Anexo 1

29-Enero-2022

Este cuaderno fue usado para leer el archivo .tif de los datos de precipitación de la base de datos CHIRPS.

Gran parte del codigo fue usado del cuaderno de Rstudio del profesor Ivan Lizarazo.(Referencia al final del cuaderno.)

library(rgdal)
library(raster)
library(sf)
library(tidyverse)
library(tmap)
library(gstat)
library(sp)
(precip <- raster("E:/Descargas en el disco duro/4to Semestre/Geomatica/chirps-v2.0.2020.04.tif/chirps-v2.0.2020.04.6.tif"))
class      : RasterLayer 
dimensions : 2000, 7200, 14400000  (nrow, ncol, ncell)
resolution : 0.05, 0.05  (x, y)
extent     : -180, 180, -50, 50  (xmin, xmax, ymin, ymax)
crs        : +proj=longlat +datum=WGS84 +no_defs 
source     : chirps-v2.0.2020.04.6.tif 
names      : chirps.v2.0.2020.04.6 
(colombia <- st_read("E://Descargas en el disco duro/4to Semestre/Geomatica/colombia/Censo_Nacional_Agropecuario_-_Uso_de_la_tierra.shp"))
Reading layer `Censo_Nacional_Agropecuario_-_Uso_de_la_tierra' from data source 
  `E:\Descargas en el disco duro\4to Semestre\Geomatica\colombia\Censo_Nacional_Agropecuario_-_Uso_de_la_tierra.shp' using driver `ESRI Shapefile'
Simple feature collection with 1122 features and 25 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: -81.73567 ymin: -4.228392 xmax: -66.84722 ymax: 13.39479
Geodetic CRS:  WGS 84
Simple feature collection with 1122 features and 25 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: -81.73567 ymin: -4.228392 xmax: -66.84722 ymax: 13.39479
Geodetic CRS:  WGS 84
First 10 features:
   OBJECTID COD_DEP    DPTO COD_MUN           MPIO  HaNatura    HaAgro HanoAgro   HaOtro PrPropia PrArrien PrAparce PrUsufru PrComoda
1         1      99 Vichada   99001 Puerto Carreño  300074.0  892647.3   6371.8  23477.4      150        3        0        1        0
2         2      99 Vichada   99524   La Primavera  313276.0 1530281.5    185.5  19024.1      698        7        0        3        0
3         3      99 Vichada   99624  Santa Rosalía   85270.1  300823.8      0.5   4523.1      140        6        0        0        0
4         4      99 Vichada   99773       Cumaribo 3963209.5 2420787.2   3272.9 169098.8      602       32        6        2        1
5         5      97  Vaupés   97001           Mitú 1593238.4   18965.0    167.9  16671.5       89        2        2        1        0
6         6      97  Vaupés   97161         Caruru  568014.6   63804.4     42.7   8188.9      188        1        0        0        0
7         7      97  Vaupés   97511          Pacoa 1380915.5    8904.1      0.0  12577.7        2        0        0        0        0
8         8      97  Vaupés   97666        Taraira  650992.2    3277.6      0.0    520.5      166        1        0        0        0
9         9      97  Vaupés   97777       Papunaua  545677.0    9033.6      0.0     28.8        2        0        0        0        0
10       10      97  Vaupés   97889       Yavaraté  464908.1    1798.5      0.0    346.9        0        1        0        0        0
   PrOcupac PrColect PrAdjudi PrOtros PrMixta       UPA   UPNA Shape_Leng Shape_Area  ShapeSTAre ShapeSTLen                       geometry
1         1      130        0       7       1 1216198.8 6371.8   6.279670  0.7756909 12317792938   616588.5 MULTIPOLYGON (((-67.77352 6...
2         1       82        4      26       0 1862581.6  185.5  10.017680  1.8531276 20415619314   924297.7 MULTIPOLYGON (((-69.03111 6...
3         0       77       16       7       1  390617.0    0.5   2.333843  0.1618016  2012812969   258220.8 MULTIPOLYGON (((-70.64082 5...
4         3     2984      274      17       7 6553095.5 3272.9  18.433883  5.3056108 65933330943  2051496.6 MULTIPOLYGON (((-68.46946 5...
5         1     2453        0      10       0 1628874.9  167.9   6.269636  1.3078188 16209453255   697796.4 MULTIPOLYGON (((-70.48344 1...
6        40       56        0      13       1  640007.9   42.7   4.463306  0.5704727  7070722296   496589.1 MULTIPOLYGON (((-71.38722 1...
7         0      117        0       1       0 1402397.3    0.0   8.817896  1.1208637 13889978007   981172.7 MULTIPOLYGON (((-71.81461 0...
