A <- matrix(c(1,-1,0,5,2,0,1,4,3,1,-2,-2,4,3,1,-3), nrow=4, ncol=4)
A_ut <- A
# Row operations to convert matrix into upper triangular form
A_ut[2,] <- A[2,] + A[1,]
A_ut[4,] <- A_ut[4,] - 5*A_ut[1,]
A_ut[3,] <- A_ut[3,] - A_ut[2,]/2
A_ut[4,] <- A_ut[4,] + 3*A_ut[2,]
A_ut[4,] <- A_ut[4,] + (-5/4)*A_ut[3,]
# Upper triangular form
A_ut
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4.000
## [2,] 0 2 4 7.000
## [3,] 0 0 -4 -2.500
## [4,] 0 0 0 1.125
Solution: Since there are 4 non-zero rows, the rank of the matrix is 4.
Solution: The maximum rank can be the maximum number of linearly independent column vectors, therefore it can not exceed the number of rows in the matrix. The minimum rank can be one for non-zero matrices.
B <- matrix(c(1,3,2,2,6,4,1,3,2), nrow=3, ncol=3)
B_ut <- B
# Row operations to convert matrix into upper triangular form
B_ut[2,] <- B[2,] - 3*B[1,]
B_ut[3,] <- B[3,] - 2*B[1,]
# Upper triangular form
B_ut
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 0 0 0
## [3,] 0 0 0
Solution: Since there is 1 non-zero row, the rank of the matrix is 1.
\(A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}\)
\(I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\)
\(A - \lambda I = \begin{bmatrix} 1 - \lambda & 2 & 3 \\ 0 & 4 - \lambda & 5 \\ 0 & 0 & 6 - \lambda \end{bmatrix}\)
Calculate the determinant using the formula: |A| = a(ei − fh) − b(di − fg) + c(dh − eg)
\((1 - \lambda)((4 - \lambda)(6 - \lambda) - 5 \cdot 0) - 2 (0 \cdot (6 - \lambda) - 5 \cdot 0) + 3 (0 \cdot 0) - ((4 - \lambda) \cdot 0)\)
Simplifying…
\((1 - \lambda)((4 - \lambda)(6 - \lambda) - 0) - 0 + 0\)
\((1 - \lambda)((4 - \lambda)(6 - \lambda))\)
\((1 - \lambda)(24 - 4\lambda - 6\lambda + \lambda^2)\)
\((1 - \lambda)(24 - 10\lambda + \lambda^2)\)
\(-24\lambda + 10\lambda^2 - \lambda^3 + 24 - 10\lambda + \lambda^2\)
\(-34\lambda + 11\lambda^2 - \lambda^3 + 24\)
The characteristic polynomial is:
\(- \lambda^3 + 11\lambda^2 -34\lambda + 24\)
And due to our previous form: \((1 - \lambda)((4 - \lambda)(6 - \lambda) - 0) - 0 + 0\)
Solution: We know the eigenvalues are: \(\lambda = 1, \lambda = 4, \lambda = 6\)
# Create matrix A
A <- matrix(c(1,2,3,0,4,5,0,0,6), nrow=3, ncol=3, byrow=TRUE)
A
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 0 4 5
## [3,] 0 0 6
# Create identity matrix
I <- diag(3)
I
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
# Eigenvectors for λ = 1
eigenvec_1 <- A - 1 * I
eigenvec_1
## [,1] [,2] [,3]
## [1,] 0 2 3
## [2,] 0 3 5
## [3,] 0 0 5
# Row operations to convert matrix into reduced row echelon form
eigenvec_1[3,] <- (1/5)*eigenvec_1[3,]
eigenvec_1[2,] <- eigenvec_1[2,] - 5*eigenvec_1[3,]
eigenvec_1[1,] <- eigenvec_1[1,] - 3*eigenvec_1[3,]
eigenvec_1[2,] <- (1/3)*eigenvec_1[2,]
eigenvec_1[1,] <- eigenvec_1[1,] - 2*eigenvec_1[2,]
eigenvec_1
## [,1] [,2] [,3]
## [1,] 0 0 0
## [2,] 0 1 0
## [3,] 0 0 1
Solution: \(y = 0, z = 0\) Therefore, an eigenvector for \(\lambda = 1\) is \({(1,0,0)}\)
# Eigenvectors for λ = 4
eigenvec_4 <- A - 4 * I
eigenvec_4
## [,1] [,2] [,3]
## [1,] -3 2 3
## [2,] 0 0 5
## [3,] 0 0 2
# Row operations to convert matrix into reduced row echelon form
eigenvec_4[3,] <- 0.5*eigenvec_4[3,]
eigenvec_4[2,] <- eigenvec_4[2,] - 5*eigenvec_4[3,]
eigenvec_4[1,] <- eigenvec_4[1,] - 3*eigenvec_4[3,]
eigenvec_4[1,] <- (-1/3)*eigenvec_4[1,]
eigenvec_4
## [,1] [,2] [,3]
## [1,] 1 -0.6666667 0
## [2,] 0 0.0000000 0
## [3,] 0 0.0000000 1
Solution: \(x = 2/3y, z = 0\) Therefore, an eigenvector for \(\lambda = 4\) is \({(2,3,0)}\)
# Eigenvectors for λ = 6
eigenvec_6 <- A - 6 * I
eigenvec_6
## [,1] [,2] [,3]
## [1,] -5 2 3
## [2,] 0 -2 5
## [3,] 0 0 0
eigenvec_6[2,] <- - 0.5*eigenvec_6[2,]
eigenvec_6[1,] <- eigenvec_6[1,] - 2*eigenvec_6[2,]
eigenvec_6[1,] <- (-1/5)*eigenvec_6[1,]
eigenvec_6
## [,1] [,2] [,3]
## [1,] 1 0 -1.6
## [2,] 0 1 -2.5
## [3,] 0 0 0.0
Solution: \(x = 1.6z, y = 2.5z\) Therefore, an eigenvector for \(\lambda = 4\) (making \(z = 10\) to result in integers) is \({(16,25,10)}\)
Beezer, Subsection RNM Rank and Nullity of a Matrix, A First Course in Linear Algebra, page 325
Beezer, Subsection ECEE Examples of Computing Eigenvalues and Eigenvectors, A First Course in Linear Algebra, page 379