869,2873,2876,2884,2887,2888,2890,2895,2897,2909,2910,2916,2924,2929,2930,2931,2938,2939,2945,2947,2954,2958,2978,2982,2994,3000,3006,3016,3023,3027,3031,3043,3051,3063,3069,3079,3080,3087,3091,3100,3104,3105,3115,3121,3127,3143,3147,3150,3153,3170,3178,3192,3197,3199,3202,3210,3211,3220,3223,3231,3251,3252,3255,3258,3259 363 1.988981 1.005510 *
## 13) last_record=1609,1621,1624,1634,1650,1662,1677,1678,1679,1685,1694,1699,1705,1718,1719,1729,1735,1743,1747,1762,1771,1777,1781,1789,1791,1798,1812,1817,1820,1838,1839,1840,1846,1848,1887,1914,1917,1922,1923,1935,1936,1937,1944,1971,1987,1991,1992,1993,1995,2007,2030,2042,2078,2085,2089,2096,2120,2154,2160,2175,2181,2244,2250,2266,2294,2309,2310,2316,2317,2331,2358,2359,2369,2371,2378,2392,2394,2408,2421,2422,2429,2439,2469,2477,2488,2491,2492,2510,2513,2516,2524,2525,2527,2544,2545,2611,2636,2642,2653,2674,2685,2688,2694,2706,2723,2727,2771,2772,2791,2792,2813,2833,2835,2839,2849,2862,2868,2896,2915,2925,3066,3198,3212,3217,3266 2593 536.417300 1.292325 *
## 7) last_record=#VALUE!,1573,1574,1575,1595,1602,1603,1607,1613,1616,1623,1629,1637,1638,1640,1641,1642,1655,1664,1671,1687,1691,1692,1704,1713,1726,1727,1741,1742,1749,1754,1756,1768,1769,1778,1783,1784,1803,1804,1808,1810,1822,1823,1825,1827,1845,1847,1852,1853,1869,1874,1888,1901,1909,1924,1928,1932,1939,1942,1949,1952,1957,1966,1972,1973,1981,1984,1994,2000,2012,2019,2020,2026,2027,2028,2041,2044,2049,2050,2051,2065,2069,2071,2075,2076,2079,2086,2092,2097,2098,2103,2107,2114,2117,2119,2125,2127,2132,2135,2139,2140,2145,2147,2153,2159,2162,2173,2176,2180,2189,2204,2212,2215,2232,2239,2254,2261,2274,2275,2279,2282,2292,2295,2299,2315,2320,2322,2328,2330,2334,2349,2350,2352,2355,2356,2366,2372,2373,2376,2384,2398,2399,2412,2414,2420,2427,2436,2441,2449,2455,2457,2461,2464,2468,2475,2478,2484,2490,2498,2502,2504,2506,2511,2512,2518,2519,2526,2531,2537,2539,2540,2546,2551,2553,2555,2558,2572,2576,2579,2580,2582,2589,2604,2608,2614,2624,2625,2629,2630,2639,2643,2644,2650,2659,2666,2670,2679,2680,2681,2691,2693,2699,2700,2702,2707,2721,2726,2733,2737,2740,2741,2751,2758,2765,2775,2779,2782,2784,2789,2790,2799,2800,2804,2805,2811,2821,2826,2828,2832,2834,2840,2842,2847,2855,2859,2860,2863,2870,2874,2875,2883,2891,2898,2901,2902,2912,2922,2926,2932,2936,2943,2944,2946,2950,2961,2972,2973,2975,2979,2980,2988,2989,2996,3001,3017,3021,3022,3024,3028,3030,3034,3041,3048,3055,3065,3077,3090,3098,3099,3101,3106,3120,3125,3135,3148,3154,3157,3160,3161,3162,3163,3174,3184,3189,3191,3203,3205,3209,3213,3219,3234,3238,3239,3248,3260 702 160.092600 1.648148
## 14) last_Inspection=1603.00,1613.00,1616.00,1638.00,1642.00,1656.00,1664.00,1671.00,1692.00,1704.00,1713.00,1727.00,1741.00,1755.00,1756.00,1769.00,1781.00,1784.00,1804.00,1808.00,1810.00,1823.00,1847.00,1853.00,1869.00,1910.00,1928.00,1942.00,1949.00,1952.00,1957.00,1966.00,1972.00,1973.00,1994.00,2000.00,2020.00,2026.00,2051.00,2075.00,2076.00,2078.00,2083.00,2097.00,2117.00,2121.00,2134.00,2138.00,2142.00,2149.00,2161.00,2195.00,2215.00,2217.00,2279.00,2280.00,2282.00,2289.00,2299.00,2300.00,2320.00,2336.00,2337.00,2343.00,2348.00,2349.00,2350.00,2357.00,2371.00,2376.00,2379.00,2385.00,2414.00,2420.00,2447.00,2453.00,2457.00,2463.00,2471.00,2485.00,2489.00,2502.00,2512.00,2513.00,2516.00,2517.00,2519.00,2530.00,2532.00,2544.00,2547.00,2559.00,2580.00,2582.00,2590.00,2632.00,2645.00,2651.00,2652.00,2660.00,2684.00,2692.00,2694.00,2700.00,2701.00,2705.00,2708.00,2711.00,2728.00,2730.00,2742.00,2754.00,2776.00,2785.00,2792.00,2805.00,2813.00,2825.00,2832.00,2834.00,2835.00,2841.00,2853.00,2855.00,2861.00,2870.00,2873.00,2875.00,2902.00,2910.00,2930.00,2945.00,2947.00,2951.00,2965.00,2975.00,2981.00,2982.00,3002.00,3008.00,3029.00,3042.00,3078.00,3091.00,3092.00,3101.00,3104.00,3107.00,3111.00,3122.00,3168.00,3174.00,3191.00,3202.00,3210.00,3212.00,3217.00,3239.00,3240.00,3253.00,3261.00,3346.00,3363.00,3377.00,3435.00,3447.00,3491.00,3532.00,3636.00,3701.00,3808.00,4157.00,4214.00,4221.00,4247.00,4378.00 470 117.446800 1.489362 *
## 15) last_Inspection=1574.00,1575.00,1596.00,1602.00,1623.00,1629.00,1640.00,1655.00,1687.00,1690.00,1691.00,1742.00,1749.00,1768.00,1780.00,1803.00,1822.00,1826.00,1830.00,1848.00,1874.00,1875.00,1888.00,1889.00,1904.00,1925.00,1932.00,1984.00,1986.00,1995.00,2012.00,2019.00,2028.00,2029.00,2033.00,2042.00,2049.00,2050.00,2074.00,2082.00,2093.00,2107.00,2123.00,2132.00,2145.00,2152.00,2159.00,2167.00,2181.00,2182.00,2211.00,2237.00,2252.00,2264.00,2265.00,2290.00,2295.00,2301.00,2310.00,2316.00,2328.00,2333.00,2341.00,2345.00,2355.00,2372.00,2377.00,2383.00,2384.00,2401.00,2415.00,2425.00,2426.00,2432.00,2439.00,2467.00,2470.00,2478.00,2481.00,2483.00,2509.00,2511.00,2538.00,2539.00,2546.00,2575.00,2600.00,2610.00,2616.00,2630.00,2631.00,2636.00,2642.00,2643.00,2644.00,2667.00,2671.00,2686.00,2695.00,2719.00,2722.00,2729.00,2733.00,2747.00,2756.00,2761.00,2770.00,2782.00,2786.00,2793.00,2797.00,2803.00,2804.00,2810.00,2824.00,2842.00,2843.00,2863.00,2874.00,2876.00,2877.00,2887.00,2897.00,2903.00,2915.00,2926.00,2936.00,2940.00,2953.00,2964.00,2977.00,2980.00,2987.00,2989.00,3001.00,3023.00,3024.00,3031.00,3033.00,3051.00,3058.00,3064.00,3070.00,3071.00,3099.00,3108.00,3118.00,3128.00,3149.00,3155.00,3159.00,3184.00,3195.00,3196.00,3199.00,3204.00,3206.00,3211.00,3220.00,3223.00,3224.00,3279.00,3296.00,3366.00,3371.00,3407.00,3423.00,3462.00,3472.00,3554.00,3583.00,3608.00,3639.00,3666.00,3762.00,3786.00,3833.00,4411.00 232 6.788793 1.969828 *
rpart.plot(ames_dt1)
plotcp(ames_dt1)
###RANDOM FOREST###
# Modeling packages
library(ranger) # a c++ implementation of random forest
# number of features
n_features <- length(setdiff(names(df),"NEXT_INSPECTION_GRADE_C_OR_BELOW"))
# train a default random forest model
df_rf1 <- ranger(
NEXT_INSPECTION_GRADE_C_OR_BELOW ~ .,
data = data1,
probability = TRUE,
mtry = floor(n_features / 3),
respect.unordered.factors = "order",
seed = 123
)
# get OOB RMSE
(default_rmse <- sqrt(df_rf1$prediction.error))
## [1] 0.331889
###PREDICTIONS:
pred<-predict(df_rf1,data=data1)
pred
## Ranger prediction
##
## Type: Probability estimation
## Sample size: 12533
## Number of independent variables: 21
# re-run model with impurity-based variable importance
rf_impurity <- ranger(
formula =NEXT_INSPECTION_GRADE_C_OR_BELOW ~ .,
data = data1,
num.trees = 2000,
mtry = 5,
min.node.size = 10,
sample.fraction = .50,
replace = TRUE,
importance = "impurity",
respect.unordered.factors = "order",
verbose = FALSE,
seed = 123
)
# re-run model with permutation-based variable importance
rf_permutation <- ranger(
formula = NEXT_INSPECTION_GRADE_C_OR_BELOW ~ .,
data = data1,
num.trees = 2000,
mtry = 5,
min.node.size = 10,
sample.fraction = .50,
replace = TRUE,
importance = "permutation",
respect.unordered.factors = "order",
verbose = FALSE,
seed = 123
)
p1 <- vip::vip(rf_impurity, num_features = 14, bar = FALSE)
p2 <- vip::vip(rf_permutation, num_features = 14, bar = FALSE)
gridExtra::grid.arrange(p1, p2, nrow = 1)