8         1        8        0       1       0  654790.3    0.0   6.070677  0.5236570  6489700603   675445.0 MULTIPOLYGON (((-70.01932 -...
9         0       68        1       1       0  554739.4    0.0   5.437411  0.4312044  5345769783   604913.8 MULTIPOLYGON (((-70.10474 2...
10        0       64        0       0       0  467053.6    0.0   3.765902  0.3793203  4700980029   419033.0 MULTIPOLYGON (((-69.99653 0...
(aoi <- filter(colombia, DPTO == "Putumayo"))
Simple feature collection with 13 features and 25 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: -77.2273 ymin: -0.572994 xmax: -73.83733 ymax: 1.515533
Geodetic CRS:  WGS 84
First 10 features:
   OBJECTID COD_DEP     DPTO COD_MUN           MPIO  HaNatura  HaAgro HanoAgro HaOtro PrPropia PrArrien PrAparce PrUsufru PrComoda PrOcupac
1        37      86 Putumayo   86001          Mocoa   33130.1 91040.0   2705.3  607.8     3164      119       21      171       11       16
2        38      86 Putumayo   86219          Colón    4024.3  3168.0      6.8    6.5      504       78       15       89        0        0
3        39      86 Putumayo   86320          Orito   71889.1 84065.7  26808.1  640.4     1229       14        7       10        6        5
4        40      86 Putumayo   86568    Puerto Asís  185320.4 89866.0   5319.6 2915.9     1397       92        8       18       10       15
5        41      86 Putumayo   86569 Puerto Caicedo   24150.9 61645.0   1187.5  279.3     1268       49       21        0        0        4
6        42      86 Putumayo   86571  Puerto Guzmán  268893.6 60976.6    638.7 2186.0      127        8        1        0        0        0
7        43      86 Putumayo   86573      Leguízamo 1032672.0 49710.4    733.1 7342.5      581       16        2        7        2       30
8        44      86 Putumayo   86749       Sibundoy    7498.8  1050.8     88.9   18.0      800      304       16      419       10       12
9        45      86 Putumayo   86755  San Francisco   14271.9 26240.5    209.9  132.7     1029      105        8       17        0        0
10       46      86 Putumayo   86757     San Miguel    6039.9 25089.1   5814.8   98.0     1288       22       14       10        2        7
   PrColect PrAdjudi PrOtros PrMixta       UPA    UPNA Shape_Leng Shape_Area  ShapeSTAre ShapeSTLen                       geometry
1       171        3      73      55  124777.9  2705.3  3.1311956 0.11057967  1353057345  310126.69 MULTIPOLYGON (((-76.89592 1...
2        11        0      15      40    7198.7     6.8  0.4746391 0.00584655    92913644   60440.67 MULTIPOLYGON (((-76.91605 1...
3       102        0      14       0  156595.2 26808.1  2.1208913 0.14905456  1870489231  233796.72 MULTIPOLYGON (((-76.94468 0...
4       683        5     150       0  278102.3  5319.6  3.6619122 0.22901318  2759264364  412188.61 MULTIPOLYGON (((-76.36888 0...
5       123        0      16      92   86075.2  1187.5  1.5947904 0.06877949   739695850  159586.45 MULTIPOLYGON (((-76.70766 0...
6       497        0       4       0  332056.2   638.7  4.7472573 0.37107342  4622100551  502295.58 MULTIPOLYGON (((-75.9778 1....
7       718      102       3       0 1089725.0   733.1  7.6049450 0.88430728 10785270085  828227.00 MULTIPOLYGON (((-75.26459 0...
8        21        1      44      27    8567.5    88.9  0.5723493 0.00840563   111122900   51867.67 MULTIPOLYGON (((-76.88014 1...
9        21      120      57       0   40645.1   209.9  1.4231139 0.04538705   600472943  148546.87 MULTIPOLYGON (((-76.90114 1...
10      158        1     142     114   31227.0  5814.8  1.3398549 0.03133352   385571872  144352.39 MULTIPOLYGON (((-76.99674 0...
precip.crop <- raster::crop(precip, extent(aoi))
precip.mask <- mask(x = precip.crop, mask = aoi)
precip.mask
class      : RasterLayer 
dimensions : 41, 68, 2788  (nrow, ncol, ncell)
resolution : 0.05, 0.05  (x, y)
extent     : -77.25, -73.85, -0.5500008, 1.499999  (xmin, xmax, ymin, ymax)
crs        : +proj=longlat +datum=WGS84 +no_defs 
source     : memory
names      : chirps.v2.0.2020.04.6 
values     : 26.44113, 102.9035  (min, max)
library(leaflet)
library(RColorBrewer)
pal <- colorNumeric(c("red", "orange", "yellow", "blue", "darkblue"), values(precip.mask),
  na.color = "transparent")

