1. Background

Context

The World Happiness Report is a landmark survey of the state of global happiness . The report continues to gain global recognition as governments, organizations and civil society increasingly use happiness indicators to inform their policy-making decisions. Leading experts across fields – economics, psychology, survey analysis, national statistics, health, public policy and more – describe how measurements of well-being can be used effectively to assess the progress of nations. The reports review the state of happiness in the world today and show how the new science of happiness explains personal and national variations in happiness.

Content

The happiness scores and rankings use data from the Gallup World Poll . The columns following the happiness score estimate the extent to which each of six factors – economic production, social support, life expectancy, freedom, absence of corruption, and generosity – contribute to making life evaluations higher in each country than they are in Dystopia, a hypothetical country that has values equal to the world’s lowest national averages for each of the six factors. They have no impact on the total score reported for each country, but they do explain why some countries rank higher than others.

2. Input Data

happy_21 <- read.csv("data/world-happiness-report-2021.csv")

Input data is DONE !

2.1 Data Inspection

head(happy_21)
##   ï..Country.name Regional.indicator Ladder.score
## 1         Finland     Western Europe        7.842
## 2         Denmark     Western Europe        7.620
## 3     Switzerland     Western Europe        7.571
## 4         Iceland     Western Europe        7.554
## 5     Netherlands     Western Europe        7.464
## 6          Norway     Western Europe        7.392
##   Standard.error.of.ladder.score upperwhisker lowerwhisker
## 1                          0.032        7.904        7.780
## 2                          0.035        7.687        7.552
## 3                          0.036        7.643        7.500
## 4                          0.059        7.670        7.438
## 5                          0.027        7.518        7.410
## 6                          0.035        7.462        7.323
##   Logged.GDP.per.capita Social.support Healthy.life.expectancy
## 1                10.775          0.954                    72.0
## 2                10.933          0.954                    72.7
## 3                11.117          0.942                    74.4
## 4                10.878          0.983                    73.0
## 5                10.932          0.942                    72.4
## 6                11.053          0.954                    73.3
##   Freedom.to.make.life.choices Generosity Perceptions.of.corruption
## 1                        0.949     -0.098                     0.186
## 2                        0.946      0.030                     0.179
## 3                        0.919      0.025                     0.292
## 4                        0.955      0.160                     0.673
## 5                        0.913      0.175                     0.338
## 6                        0.960      0.093                     0.270
##   Ladder.score.in.Dystopia Explained.by..Log.GDP.per.capita
## 1                     2.43                            1.446
## 2                     2.43                            1.502
## 3                     2.43                            1.566
## 4                     2.43                            1.482
## 5                     2.43                            1.501
## 6                     2.43                            1.543
##   Explained.by..Social.support Explained.by..Healthy.life.expectancy
## 1                        1.106                                 0.741
## 2                        1.108                                 0.763
## 3                        1.079                                 0.816
## 4                        1.172                                 0.772
## 5                        1.079                                 0.753
## 6                        1.108                                 0.782
##   Explained.by..Freedom.to.make.life.choices Explained.by..Generosity
## 1                                      0.691                    0.124
## 2                                      0.686                    0.208
## 3                                      0.653                    0.204
## 4                                      0.698                    0.293
## 5                                      0.647                    0.302
## 6                                      0.703                    0.249
##   Explained.by..Perceptions.of.corruption Dystopia...residual
## 1                                   0.481               3.253
## 2                                   0.485               2.868
## 3                                   0.413               2.839
## 4                                   0.170               2.967
## 5                                   0.384               2.798
## 6                                   0.427               2.580
tail(happy_21)
##     ï..Country.name Regional.indicator Ladder.score
## 144          Malawi Sub-Saharan Africa        3.600
## 145         Lesotho Sub-Saharan Africa        3.512
## 146        Botswana Sub-Saharan Africa        3.467
## 147          Rwanda Sub-Saharan Africa        3.415
## 148        Zimbabwe Sub-Saharan Africa        3.145
## 149     Afghanistan         South Asia        2.523
##     Standard.error.of.ladder.score upperwhisker lowerwhisker
## 144                          0.092        3.781        3.419
## 145                          0.120        3.748        3.276
## 146                          0.074        3.611        3.322
## 147                          0.068        3.548        3.282
## 148                          0.058        3.259        3.030
## 149                          0.038        2.596        2.449
##     Logged.GDP.per.capita Social.support Healthy.life.expectancy
## 144                 6.958          0.537                  57.948
## 145                 7.926          0.787                  48.700
## 146                 9.782          0.784                  59.269
## 147                 7.676          0.552                  61.400
## 148                 7.943          0.750                  56.201
## 149                 7.695          0.463                  52.493
##     Freedom.to.make.life.choices Generosity Perceptions.of.corruption
## 144                        0.780      0.038                     0.729
## 145                        0.715     -0.131                     0.915
## 146                        0.824     -0.246                     0.801
## 147                        0.897      0.061                     0.167
## 148                        0.677     -0.047                     0.821
## 149                        0.382     -0.102                     0.924
##     Ladder.score.in.Dystopia Explained.by..Log.GDP.per.capita
## 144                     2.43                            0.113
## 145                     2.43                            0.451
## 146                     2.43                            1.099
## 147                     2.43                            0.364
## 148                     2.43                            0.457
## 149                     2.43                            0.370
##     Explained.by..Social.support Explained.by..Healthy.life.expectancy
## 144                        0.168                                 0.298
## 145                        0.731                                 0.007
## 146                        0.724                                 0.340
## 147                        0.202                                 0.407
## 148                        0.649                                 0.243
## 149                        0.000                                 0.126
##     Explained.by..Freedom.to.make.life.choices Explained.by..Generosity
## 144                                      0.484                    0.213
## 145                                      0.405                    0.103
## 146                                      0.539                    0.027
## 147                                      0.627                    0.227
## 148                                      0.359                    0.157
## 149                                      0.000                    0.122
##     Explained.by..Perceptions.of.corruption Dystopia...residual
## 144                                   0.134               2.190
## 145                                   0.015               1.800
## 146                                   0.088               0.648
## 147                                   0.493               1.095
## 148                                   0.075               1.205
## 149                                   0.010               1.895
dim(happy_21)
## [1] 149  20
names(happy_21)
##  [1] "ï..Country.name"                           
##  [2] "Regional.indicator"                        
##  [3] "Ladder.score"                              
##  [4] "Standard.error.of.ladder.score"            
##  [5] "upperwhisker"                              
##  [6] "lowerwhisker"                              
##  [7] "Logged.GDP.per.capita"                     
##  [8] "Social.support"                            
##  [9] "Healthy.life.expectancy"                   
## [10] "Freedom.to.make.life.choices"              
## [11] "Generosity"                                
## [12] "Perceptions.of.corruption"                 
## [13] "Ladder.score.in.Dystopia"                  
## [14] "Explained.by..Log.GDP.per.capita"          
## [15] "Explained.by..Social.support"              
## [16] "Explained.by..Healthy.life.expectancy"     
## [17] "Explained.by..Freedom.to.make.life.choices"
## [18] "Explained.by..Generosity"                  
## [19] "Explained.by..Perceptions.of.corruption"   
## [20] "Dystopia...residual"

From our inspection we can conclude :
* happy_21 dataset contain 149 of rows (that mean in dataset include 149 countries) and 20 of coloumns (variabels)
* Each of column name : “ï..Country.name”,“Regional.indicator”,“Ladder.score”,“Standard.error.of.ladder.score”,“upperwhisker”,“lowerwhisker”,“Logged.GDP.per.capita”,“Social.support”,“Healthy.life.expectancy”,“Freedom.to.make.life.choices”,“Generosity”,“Perceptions.of.corruption”,“Ladder.score.in.Dystopia”,“Explained.by..Log.GDP.per.capita”,“Explained.by..Social.support”,“Explained.by..Healthy.life.expectancy”,“Explained.by..Freedom.to.make.life.choices”,“Explained.by..Generosity”,“Explained.by..Perceptions.of.corruption”,“Dystopia…residual”

In this case, I will only take a few variables for analysis.

2.2 Data Cleansing & Coertions

str(happy_21)
## 'data.frame':    149 obs. of  20 variables:
##  $ ï..Country.name                           : chr  "Finland" "Denmark" "Switzerland" "Iceland" ...
##  $ Regional.indicator                        : chr  "Western Europe" "Western Europe" "Western Europe" "Western Europe" ...
##  $ Ladder.score                              : num  7.84 7.62 7.57 7.55 7.46 ...
##  $ Standard.error.of.ladder.score            : num  0.032 0.035 0.036 0.059 0.027 0.035 0.036 0.037 0.04 0.036 ...
##  $ upperwhisker                              : num  7.9 7.69 7.64 7.67 7.52 ...
##  $ lowerwhisker                              : num  7.78 7.55 7.5 7.44 7.41 ...
##  $ Logged.GDP.per.capita                     : num  10.8 10.9 11.1 10.9 10.9 ...
##  $ Social.support                            : num  0.954 0.954 0.942 0.983 0.942 0.954 0.934 0.908 0.948 0.934 ...
##  $ Healthy.life.expectancy                   : num  72 72.7 74.4 73 72.4 73.3 72.7 72.6 73.4 73.3 ...
##  $ Freedom.to.make.life.choices              : num  0.949 0.946 0.919 0.955 0.913 0.96 0.945 0.907 0.929 0.908 ...
##  $ Generosity                                : num  -0.098 0.03 0.025 0.16 0.175 0.093 0.086 -0.034 0.134 0.042 ...
##  $ Perceptions.of.corruption                 : num  0.186 0.179 0.292 0.673 0.338 0.27 0.237 0.386 0.242 0.481 ...
##  $ Ladder.score.in.Dystopia                  : num  2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 ...
##  $ Explained.by..Log.GDP.per.capita          : num  1.45 1.5 1.57 1.48 1.5 ...
##  $ Explained.by..Social.support              : num  1.11 1.11 1.08 1.17 1.08 ...
##  $ Explained.by..Healthy.life.expectancy     : num  0.741 0.763 0.816 0.772 0.753 0.782 0.763 0.76 0.785 0.782 ...
##  $ Explained.by..Freedom.to.make.life.choices: num  0.691 0.686 0.653 0.698 0.647 0.703 0.685 0.639 0.665 0.64 ...
##  $ Explained.by..Generosity                  : num  0.124 0.208 0.204 0.293 0.302 0.249 0.244 0.166 0.276 0.215 ...
##  $ Explained.by..Perceptions.of.corruption   : num  0.481 0.485 0.413 0.17 0.384 0.427 0.448 0.353 0.445 0.292 ...
##  $ Dystopia...residual                       : num  3.25 2.87 2.84 2.97 2.8 ...

In this case, there is a variable that has an inappropriate data type, namely “Regional.indicator”, which should be a category/factor, then the variable “Regional.indicator” will be changed to a factor data type.

happy_21$Regional.indicator <- as.factor(happy_21$Regional.indicator)

str(happy_21)
## 'data.frame':    149 obs. of  20 variables:
##  $ ï..Country.name                           : chr  "Finland" "Denmark" "Switzerland" "Iceland" ...
##  $ Regional.indicator                        : Factor w/ 10 levels "Central and Eastern Europe",..: 10 10 10 10 10 10 10 10 6 10 ...
##  $ Ladder.score                              : num  7.84 7.62 7.57 7.55 7.46 ...
##  $ Standard.error.of.ladder.score            : num  0.032 0.035 0.036 0.059 0.027 0.035 0.036 0.037 0.04 0.036 ...
##  $ upperwhisker                              : num  7.9 7.69 7.64 7.67 7.52 ...
##  $ lowerwhisker                              : num  7.78 7.55 7.5 7.44 7.41 ...
##  $ Logged.GDP.per.capita                     : num  10.8 10.9 11.1 10.9 10.9 ...
##  $ Social.support                            : num  0.954 0.954 0.942 0.983 0.942 0.954 0.934 0.908 0.948 0.934 ...
##  $ Healthy.life.expectancy                   : num  72 72.7 74.4 73 72.4 73.3 72.7 72.6 73.4 73.3 ...
##  $ Freedom.to.make.life.choices              : num  0.949 0.946 0.919 0.955 0.913 0.96 0.945 0.907 0.929 0.908 ...
##  $ Generosity                                : num  -0.098 0.03 0.025 0.16 0.175 0.093 0.086 -0.034 0.134 0.042 ...
##  $ Perceptions.of.corruption                 : num  0.186 0.179 0.292 0.673 0.338 0.27 0.237 0.386 0.242 0.481 ...
##  $ Ladder.score.in.Dystopia                  : num  2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 ...
##  $ Explained.by..Log.GDP.per.capita          : num  1.45 1.5 1.57 1.48 1.5 ...
##  $ Explained.by..Social.support              : num  1.11 1.11 1.08 1.17 1.08 ...
##  $ Explained.by..Healthy.life.expectancy     : num  0.741 0.763 0.816 0.772 0.753 0.782 0.763 0.76 0.785 0.782 ...
##  $ Explained.by..Freedom.to.make.life.choices: num  0.691 0.686 0.653 0.698 0.647 0.703 0.685 0.639 0.665 0.64 ...
##  $ Explained.by..Generosity                  : num  0.124 0.208 0.204 0.293 0.302 0.249 0.244 0.166 0.276 0.215 ...
##  $ Explained.by..Perceptions.of.corruption   : num  0.481 0.485 0.413 0.17 0.384 0.427 0.448 0.353 0.445 0.292 ...
##  $ Dystopia...residual                       : num  3.25 2.87 2.84 2.97 2.8 ...

Great! Now, each of column already changed into desired data type

Next, check for missing values:

colSums(is.na(happy_21))
##                            ï..Country.name 
##                                          0 
##                         Regional.indicator 
##                                          0 
##                               Ladder.score 
##                                          0 
##             Standard.error.of.ladder.score 
##                                          0 
##                               upperwhisker 
##                                          0 
##                               lowerwhisker 
##                                          0 
##                      Logged.GDP.per.capita 
##                                          0 
##                             Social.support 
##                                          0 
##                    Healthy.life.expectancy 
##                                          0 
##               Freedom.to.make.life.choices 
##                                          0 
##                                 Generosity 
##                                          0 
##                  Perceptions.of.corruption 
##                                          0 
##                   Ladder.score.in.Dystopia 
##                                          0 
##           Explained.by..Log.GDP.per.capita 
##                                          0 
##               Explained.by..Social.support 
##                                          0 
##      Explained.by..Healthy.life.expectancy 
##                                          0 
## Explained.by..Freedom.to.make.life.choices 
##                                          0 
##                   Explained.by..Generosity 
##                                          0 
##    Explained.by..Perceptions.of.corruption 
##                                          0 
##                        Dystopia...residual 
##                                          0
anyNA(happy_21)
## [1] FALSE

Excelent! No Missing value in happy_21 dataset.

Several variables will be selected to be used in the analysis.

library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.5
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
happy_21_clear <- happy_21 %>% 
  select("Country" = ï..Country.name,"Region" = Regional.indicator,"Happiness Score" = Ladder.score,
         "Economy" = Logged.GDP.per.capita,"Health" = Healthy.life.expectancy,
         "Freedom" = Freedom.to.make.life.choices, Perceptions.of.corruption, Generosity,
         "Dystopia Residual" = Dystopia...residual) %>% 
  mutate("Trust" = 1-Perceptions.of.corruption) %>% 
  select(-Perceptions.of.corruption)

head(happy_21_clear)
##       Country         Region Happiness Score Economy Health Freedom Generosity
## 1     Finland Western Europe           7.842  10.775   72.0   0.949     -0.098
## 2     Denmark Western Europe           7.620  10.933   72.7   0.946      0.030
## 3 Switzerland Western Europe           7.571  11.117   74.4   0.919      0.025
## 4     Iceland Western Europe           7.554  10.878   73.0   0.955      0.160
## 5 Netherlands Western Europe           7.464  10.932   72.4   0.913      0.175
## 6      Norway Western Europe           7.392  11.053   73.3   0.960      0.093
##   Dystopia Residual Trust
## 1             3.253 0.814
## 2             2.868 0.821
## 3             2.839 0.708
## 4             2.967 0.327
## 5             2.798 0.662
## 6             2.580 0.730

Note:
Economy: GDP per Capita
Health: Life Expectancy
Trust: Absence of Corruption

Now, happy_21_clear dataset is ready to be processed and analyzed.

3. Data Explanation

3.1 Summary Statistics

Summary Statistics happy_21_clear dataset

summary(happy_21_clear)
##    Country                                         Region   Happiness Score
##  Length:149         Sub-Saharan Africa                :36   Min.   :2.523  
##  Class :character   Western Europe                    :21   1st Qu.:4.852  
##  Mode  :character   Latin America and Caribbean       :20   Median :5.534  
##                     Central and Eastern Europe        :17   Mean   :5.533  
##                     Middle East and North Africa      :17   3rd Qu.:6.255  
##                     Commonwealth of Independent States:12   Max.   :7.842  
##                     (Other)                           :26                  
##     Economy           Health         Freedom         Generosity      
##  Min.   : 6.635   Min.   :48.48   Min.   :0.3820   Min.   :-0.28800  
##  1st Qu.: 8.541   1st Qu.:59.80   1st Qu.:0.7180   1st Qu.:-0.12600  
##  Median : 9.569   Median :66.60   Median :0.8040   Median :-0.03600  
##  Mean   : 9.432   Mean   :64.99   Mean   :0.7916   Mean   :-0.01513  
##  3rd Qu.:10.421   3rd Qu.:69.60   3rd Qu.:0.8770   3rd Qu.: 0.07900  
##  Max.   :11.647   Max.   :76.95   Max.   :0.9700   Max.   : 0.54200  
##                                                                      
##  Dystopia Residual     Trust       
##  Min.   :0.648     Min.   :0.0610  
##  1st Qu.:2.138     1st Qu.:0.1550  
##  Median :2.509     Median :0.2190  
##  Mean   :2.430     Mean   :0.2726  
##  3rd Qu.:2.794     3rd Qu.:0.3330  
##  Max.   :3.482     Max.   :0.9180  
## 

Summary:
1. happy_21_clear dataset contain 149 countries.
2. Based on the Region there are:
- 36 countries from Sub-Saharan Africa,
- 21 countries are from Western Europe,
- 20 countries originating from Latin America and the Caribbean,
- 17 countries from Central and Eastern Europe,
- 17 countries from Middle East and North Africa,
- 12 countries are from the Commonwealth of Independent States,
- And the remaining 26 are from other regions.
3. Based on the Happiness Score, countries in the world have:
- Average value: 5.533,
- Minimum value: 2.523,
- Maximum value: 7.842.
4. Based on the Economy, countries in the world have:
- Average value: 9.432,
- Minimum value: 6.635,
- Maximum value: 11.647.
5. Based on the Health, countries in the world have:
- Average value: 64.99,
- Minimum value: 48.48,
- Maximum value: 76.95.
6. Based on the Freedom, countries in the world have:
- Average value: 0.7916,
- Minimum value: 0.3820,
- Maximum value: 0.9700.
7. Based on the Generosity, countries in the world have:
- Average value: -0.015,
- Minimum value: -0.288,
- Maximum value: 0.542.
8. Based on the Dystopia Residual, countries in the world have:
- Average value: 2.430,
- Minimum value: 0.648,
- Maximum value: 3.482.
9. Based on the Freedom, countries in the world have:
- Average value: 0.2726,
- Minimum value: 0.0610,
- Maximum value: 0.9180.


3.2 Check Outlier

par(mfrow=c(2,1))
boxplot(happy_21_clear$`Happiness Score`, main = "Happiness Score", horizontal = T)
boxplot(happy_21_clear$Economy, main = "Economy (GDP per Capita)", horizontal = T)

par(mfrow=c(2,1))
boxplot(happy_21_clear$Health, main = "Health (Life Expectancy)", horizontal = T)
boxplot(happy_21_clear$Freedom, main = "Freedom", horizontal = T)

par(mfrow=c(2,1))
boxplot(happy_21_clear$Generosity, main = "Generosity", horizontal = T)
boxplot(happy_21_clear$`Dystopia Residual`, main = "Dystopia Residual", horizontal = T)

boxplot(happy_21_clear$Trust, main = "Trust (Absence of Corruption)", horizontal = T)

Insight:
From the above results it can be seen that,
Variables with many outliers: “Trust”, “Generosity”
Variables with few outliers: “Dystopia Residual”,“Freedom”,“Happiness Score”
Variables without outliers: “Health”,“Economy”

Note:
In more advanced cases outliers will become a significant problem and must be solved. Ways to deal with outliers such as Transformation, removing outliers and other ways.

4. Explanatory & Business Question

Q1: The happiest country in the world is…

happy_21_clear %>% 
  arrange(desc(`Happiness Score`)) %>% 
  mutate("Happiness Rank" = as.integer(rank(-`Happiness Score`))) %>% 
  slice_max(`Happiness Score`, n = 10) %>% 
  select(Country, Region, `Happiness Score`,`Happiness Rank`)
##        Country                Region Happiness Score Happiness Rank
## 1      Finland        Western Europe           7.842              1
## 2      Denmark        Western Europe           7.620              2
## 3  Switzerland        Western Europe           7.571              3
## 4      Iceland        Western Europe           7.554              4
## 5  Netherlands        Western Europe           7.464              5
## 6       Norway        Western Europe           7.392              6
## 7       Sweden        Western Europe           7.363              7
## 8   Luxembourg        Western Europe           7.324              8
## 9  New Zealand North America and ANZ           7.277              9
## 10     Austria        Western Europe           7.268             10

Insight:
1. Finland is the happiest country in the world in 2021.
2. Most of the happiest countries in the world in 2021 will be from the Western Europe Region.


Q2: The saddest country in the world is…

happy_21_clear %>% 
  arrange(desc(`Happiness Score`)) %>% 
  mutate("Happiness Rank" = as.integer(rank(-`Happiness Score`))) %>% 
  slice_min(`Happiness Score`, n = 10) %>% 
  select(Country, Region, `Happiness Score`,`Happiness Rank`) %>% 
  arrange(`Happiness Rank`)
##        Country                       Region Happiness Score Happiness Rank
## 1      Burundi           Sub-Saharan Africa           3.775            140
## 2        Yemen Middle East and North Africa           3.658            141
## 3     Tanzania           Sub-Saharan Africa           3.623            142
## 4        Haiti  Latin America and Caribbean           3.615            143
## 5       Malawi           Sub-Saharan Africa           3.600            144
## 6      Lesotho           Sub-Saharan Africa           3.512            145
## 7     Botswana           Sub-Saharan Africa           3.467            146
## 8       Rwanda           Sub-Saharan Africa           3.415            147
## 9     Zimbabwe           Sub-Saharan Africa           3.145            148
## 10 Afghanistan                   South Asia           2.523            149

Insight:
1. Afghanistan from South Asia is the saddest country in the world in 2021
2. Most of the saddest countries in the world in 2021 will be from the Sub-Saharan Africa Region.

Q3: What is Indonesia’s rank? and what is the value of Indonesia’s Happiness Score?

happy_21_clear %>% 
  arrange(desc(`Happiness Score`)) %>% 
  mutate("Happiness Rank" = as.integer(rank(-`Happiness Score`))) %>% 
  select(Country, Region, `Happiness Score`,`Happiness Rank`) %>% 
  filter(Country == "Indonesia")
##     Country         Region Happiness Score Happiness Rank
## 1 Indonesia Southeast Asia           5.345             82

Insight:
1. Indonesia is ranked 82 for the happiest country.
2. Indonesia has a score of 5.345.

Q4: The country with the highest GDP per Capita is…

happy_21_clear %>% 
  arrange(desc(Economy)) %>% 
  slice_max(Economy, n = 10) %>% 
  select(Country, Region, Economy)
##                      Country                       Region Economy
## 1                 Luxembourg               Western Europe  11.647
## 2                  Singapore               Southeast Asia  11.488
## 3                    Ireland               Western Europe  11.342
## 4                Switzerland               Western Europe  11.117
## 5       United Arab Emirates Middle East and North Africa  11.085
## 6                     Norway               Western Europe  11.053
## 7              United States        North America and ANZ  11.023
## 8  Hong Kong S.A.R. of China                    East Asia  11.000
## 9                    Denmark               Western Europe  10.933
## 10               Netherlands               Western Europe  10.932

Insight:
1. Luxembourg is the country with the highest GDP per Capita in 2021.
2. Most of the country with the highest GDP per Capita in 2021 will be from the Western Europe Region.

Q5: The country with the smallest GDP per Capita is…

happy_21_clear %>% 
  slice_min(Economy, n = 10) %>% 
  select(Country, Region, Economy) %>% 
  arrange(desc(Economy))
##         Country                      Region Economy
## 1         Haiti Latin America and Caribbean   7.477
## 2  Sierra Leone          Sub-Saharan Africa   7.434
## 3    Madagascar          Sub-Saharan Africa   7.396
## 4          Chad          Sub-Saharan Africa   7.364
## 5          Togo          Sub-Saharan Africa   7.362
## 6       Liberia          Sub-Saharan Africa   7.288
## 7    Mozambique          Sub-Saharan Africa   7.158
## 8         Niger          Sub-Saharan Africa   7.098
## 9        Malawi          Sub-Saharan Africa   6.958
## 10      Burundi          Sub-Saharan Africa   6.635

Insight:
1. Burundi is the country with the smallest GDP per Capita in the world in 2021
2. Most of the country with the smallest GDP per Capita in the world in 2021 will be from the Sub-Saharan Africa Region.

Q6: What is the value of Indonesia’s GDP per Capita?

happy_21_clear %>% 
  arrange(desc(Economy)) %>% 
  select(Country, Region, Economy) %>% 
  filter(Country == "Indonesia")
##     Country         Region Economy
## 1 Indonesia Southeast Asia   9.365

Insight:
1. Indonesia has a GDP per Capita of 9.365

Q7: Which countries is the healthiest(long Life Expectancy)?

happy_21_clear %>% 
  slice_max(Health, n = 10) %>% 
  select(Country, Region, Health)
##                      Country                Region Health
## 1                  Singapore        Southeast Asia 76.953
## 2  Hong Kong S.A.R. of China             East Asia 76.820
## 3                      Japan             East Asia 75.100
## 4                      Spain        Western Europe 74.700
## 5                Switzerland        Western Europe 74.400
## 6                     France        Western Europe 74.000
## 7                  Australia North America and ANZ 73.900
## 8                South Korea             East Asia 73.900
## 9                     Cyprus        Western Europe 73.898
## 10              North Cyprus        Western Europe 73.898

Insight:
1. Singapore is the healthiest country in the world in 2021, where can reach 76~77 years.
2. Most of the healthiest countries in the world in 2021 will be from the Western Europe Region.

Q8: What is the life expectancy of people in Indonesia?

happy_21_clear %>% 
  select(Country, Region, Health) %>% 
  filter(Country == "Indonesia")
##     Country         Region Health
## 1 Indonesia Southeast Asia 62.236

Insight:
1. People in Indonesia can reach ~62 years.

Q9: Which country is the most freedom(Freedom to make life choices)?

happy_21_clear %>% 
  slice_max(Freedom, n = 10) %>% 
  select(Country, Region, Freedom)
##       Country                             Region Freedom
## 1  Uzbekistan Commonwealth of Independent States   0.970
## 2      Norway                     Western Europe   0.960
## 3    Cambodia                     Southeast Asia   0.959
## 4     Iceland                     Western Europe   0.955
## 5     Finland                     Western Europe   0.949
## 6    Slovenia         Central and Eastern Europe   0.949
## 7     Denmark                     Western Europe   0.946
## 8      Sweden                     Western Europe   0.945
## 9     Vietnam                     Southeast Asia   0.940
## 10 Kyrgyzstan Commonwealth of Independent States   0.935

Insight:
1. Uzbekistan gives its citizens 97% freedom to choose their own way of life.
2. Most of the country with the most freedom in 2021 will be from the Western Europe Region.

Q10: Which country gives the least freedom to its citizens?

happy_21_clear %>% 
  slice_min(Freedom, n = 10) %>% 
  select(Country, Region, Freedom) %>% 
  arrange(desc(Freedom))
##        Country                       Region Freedom
## 1        Haiti  Latin America and Caribbean   0.593
## 2       Greece               Western Europe   0.582
## 3         Chad           Sub-Saharan Africa   0.579
## 4       Turkey Middle East and North Africa   0.576
## 5   Mauritania           Sub-Saharan Africa   0.561
## 6   Madagascar           Sub-Saharan Africa   0.552
## 7      Comoros           Sub-Saharan Africa   0.548
## 8      Lebanon Middle East and North Africa   0.525
## 9      Algeria Middle East and North Africa   0.480
## 10 Afghanistan                   South Asia   0.382

Insight:
1. Afghanistan gives its citizens 38.2% freedom to choose their own way of life.
2. Most of the country with the least freedom in 2021 will be from the Africa Region.

Q11: Which country is the most free from corruption?

happy_21_clear %>% 
  slice_max(Trust, n = 10) %>% 
  select(Country, Region, Trust)
##        Country                Region Trust
## 1    Singapore        Southeast Asia 0.918
## 2       Rwanda    Sub-Saharan Africa 0.833
## 3      Denmark        Western Europe 0.821
## 4      Finland        Western Europe 0.814
## 5       Sweden        Western Europe 0.763
## 6  New Zealand North America and ANZ 0.758
## 7       Norway        Western Europe 0.730
## 8  Switzerland        Western Europe 0.708
## 9  Netherlands        Western Europe 0.662
## 10     Ireland        Western Europe 0.637

Insight:
1. By 91.8% Singapore free from corruption.
2. Most of the country with the the most free from corruption in 2021 will be from the Western Europe Region.

Q12: Is Indonesia free from corruption?

happy_21_clear %>% 
  select(Country, Region, Trust) %>% 
  filter(Country == "Indonesia")
##     Country         Region Trust
## 1 Indonesia Southeast Asia 0.133

Insight:
1. By 13.3% Indonesia free from corruption. This means that the number of corruption in Indonesia is still quite high.

What Next?

In the next project i will make visualization about World Happiness