leaflet() %>% addTiles() %>%
  addRasterImage(precip.mask, colors = pal, opacity = 0.6) %>%
  addLegend(pal = pal, values = values(precip.mask),
    title = "Precipitación CHIRPS del departamento de Putumayo del 26 al 30 de agosto en 2020 [MM]")
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded ellps WGS 84 in Proj4 definition: +proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1 +units=m +nadgrids=@null +wktext +no_defs +type=crs
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded datum World Geodetic System 1984 in Proj4 definition
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded ellps WGS 84 in Proj4 definition: +proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +y_0=0 +k=1 +units=m +nadgrids=@null +wktext +no_defs +type=crs
Warning in showSRID(uprojargs, format = "PROJ", multiline = "NO", prefer_proj = prefer_proj) :
  Discarded datum World Geodetic System 1984 in Proj4 definition

#####Lizarazo, I. 2020. Interpolation of CHIRPS precipitation data. https://rpubs.com/ials2un/chirps_caribe

LS0tDQp0aXRsZTogIkRhdG9zIGNoaXJwcyBkZSBQdXR1bWF5byINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KYXV0aG9yOiAiR2FicmllbCBkZSBKZXN1cyBSb21lcm8gRGlheiINCkRhdGU6ICIyOS1FbmVyby0yMDIyIg0KLS0tDQpBbmV4byAxDQoNCjI5LUVuZXJvLTIwMjINCg0KRXN0ZSBjdWFkZXJubyBmdWUgdXNhZG8gcGFyYSBsZWVyIGVsIGFyY2hpdm8gLnRpZiBkZSBsb3MgZGF0b3MgZGUgcHJlY2lwaXRhY2nDs24gZGUgbGEgYmFzZSBkZSBkYXRvcyBDSElSUFMuDQoNCkdyYW4gcGFydGUgZGVsIGNvZGlnbyBmdWUgdXNhZG8gZGVsIGN1YWRlcm5vIGRlIFJzdHVkaW8gZGVsIHByb2Zlc29yIEl2YW4gTGl6YXJhem8uKFJlZmVyZW5jaWEgYWwgZmluYWwgZGVsIGN1YWRlcm5vLikNCg0KYGBge3J9DQpsaWJyYXJ5KHJnZGFsKQ0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeShyYXN0ZXIpDQpsaWJyYXJ5KHNmKQ0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KHRtYXApDQpsaWJyYXJ5KGdzdGF0KQ0KbGlicmFyeShzcCkNCmBgYA0KDQpgYGB7cn0NCihwcmVjaXAgPC0gcmFzdGVyKCJFOi9EZXNjYXJnYXMgZW4gZWwgZGlzY28gZHVyby80dG8gU2VtZXN0cmUvR2VvbWF0aWNhL2NoaXJwcy12Mi4wLjIwMjAuMDQudGlmL2NoaXJwcy12Mi4wLjIwMjAuMDQuNi50aWYiKSkNCmBgYA0KYGBge3J9DQooY29sb21iaWEgPC0gc3RfcmVhZCgiRTovL0Rlc2NhcmdhcyBlbiBlbCBkaXNjbyBkdXJvLzR0byBTZW1lc3RyZS9HZW9tYXRpY2EvY29sb21iaWEvQ2Vuc29fTmFjaW9uYWxfQWdyb3BlY3VhcmlvXy1fVXNvX2RlX2xhX3RpZXJyYS5zaHAiKSkNCmBgYA0KDQpgYGB7cn0NCihhb2kgPC0gZmlsdGVyKGNvbG9tYmlhLCBEUFRPID09ICJQdXR1bWF5byIpKQ0KYGBgDQoNCmBgYHtyfQ0KcHJlY2lwLmNyb3AgPC0gcmFzdGVyOjpjcm9wKHByZWNpcCwgZXh0ZW50KGFvaSkpDQpgYGANCg0KYGBge3J9DQpwcmVjaXAubWFzayA8LSBtYXNrKHggPSBwcmVjaXAuY3JvcCwgbWFzayA9IGFvaSkNCmBgYA0KDQpgYGB7cn0NCnByZWNpcC5tYXNrDQpgYGANCmBgYHtyfQ0KbGlicmFyeShsZWFmbGV0KQ0KbGlicmFyeShSQ29sb3JCcmV3ZXIpDQpwYWwgPC0gY29sb3JOdW1lcmljKGMoInJlZCIsICJvcmFuZ2UiLCAieWVsbG93IiwgImJsdWUiLCAiZGFya2JsdWUiKSwgdmFsdWVzKHByZWNpcC5tYXNrKSwNCiAgbmEuY29sb3IgPSAidHJhbnNwYXJlbnQiKQ0KDQpsZWFmbGV0KCkgJT4lIGFkZFRpbGVzKCkgJT4lDQogIGFkZFJhc3RlckltYWdlKHByZWNpcC5tYXNrLCBjb2xvcnMgPSBwYWwsIG9wYWNpdHkgPSAwLjYpICU+JQ0KICBhZGRMZWdlbmQocGFsID0gcGFsLCB2YWx1ZXMgPSB2YWx1ZXMocHJlY2lwLm1hc2spLA0KICAgIHRpdGxlID0gIlByZWNpcGl0YWNpw7NuIENISVJQUyBkZWwgZGVwYXJ0YW1lbnRvIGRlIFB1dHVtYXlvIGRlbCAyNiBhbCAzMCBkZSBhZ29zdG8gZW4gMjAyMCBbTU1dIikNCmBgYA0KIyMjIyNMaXphcmF6bywgSS4gMjAyMC4gSW50ZXJwb2xhdGlvbiBvZiBDSElSUFMgcHJlY2lwaXRhdGlvbiBkYXRhLiBodHRwczovL3JwdWJzLmNvbS9pYWxzMnVuL2NoaXJwc19jYXJpYmUNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg==