This analysis is based on the raw “Population and live birth” data from the WHO mortality database (more info here), that contains data from 1950 to 2019 from countries all over the world.
Loading required libraries and retrieve population data from WHO website:
library(tidyverse)
library(xtable)
if(!file.exists("pop")) {
download.file("https://cdn.who.int/media/docs/default-source/world-health-data-platform/mortality-raw-data/mort_pop.zip?sfvrsn=937039fc_10&ua=1", "mort_pop.zip", method = "curl")
unzip("mort_pop.zip")
}
df<-read.csv("pop")
if(!file.exists("country_codes")) {
download.file("https://cdn.who.int/media/docs/default-source/world-health-data-platform/mortality-raw-data/mort_country_codes.zip?sfvrsn=800faac2_5&ua=1", "mort_country_codes.zip", method="curl")
unzip("mort_country_codes.zip")
}
codes<-read.csv("country_codes")
Variable details according to the accompanying documentation:
| Column name | Content |
|---|---|
| Country | Country code – see file “Country_codes.zip” |
| Admin1 | Specified region/Category pertinent to each country– see file “Country_codes.zip”. If this field is blank, data reported refer to the country |
| Subdiv1 | Category of data – see Annex Table 2 below. If this field is blank, data reported refer to the country. |
| Year | Year to which data refer |
| Sex | 1 male, 2 female |
| Frmat | Age-group format for breakdown of deaths at 0-95+ yrs – see Annex Table 1 below for details |
| Pop1 | Population at all ages |
| Pop2 | Population at age 0 year |
| Pop3 | Population at age1 year |
| Pop4 | Population at age 2 years |
| Pop5 | Population at age 3 years |
| Pop6 | Population at age 4 years |
| Pop7 | Population at age 5-9 years |
| Pop8 | Population at age 10-14 years |
| Pop9 | Population at age 15-19 years |
| Pop10 | Population at age 20-24 years |
| Pop11 | Population at age 25-29 years |
| Pop12 | Population at age 30-34 years |
| Pop13 | Population at age 35-39 years |
| Pop14 | Population at age 40-44 years |
| Pop15 | Population at age 45-49 years |
| Pop16 | Population at age 50-54 years |
| Pop17 | Population at age 55-59 years |
| Pop18 | Population at age 60-64 years |
| Pop19 | Population at age 65-69 years |
| Pop20 | Population at age 70-74 years |
| Pop21 | Population at age 75-79 years |
| Pop22 | Population at age 80-84 years |
| Pop23 | Population at age 85-89 years |
| Pop24 | Population at age 90-94 years |
| Pop25 | Population at age 95 years and over |
| Pop26 | Population at age unspecified |
| Lb | Live births |
Joining country names with population data via the country codes and summarize by country:
data<-inner_join(df, codes, by=c("Country"="country"))
d<- data %>%
group_by(name, Year, Sex) %>%
summarize_at(colnames(df)[7:33], function(x) as.integer((sum(x, na.rm=T)))) %>% ungroup
dim(d)
[1] 9649 30
print(xtable(head(d)), type="html")
| name | Year | Sex | Pop1 | Pop2 | Pop3 | Pop4 | Pop5 | Pop6 | Pop7 | Pop8 | Pop9 | Pop10 | Pop11 | Pop12 | Pop13 | Pop14 | Pop15 | Pop16 | Pop17 | Pop18 | Pop19 | Pop20 | Pop21 | Pop22 | Pop23 | Pop24 | Pop25 | Pop26 | Lb | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Albania | 1985 | 1 | 1526000 | 40700 | 143800 | 0 | 0 | 0 | 167500 | 158300 | 156000 | 145400 | 143000 | 121200 | 92400 | 71100 | 71300 | 61900 | 49500 | 35900 | 29300 | 17800 | 12000 | 5700 | 3400 | 0 | 0 | 0 | 0 |
| 2 | Albania | 1985 | 2 | 1431400 | 36700 | 131200 | 0 | 0 | 0 | 152700 | 145600 | 142400 | 135500 | 133600 | 113200 | 84800 | 63700 | 65200 | 53800 | 45800 | 38600 | 32900 | 21400 | 17700 | 10200 | 6300 | 0 | 0 | 0 | 0 |
| 3 | Albania | 1986 | 1 | 1553300 | 41500 | 146300 | 0 | 0 | 0 | 170500 | 161100 | 158700 | 148000 | 145600 | 123400 | 94000 | 72400 | 72600 | 63000 | 50400 | 36500 | 29800 | 18100 | 12200 | 5800 | 3400 | 0 | 0 | 0 | 0 |
| 4 | Albania | 1986 | 2 | 1461900 | 37500 | 134000 | 0 | 0 | 0 | 156000 | 148700 | 145500 | 138400 | 136500 | 115600 | 86600 | 65100 | 66500 | 55000 | 46800 | 39400 | 33600 | 21900 | 18000 | 10500 | 6400 | 0 | 0 | 0 | 0 |
| 5 | Albania | 1987 | 1 | 1584200 | 42300 | 149200 | 0 | 0 | 0 | 173900 | 164300 | 161900 | 151000 | 148500 | 125800 | 95900 | 73800 | 74100 | 64200 | 51400 | 37200 | 30400 | 18500 | 12400 | 5900 | 3500 | 0 | 0 | 0 | 41479 |
| 6 | Albania | 1987 | 2 | 1491900 | 38300 | 136800 | 0 | 0 | 0 | 159200 | 151800 | 148500 | 141200 | 139300 | 117900 | 88400 | 66400 | 67900 | 56100 | 47800 | 40200 | 34300 | 22300 | 18400 | 10700 | 6500 | 0 | 0 | 0 | 38217 |
Let’s see how many missing data are there in each column, and check if total population is always equal to the sum of all age groups:
apply(d[,2:ncol(d)],2,function(x) sum(x==0))
## Year Sex Pop1 Pop2 Pop3 Pop4 Pop5 Pop6 Pop7 Pop8 Pop9 Pop10 Pop11
## 0 0 5 141 141 4183 4183 4183 141 159 141 159 141
## Pop12 Pop13 Pop14 Pop15 Pop16 Pop17 Pop18 Pop19 Pop20 Pop21 Pop22 Pop23 Pop24
## 159 141 159 141 159 141 159 141 203 297 1193 1193 8303
## Pop25 Pop26 Lb
## 8303 9366 278
d$sum<-as.integer(rowSums(d[,5:29]))
sum(d$sum==d$Pop1)
## [1] 5037
Now, let’s look at a summary of data grouped by year:
riass<-d[,-1] %>% group_by(Year) %>%
summarize_all(function(x) as.integer(sum(x, na.rm=T))) %>%
mutate(Year=as.character(Year)) %>% ungroup
print(xtable(riass), type="html", format.args = list(big.mark="'"))
| Year | Sex | Pop1 | Pop2 | Pop3 | Pop4 | Pop5 | Pop6 | Pop7 | Pop8 | Pop9 | Pop10 | Pop11 | Pop12 | Pop13 | Pop14 | Pop15 | Pop16 | Pop17 | Pop18 | Pop19 | Pop20 | Pop21 | Pop22 | Pop23 | Pop24 | Pop25 | Pop26 | Lb | sum | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1950 | 126 | 737’609’300 | 15’492’000 | 35’212’900 | 9’042’600 | 9’096’400 | 7’568’500 | 65’624’600 | 62’398’900 | 59’660’800 | 59’607’900 | 57’919’400 | 47’233’700 | 52’064’800 | 50’121’200 | 45’340’800 | 39’590’400 | 33’056’800 | 28’554’000 | 22’995’700 | 17’170’400 | 10’578’300 | 5’174’400 | 2’428’500 | 0 | 0 | 39’900 | 16’689’904 | 735’972’900 |
| 2 | 1951 | 126 | 745’762’800 | 15’276’700 | 40’738’300 | 7’422’100 | 7’274’300 | 7’142’400 | 64’891’400 | 61’258’000 | 58’277’000 | 57’915’300 | 56’976’600 | 48’032’900 | 49’884’700 | 49’090’400 | 44’397’100 | 39’017’700 | 32’597’800 | 27’818’200 | 22’670’600 | 16’819’400 | 10’593’800 | 5’161’500 | 2’430’900 | 0 | 0 | 45’000 | 16’533’719 | 725’732’100 |
| 3 | 1952 | 129 | 755’978’100 | 15’582’200 | 38’634’500 | 8’075’500 | 8’281’500 | 8’138’900 | 69’219’800 | 63’950’700 | 59’948’700 | 59’071’600 | 58’368’700 | 51’648’000 | 49’363’700 | 51’058’200 | 46’593’700 | 41’344’400 | 34’497’400 | 29’323’600 | 23’890’300 | 17’784’100 | 11’325’500 | 5’487’300 | 2’580’200 | 0 | 0 | 61’000 | 16’642’430 | 754’229’500 |
| 4 | 1953 | 132 | 765’864’000 | 15’607’000 | 36’552’200 | 8’597’200 | 8’774’800 | 9’002’300 | 71’611’500 | 64’795’200 | 60’448’800 | 58’879’700 | 58’704’100 | 54’342’900 | 47’421’700 | 51’334’100 | 47’342’800 | 42’225’100 | 35’357’000 | 29’633’600 | 24’434’700 | 18’079’700 | 11’715’900 | 5’664’200 | 2’708’500 | 0 | 0 | 64’200 | 16’640’451 | 763’297’200 |
| 5 | 1954 | 132 | 775’613’500 | 15’740’500 | 36’904’900 | 8’440’100 | 8’591’500 | 8’740’500 | 73’995’300 | 65’913’900 | 60’929’100 | 58’870’600 | 58’946’300 | 56’837’000 | 45’913’900 | 51’519’300 | 48’183’000 | 43’024’000 | 36’186’500 | 30’068’500 | 24’904’600 | 18’459’200 | 11’994’300 | 5’911’500 | 2’819’600 | 0 | 0 | 67’200 | 16’827’916 | 772’961’300 |
| 6 | 1955 | 168 | 860’650’500 | 18’000’400 | 43’907’400 | 8’775’900 | 8’823’800 | 8’950’100 | 85’395’800 | 73’587’400 | 68’468’400 | 65’354’900 | 65’172’400 | 62’852’000 | 51’351’900 | 55’281’700 | 52’814’500 | 46’901’900 | 39’862’500 | 32’687’300 | 26’744’800 | 19’926’400 | 12’847’400 | 6’419’600 | 3’153’900 | 0 | 0 | 73’400 | 19’729’789 | 857’353’800 |
| 7 | 1956 | 168 | 871’366’300 | 18’299’400 | 45’421’300 | 8’480’800 | 8’529’500 | 8’566’200 | 88’069’200 | 73’911’500 | 69’026’400 | 65’724’000 | 65’417’500 | 63’245’800 | 53’466’300 | 54’277’300 | 53’382’400 | 47’508’400 | 40’811’400 | 33’366’400 | 27’095’700 | 20’278’900 | 13’084’400 | 6’673’600 | 3’263’900 | 0 | 0 | 80’200 | 19’803’260 | 867’980’500 |
| 8 | 1957 | 168 | 883’126’900 | 18’562’100 | 46’171’200 | 8’539’600 | 8’487’400 | 8’522’300 | 87’941’200 | 77’216’000 | 69’997’600 | 65’898’900 | 65’586’800 | 63’562’100 | 56’359’200 | 52’556’300 | 54’008’900 | 48’312’300 | 41’867’200 | 34’112’600 | 27’571’000 | 20’696’500 | 13’323’600 | 6’888’800 | 3’383’700 | 0 | 0 | 75’400 | 19’569’880 | 879’640’700 |
| 9 | 1958 | 186 | 951’521’400 | 20’794’700 | 55’195’300 | 8’507’400 | 8’496’300 | 8’433’000 | 97’511’700 | 87’281’200 | 76’851’200 | 71’369’200 | 69’559’500 | 67’549’000 | 62’344’200 | 53’009’500 | 56’579’800 | 50’934’900 | 44’221’700 | 36’219’200 | 28’626’400 | 21’766’500 | 14’055’300 | 7’309’400 | 3’685’000 | 0 | 0 | 64’800 | 21’996’354 | 950’365’200 |
| 10 | 1959 | 186 | 952’122’000 | 20’379’100 | 55’533’500 | 7’874’500 | 7’923’800 | 7’925’800 | 95’343’800 | 87’572’200 | 75’405’800 | 69’843’500 | 67’654’100 | 66’361’300 | 63’601’800 | 50’537’600 | 55’862’100 | 51’172’600 | 44’549’200 | 36’709’400 | 28’797’700 | 21’990’400 | 14’319’800 | 7’481’500 | 3’805’300 | 0 | 0 | 63’300 | 22’396’590 | 940’708’100 |
| 11 | 1960 | 210 | 1’004’439’000 | 22’368’300 | 62’261’800 | 8’091’700 | 8’051’400 | 8’095’600 | 101’989’500 | 95’451’800 | 79’260’500 | 73’616’100 | 70’565’100 | 69’298’400 | 66’407’800 | 53’292’000 | 57’083’700 | 53’149’400 | 46’358’400 | 38’324’400 | 29’885’400 | 22’984’600 | 15’026’400 | 7’551’700 | 3’791’000 | 0 | 0 | 47’500 | 23’650’079 | 992’952’500 |
| 12 | 1961 | 213 | 1’021’690’600 | 22’782’300 | 60’960’100 | 9’027’900 | 8’943’900 | 8’862’600 | 103’276’800 | 98’930’900 | 80’420’900 | 74’408’000 | 70’887’200 | 69’805’800 | 67’096’900 | 55’569’500 | 56’298’500 | 53’968’200 | 47’026’000 | 39’406’100 | 30’514’900 | 23’409’700 | 15’379’700 | 7’843’100 | 4’027’500 | 0 | 0 | 82’700 | 23’885’285 | 1’008’929’200 |
| 13 | 1962 | 213 | 1’041’700’100 | 23’209’100 | 62’359’800 | 9’066’500 | 9’055’200 | 8’963’300 | 105’010’800 | 99’629’300 | 84’527’400 | 75’931’200 | 71’808’600 | 70’433’600 | 67’946’700 | 58’649’700 | 54’933’600 | 54’912’700 | 48’011’600 | 40’697’300 | 31’311’200 | 23’972’200 | 15’819’300 | 8’096’000 | 4’177’200 | 0 | 0 | 47’600 | 24’281’077 | 1’028’569’900 |
| 14 | 1963 | 213 | 1’057’559’600 | 23’524’600 | 60’430’200 | 10’110’800 | 10’046’400 | 10’029’100 | 106’573’000 | 100’345’400 | 88’108’700 | 77’504’700 | 72’352’000 | 70’533’200 | 68’435’800 | 61’930’700 | 53’093’700 | 55’509’300 | 48’853’100 | 41’730’500 | 32’038’400 | 24’335’500 | 16’164’000 | 8’305’600 | 4’301’600 | 0 | 0 | 115’600 | 24’687’606 | 1’044’371’900 |
| 15 | 1964 | 213 | 1’085’953’900 | 24’737’600 | 64’293’900 | 10’355’100 | 10’240’800 | 10’166’600 | 111’704’700 | 104’012’600 | 93’451’900 | 80’592’100 | 74’982’700 | 72’145’700 | 70’513’300 | 65’679’100 | 52’862’900 | 56’765’300 | 50’302’800 | 43’171’800 | 33’035’800 | 24’929’200 | 16’930’500 | 8’428’700 | 4’384’700 | 0 | 0 | 46’100 | 25’567’118 | 1’083’733’900 |
| 16 | 1965 | 216 | 1’102’588’400 | 24’923’000 | 65’421’000 | 10’644’700 | 10’500’700 | 10’395’500 | 113’557’000 | 105’459’000 | 97’439’100 | 81’312’100 | 76’116’000 | 72’527’600 | 71’231’600 | 67’062’600 | 53’766’100 | 56’679’400 | 51’354’700 | 44’091’700 | 34’089’000 | 25’461’500 | 17’260’100 | 8’700’700 | 4’546’600 | 0 | 0 | 46’600 | 25’259’118 | 1’102’586’300 |
| 17 | 1966 | 219 | 1’117’132’100 | 24’335’200 | 53’188’100 | 14’953’600 | 14’799’800 | 14’740’200 | 114’756’000 | 106’271’800 | 100’362’000 | 81’791’300 | 76’863’900 | 72’533’000 | 71’409’500 | 67’391’200 | 55’866’000 | 55’602’600 | 51’909’900 | 44’627’400 | 34’968’400 | 25’912’000 | 17’560’100 | 8’937’200 | 4’683’800 | 0 | 0 | 61’500 | 24’591’326 | 1’113’524’500 |
| 18 | 1967 | 210 | 1’126’760’200 | 24’744’700 | 54’083’000 | 14’428’800 | 14’557’000 | 14’454’900 | 115’995’000 | 107’370’000 | 100’569’000 | 84’979’400 | 77’696’100 | 72’850’000 | 71’561’400 | 67’796’400 | 58’652’900 | 53’920’800 | 52’481’400 | 45’303’200 | 35’884’200 | 26’488’700 | 17’826’400 | 9’216’300 | 4’899’700 | 0 | 0 | 45’000 | 25’034’654 | 1’125’804’300 |
| 19 | 1968 | 204 | 1’109’049’200 | 23’920’400 | 62’516’900 | 10’122’500 | 10’565’400 | 10’518’600 | 112’956’600 | 104’974’800 | 98’608’000 | 86’082’500 | 76’707’400 | 71’615’400 | 69’576’700 | 66’805’700 | 60’329’800 | 50’837’300 | 52’209’000 | 45’204’400 | 36’390’500 | 26’688’900 | 17’818’200 | 9’491’300 | 5’068’400 | 0 | 0 | 45’000 | 23’796’803 | 1’109’053’700 |
| 20 | 1969 | 219 | 1’128’759’600 | 24’176’400 | 61’850’300 | 10’913’900 | 10’551’000 | 10’989’600 | 114’775’100 | 107’173’400 | 99’570’200 | 89’906’200 | 78’205’800 | 72’410’200 | 69’939’700 | 67’517’300 | 63’193’200 | 49’542’500 | 52’647’600 | 46’147’000 | 37’402’900 | 27’439’700 | 17’917’200 | 10’023’800 | 5’454’700 | 0 | 0 | 44’700 | 23’851’424 | 1’127’792’400 |
| 21 | 1970 | 228 | 1’129’443’700 | 23’648’200 | 61’873’900 | 11’299’300 | 11’122’100 | 10’718’500 | 116’031’400 | 107’635’300 | 98’959’900 | 92’673’700 | 78’508’600 | 72’473’100 | 69’335’200 | 66’515’100 | 62’901’400 | 49’654’600 | 51’362’200 | 46’152’100 | 37’249’300 | 27’511’100 | 18’199’500 | 9’915’500 | 5’536’900 | 0 | 0 | 174’400 | 24’099’616 | 1’129’451’300 |
| 22 | 1971 | 222 | 1’174’507’100 | 24’894’200 | 62’364’200 | 11’587’500 | 11’679’500 | 11’584’600 | 118’572’000 | 112’353’900 | 103’096’100 | 98’248’300 | 80’900’900 | 75’164’700 | 71’842’500 | 69’140’800 | 65’175’600 | 53’622’400 | 51’667’800 | 48’433’200 | 39’073’700 | 29’427’600 | 19’061’800 | 10’403’500 | 6’044’800 | 0 | 0 | 174’100 | 25’072’931 | 1’174’513’700 |
| 23 | 1972 | 222 | 1’179’124’000 | 24’358’300 | 64’209’300 | 10’698’600 | 10’853’700 | 10’951’700 | 117’595’500 | 112’311’000 | 103’370’000 | 97’764’500 | 83’943’200 | 75’505’700 | 71’538’900 | 68’959’100 | 65’195’300 | 56’168’400 | 49’808’600 | 48’784’500 | 39’714’500 | 30’140’500 | 19’435’900 | 10’608’800 | 6’192’900 | 0 | 0 | 177’600 | 24’130’351 | 1’178’286’500 |
| 24 | 1973 | 225 | 1’200’788’900 | 23’971’400 | 72’094’200 | 8’113’200 | 8’053’300 | 8’191’000 | 118’643’700 | 114’226’000 | 105’097’800 | 98’600’900 | 87’309’300 | 77’022’900 | 72’470’200 | 69’361’400 | 65’777’500 | 58’975’000 | 48’193’600 | 49’285’200 | 40’466’900 | 31’074’700 | 19’304’600 | 10’822’700 | 6’440’600 | 0 | 0 | 395’000 | 24’650’912 | 1’193’891’100 |
| 25 | 1974 | 222 | 1’214’914’100 | 23’890’800 | 58’561’600 | 12’415’900 | 12’832’200 | 12’791’700 | 117’809’900 | 115’618’300 | 106’904’900 | 99’600’000 | 90’901’800 | 78’349’600 | 72’738’400 | 69’339’700 | 66’372’300 | 61’785’500 | 46’885’800 | 49’453’200 | 41’588’900 | 32’097’500 | 20’416’200 | 10’694’200 | 6’475’800 | 0 | 0 | 268’000 | 24’521’398 | 1’207’792’200 |
| 26 | 1975 | 243 | 1’237’433’000 | 23’896’200 | 56’340’700 | 13’224’100 | 13’542’900 | 13’948’700 | 119’383’500 | 118’123’600 | 109’722’600 | 101’397’100 | 95’089’900 | 79’133’600 | 73’836’900 | 69’629’400 | 67’414’700 | 62’744’000 | 48’372’000 | 49’445’900 | 42’594’400 | 32’643’500 | 21’700’100 | 11’100’600 | 6’760’800 | 0 | 0 | 44’000 | 24’193’240 | 1’230’089’200 |
| 27 | 1976 | 246 | 1’253’386’000 | 24’313’800 | 57’860’200 | 12’542’300 | 12’794’100 | 13’188’600 | 119’900’900 | 118’565’600 | 111’666’500 | 102’972’500 | 98’567’800 | 80’330’300 | 74’507’300 | 70’215’700 | 67’728’000 | 63’429’000 | 50’791’500 | 48’720’400 | 43’446’700 | 33’689’700 | 22’264’300 | 11’366’400 | 6’879’400 | 0 | 0 | 53’800 | 24’200’320 | 1’245’794’800 |
| 28 | 1977 | 249 | 1’272’520’900 | 22’024’700 | 49’022’000 | 12’496’200 | 12’659’400 | 12’918’900 | 117’820’200 | 106’525’600 | 112’303’400 | 95’800’800 | 97’253’900 | 78’192’900 | 74’817’100 | 66’790’300 | 67’717’100 | 61’111’700 | 53’192’100 | 45’618’900 | 44’061’700 | 33’071’400 | 22’356’100 | 11’677’800 | 7’060’900 | 0 | 0 | 53’000 | 24’541’348 | 1’204’546’100 |
| 29 | 1978 | 249 | 1’283’286’600 | 24’520’300 | 54’695’200 | 13’904’800 | 14’097’400 | 14’197’500 | 120’513’200 | 119’083’500 | 113’751’000 | 105’338’900 | 98’973’700 | 87’328’900 | 76’675’300 | 71’168’500 | 68’117’500 | 64’370’100 | 56’430’100 | 45’702’700 | 44’407’800 | 35’101’600 | 23’593’700 | 12’068’300 | 7’429’100 | 0 | 0 | 48’700 | 24’443’582 | 1’271’517’800 |
| 30 | 1979 | 252 | 1’384’616’700 | 26’168’400 | 62’094’400 | 14’577’300 | 14’645’000 | 14’917’800 | 130’282’200 | 129’324’000 | 125’822’000 | 116’157’000 | 107’494’000 | 96’938’100 | 83’014’900 | 76’290’600 | 71’905’600 | 68’288’800 | 61’723’100 | 46’678’400 | 47’323’900 | 36’226’200 | 25’035’500 | 12’757’400 | 7’889’100 | 0 | 0 | 50’000 | 25’814’615 | 1’375’603’700 |
| 31 | 1980 | 255 | 1’565’989’454 | 29’398’510 | 56’414’009 | 20’688’701 | 20’697’000 | 20’671’062 | 143’904’748 | 142’633’059 | 142’826’968 | 133’950’271 | 123’116’338 | 112’223’074 | 91’683’473 | 90’116’843 | 81’880’325 | 80’316’992 | 69’653’225 | 52’905’943 | 52’327’039 | 41’718’269 | 29’091’913 | 14’924’664 | 9’160’528 | 0 | 0 | 86’100 | 29’037’976 | 1’560’389’054 |
| 32 | 1981 | 291 | 1’961’456’357 | 36’630’023 | 94’182’061 | 17’157’695 | 16’858’030 | 16’916’674 | 176’113’014 | 174’707’481 | 176’279’836 | 171’776’194 | 156’669’703 | 143’916’367 | 108’891’441 | 119’703’091 | 103’921’081 | 105’903’289 | 90’014’852 | 66’819’865 | 64’339’056 | 53’288’902 | 36’556’494 | 19’069’398 | 11’682’410 | 0 | 0 | 0 | 37’337’595 | 1’961’396’957 |
| 33 | 1982 | 291 | 1’934’409’768 | 35’351’668 | 112’007’762 | 9’658’259 | 9’644’579 | 9’622’959 | 169’956’415 | 169’043’564 | 169’622’645 | 168’931’795 | 155’086’636 | 143’217’050 | 110’494’616 | 115’738’996 | 104’083’442 | 103’369’676 | 91’726’522 | 69’293’363 | 60’853’554 | 54’304’726 | 36’540’913 | 19’873’174 | 11’947’897 | 14’441 | 2’416 | 1’700 | 35’748’215 | 1’930’388’768 |
| 34 | 1983 | 264 | 1’953’294’290 | 36’188’605 | 99’871’296 | 14’460’299 | 14’346’097 | 14’238’977 | 171’464’201 | 167’971’173 | 169’424’771 | 169’800’977 | 158’842’587 | 145’363’025 | 118’054’750 | 111’094’920 | 108’242’586 | 101’532’050 | 95’022’015 | 73’288’651 | 58’194’999 | 54’919’870 | 37’756’650 | 20’830’303 | 12’361’070 | 15’095 | 2’523 | 5’100 | 36’159’189 | 1’953’292’590 |
| 35 | 1984 | 225 | 1’821’166’971 | 31’761’112 | 82’061’232 | 16’221’845 | 16’223’112 | 16’401’531 | 154’769’827 | 153’887’030 | 152’278’647 | 157’656’662 | 149’392’621 | 138’026’440 | 117’808’535 | 101’796’721 | 102’543’949 | 92’750’405 | 90’252’590 | 73’010’037 | 53’345’141 | 52’136’800 | 36’784’199 | 20’086’338 | 11’954’715 | 15’880 | 2’702 | 0 | 32’197’555 | 1’821’168’071 |
| 36 | 1985 | 282 | 2’124’225’490 | 38’844’963 | 113’498’716 | 14’372’506 | 14’466’772 | 14’533’029 | 187’716’136 | 182’983’426 | 181’464’495 | 182’266’596 | 175’860’152 | 159’017’781 | 141’838’695 | 111’562’364 | 120’402’587 | 103’330’425 | 103’219’558 | 83’704’389 | 59’822’222 | 57’558’804 | 41’421’069 | 22’747’397 | 13’560’865 | 27’559 | 6’080 | 400 | 39’539’682 | 2’124’226’986 |
| 37 | 1986 | 255 | 38’681’255 | 119’262’150 | 11’838’257 | 12’072’132 | 12’186’373 | 187’162’491 | 183’833’404 | 181’074’504 | 181’798’240 | 177’481’450 | 163’265’766 | 149’280’685 | 112’311’729 | 122’039’506 | 105’616’601 | 104’780’469 | 87’484’805 | 62’223’189 | 56’272’847 | 42’328’027 | 23’580’549 | 14’340’581 | 27’778 | 6’253 | 4’400 | 38’852’302 | ||
| 38 | 1987 | 258 | 37’689’498 | 116’284’139 | 11’331’388 | 11’284’097 | 11’473’990 | 183’620’888 | 179’975’136 | 186’559’718 | 182’178’242 | 187’029’252 | 170’775’128 | 154’914’258 | 118’820’034 | 124’363’682 | 111’265’623 | 107’981’743 | 92’359’054 | 67’754’421 | 54’763’073 | 44’163’664 | 24’692’129 | 15’192’337 | 29’245 | 6’248 | 1’200 | 38’993’933 | ||
| 39 | 1988 | 240 | 37’654’560 | 124’492’158 | 8’146’277 | 8’235’739 | 8’242’921 | 182’434’946 | 180’432’691 | 184’306’368 | 180’541’855 | 184’812’221 | 173’656’032 | 156’651’843 | 125’097’876 | 120’080’701 | 114’419’217 | 106’550’665 | 95’534’115 | 71’482’606 | 52’869’862 | 45’233’837 | 25’405’026 | 15’791’977 | 31’443 | 6’228 | 700 | 38’189’418 | ||
| 40 | 1989 | 222 | 35’930’593 | 110’907’317 | 10’801’399 | 10’884’750 | 11’011’462 | 176’897’668 | 174’963’616 | 180’129’708 | 175’186’482 | 183’193’721 | 174’504’005 | 157’050’486 | 131’617’061 | 115’779’481 | 117’352’219 | 103’647’046 | 97’567’522 | 75’070’102 | 51’424’861 | 45’611’956 | 26’337’417 | 16’505’140 | 42’994 | 9’903 | 5’700 | 36’308’410 | ||
| 41 | 1990 | 237 | 35’402’993 | 124’051’792 | 6’801’842 | 6’843’450 | 6’877’573 | 178’273’270 | 174’165’447 | 179’234’203 | 177’953’181 | 185’627’031 | 179’142’657 | 163’721’284 | 143’839’093 | 115’640’736 | 123’383’256 | 105’740’072 | 102’385’001 | 80’570’437 | 53’801’847 | 47’931’816 | 28’987’469 | 18’139’444 | 47’461 | 10’782 | 200 | 36’306’803 | ||
| 42 | 1991 | 225 | 1’914’966’945 | 30’037’654 | 87’103’281 | 11’683’644 | 11’962’737 | 12’071’991 | 153’159’875 | 150’443’399 | 154’376’581 | 157’167’761 | 158’430’400 | 154’250’576 | 141’364’897 | 128’202’928 | 98’499’319 | 99’251’242 | 87’999’059 | 83’216’210 | 68’869’741 | 47’877’905 | 39’009’424 | 24’238’339 | 15’641’247 | 79’330 | 18’126 | 7’400 | 30’147’136 | 1’914’963’066 |
| 43 | 1992 | 216 | 1’871’511’623 | 27’510’066 | 85’734’416 | 9’959’002 | 10’253’010 | 10’512’626 | 146’685’819 | 146’223’753 | 149’063’315 | 151’375’012 | 152’510’663 | 149’946’748 | 140’479’779 | 126’661’340 | 100’850’760 | 97’001’157 | 87’507’267 | 81’649’707 | 69’412’381 | 49’612’484 | 37’093’371 | 25’127’896 | 16’023’623 | 261’758 | 53’895 | 1’100 | 28’570’725 | 1’871’510’948 |
| 44 | 1993 | 219 | 1’880’956’797 | 26’826’734 | 86’708’054 | 9’319’174 | 9’449’477 | 9’568’027 | 145’735’536 | 146’612’318 | 147’461’587 | 151’857’853 | 150’139’742 | 151’334’435 | 142’832’798 | 128’226’073 | 104’974’860 | 96’111’148 | 89’049’046 | 81’039’681 | 70’702’946 | 52’346’190 | 35’791’813 | 25’744’365 | 16’749’458 | 276’266 | 56’838 | 2’043’300 | 27’982’827 | 1’880’957’719 |
| 45 | 1994 | 228 | 2’089’615’331 | 30’029’084 | 89’564’558 | 12’662’953 | 12’952’368 | 13’223’122 | 164’523’854 | 163’902’360 | 163’881’632 | 168’831’495 | 167’952’146 | 168’577’117 | 158’725’174 | 141’259’250 | 119’337’081 | 104’554’787 | 99’891’019 | 86’875’099 | 77’659’739 | 59’573’671 | 37’705’152 | 28’679’811 | 18’910’771 | 286’581 | 58’720 | 0 | 30’336’643 | 2’089’617’544 |
| 46 | 1995 | 213 | 1’873’199’881 | 25’790’179 | 78’804’654 | 10’235’784 | 10’630’686 | 10’892’506 | 144’111’819 | 144’859’943 | 145’547’051 | 148’056’110 | 146’513’256 | 149’456’459 | 144’356’691 | 129’252’518 | 114’355’058 | 92’544’235 | 91’256’673 | 78’665’295 | 72’037’239 | 55’851’753 | 35’454’364 | 26’274’776 | 17’871’039 | 298’366 | 62’050 | 20’900 | 25’998’188 | 1’873’199’404 |
| 47 | 1996 | 192 | 1’686’585’803 | 21’163’729 | 57’172’855 | 11’260’670 | 11’552’404 | 12’004’161 | 121’955’453 | 123’381’030 | 125’087’320 | 128’359’448 | 130’585’623 | 133’322’647 | 132’699’756 | 120’042’717 | 110’289’902 | 85’278’446 | 86’046’048 | 74’338’615 | 68’752’965 | 54’551’653 | 35’473’286 | 24’866’699 | 17’954’265 | 354’308 | 74’747 | 17’800 | 20’737’415 | 1’686’586’547 |
| 48 | 1997 | 183 | 1’583’563’240 | 18’208’424 | 47’139’981 | 10’495’153 | 10’737’389 | 11’030’333 | 108’050’652 | 112’399’733 | 115’902’250 | 117’442’226 | 121’731’396 | 123’532’562 | 126’266’906 | 116’357’597 | 106’571’688 | 84’740’120 | 82’005’940 | 72’338’783 | 66’229’281 | 53’878’569 | 36’265’247 | 23’501’418 | 18’191’737 | 437’104 | 94’567 | 14’021 | 18’090’685 | 1’583’563’077 |
| 49 | 1998 | 189 | 1’613’868’548 | 18’518’741 | 52’984’626 | 8’978’684 | 9’189’097 | 9’399’616 | 110’175’903 | 115’576’616 | 119’539’030 | 118’604’994 | 122’830’611 | 123’673’130 | 127’957’284 | 119’259’546 | 108’274’434 | 89’241’282 | 81’581’082 | 74’639’754 | 66’386’615 | 55’242’312 | 38’416’815 | 22’758’437 | 18’855’686 | 525’849 | 113’343 | 1’147’600 | 18’419’562 | 1’613’871’087 |
| 50 | 1999 | 198 | 1’631’567’671 | 18’361’115 | 48’482’159 | 10’411’044 | 10’554’666 | 10’790’100 | 109’027’940 | 115’819’453 | 120’660’439 | 120’140’150 | 123’917’015 | 124’092’778 | 129’384’613 | 121’819’734 | 109’548’240 | 94’657’250 | 81’271’849 | 77’058’412 | 66’048’895 | 56’498’310 | 40’578’133 | 22’388’124 | 19’073’691 | 812’827 | 166’391 | 2’820 | 18’243’403 | 1’631’566’148 |
| 51 | 2000 | 195 | 1’634’909’227 | 18’168’998 | 50’828’820 | 9’021’374 | 9’216’727 | 9’489’659 | 106’505’699 | 115’624’768 | 120’914’143 | 120’249’943 | 123’258’252 | 123’212’967 | 128’338’379 | 122’470’923 | 111’170’235 | 100’450’034 | 79’562’490 | 77’763’315 | 65’873’967 | 57’308’292 | 41’877’663 | 23’092’346 | 18’520’683 | 1’621’805 | 365’411 | 2’402 | 18’479’233 | 1’634’909’295 |
| 52 | 2001 | 201 | 1’469’105’700 | 17’970’435 | 41’593’517 | 9’568’832 | 9’755’512 | 9’969’785 | 96’845’843 | 106’430’660 | 107’375’978 | 104’075’830 | 105’313’801 | 108’159’287 | 110’458’419 | 109’502’208 | 100’679’184 | 94’156’428 | 70’614’225 | 71’100’478 | 59’886’360 | 53’695’592 | 39’543’187 | 22’712’395 | 18’345’260 | 1’086’999 | 245’797 | 21’576 | 18’025’594 | 1’469’107’588 |
| 53 | 2002 | 204 | 1’538’700’776 | 18’660’368 | 44’185’920 | 9’891’155 | 9’986’663 | 10’223’146 | 100’203’582 | 110’489’077 | 112’705’674 | 110’225’281 | 110’108’482 | 114’564’497 | 115’376’033 | 115’448’961 | 105’922’533 | 98’136’782 | 75’927’716 | 73’104’747 | 62’646’467 | 54’851’313 | 41’200’514 | 24’769’575 | 18’478’683 | 1’250’537 | 342’094 | 1’190 | 18’856’275 | 1’538’700’990 |
| 54 | 2003 | 201 | 1’482’275’303 | 17’931’237 | 42’218’925 | 9’375’901 | 9’470’831 | 9’552’875 | 93’941’448 | 104’266’785 | 108’158’734 | 106’267’517 | 103’940’835 | 108’273’707 | 108’935’148 | 110’998’668 | 103’321’851 | 95’377’114 | 77’641’492 | 70’071’293 | 62’492’234 | 53’295’414 | 41’347’589 | 25’942’180 | 17’802’835 | 1’347’664 | 299’980 | 1’137 | 18’239’267 | 1’482’273’394 |
| 55 | 2004 | 201 | 1’566’178’454 | 20’296’605 | 51’096’402 | 9’309’683 | 9’384’575 | 9’485’819 | 103’125’086 | 112’052’778 | 116’394’505 | 114’528’643 | 110’434’006 | 113’575’492 | 113’218’054 | 115’347’286 | 107’998’869 | 98’031’531 | 83’566’659 | 70’421’784 | 64’884’502 | 53’375’841 | 42’002’759 | 27’384’622 | 18’570’076 | 1’381’822 | 317’192 | 1’024 | 18’385’315 | 1’566’185’615 |
| 56 | 2005 | 201 | 1’568’202’162 | 20’242’423 | 50’728’381 | 9’451’699 | 9’347’747 | 9’428’827 | 100’880’087 | 108’888’773 | 115’386’849 | 114’545’890 | 111’137’390 | 112’684’161 | 112’817’893 | 114’955’957 | 109’607’715 | 98’910’525 | 88’632’631 | 68’900’426 | 66’118’561 | 52’224’282 | 43’777’012 | 28’328’202 | 18’458’164 | 2’188’313 | 559’034 | 926 | 18’216’348 | 1’568’201’868 |
| 57 | 2006 | 186 | 1’424’088’691 | 17’255’316 | 41’317’120 | 8’734’439 | 8’616’248 | 8’541’184 | 85’647’262 | 91’567’837 | 99’863’130 | 101’262’652 | 100’001’346 | 101’041’563 | 103’472’896 | 104’071’852 | 102’342’885 | 93’113’975 | 86’975’938 | 64’707’337 | 63’325’925 | 50’581’099 | 41’886’492 | 28’285’033 | 18’596’232 | 2’259’824 | 617’637 | 851 | 13’415’491 | 1’424’086’073 |
| 58 | 2007 | 201 | 1’581’651’090 | 20’370’454 | 48’178’517 | 10’013’848 | 10’017’343 | 9’878’081 | 98’724’077 | 104’090’111 | 112’853’366 | 115’298’269 | 114’140’081 | 112’458’374 | 115’222’100 | 113’597’818 | 112’343’955 | 101’846’610 | 93’136’240 | 71’960’937 | 66’642’432 | 54’129’487 | 44’096’748 | 29’787’675 | 20’467’852 | 1’846’608 | 548’197 | 767 | 15’235’092 | 1’581’649’947 |
| 59 | 2008 | 201 | 1’284’979’812 | 16’544’090 | 32’887’515 | 9’569’764 | 9’476’940 | 9’492’786 | 76’847’162 | 80’812’476 | 89’708’669 | 95’548’749 | 95’032’960 | 92’474’251 | 94’254’264 | 91’761’433 | 90’381’453 | 82’532’694 | 75’603’402 | 60’640’909 | 54’735’595 | 46’690’290 | 36’222’259 | 25’028’584 | 15’810’972 | 2’205’162 | 718’782 | 669 | 13’844’230 | 1’284’981’830 |
| 60 | 2009 | 201 | 1’401’660’996 | 18’782’387 | 33’157’278 | 12’647’369 | 12’343’391 | 12’240’469 | 86’789’609 | 90’300’487 | 98’442’654 | 105’383’469 | 105’774’556 | 101’129’646 | 102’377’577 | 98’709’701 | 97’342’170 | 89’233’771 | 79’797’140 | 67’121’115 | 55’943’848 | 49’876’116 | 38’649’216 | 26’185’266 | 16’434’043 | 2’223’595 | 774’535 | 596 | 17’083’649 | 1’401’660’004 |
| 61 | 2010 | 210 | 1’403’797’400 | 18’830’777 | 33’763’090 | 12’699’051 | 12’302’308 | 12’002’175 | 86’287’501 | 89’217’946 | 97’022’173 | 104’124’215 | 104’862’475 | 101’116’539 | 102’264’656 | 98’751’572 | 97’467’620 | 90’310’966 | 80’254’363 | 71’090’486 | 54’614’631 | 50’992’590 | 38’621’931 | 26’834’351 | 17’758’439 | 1’925’097 | 681’457 | 513 | 14’188’558 | 1’403’796’922 |
| 62 | 2011 | 228 | 1’390’818’997 | 18’544’598 | 30’373’449 | 13’290’534 | 13’111’114 | 12’662’735 | 83’923’232 | 86’142’463 | 93’379’588 | 101’841’732 | 102’837’325 | 99’898’137 | 100’110’896 | 98’576’647 | 96’434’696 | 91’065’135 | 81’120’428 | 73’956’085 | 53’553’073 | 51’609’511 | 39’419’900 | 27’461’774 | 17’781’630 | 2’836’215 | 890’289 | 454 | 14’847’539 | 1’390’821’640 |
| 63 | 2012 | 204 | 1’398’676’316 | 18’849’953 | 28’664’032 | 13’844’782 | 13’799’256 | 13’670’085 | 84’799’604 | 85’704’782 | 92’353’056 | 100’852’285 | 102’623’753 | 100’592’913 | 99’614’770 | 99’128’708 | 96’331’004 | 92’388’030 | 82’334’596 | 74’766’761 | 55’832’363 | 51’470’412 | 40’582’431 | 27’904’485 | 18’916’112 | 2’839’449 | 812’686 | 412 | 14’530’542 | 1’398’676’720 |
| 64 | 2013 | 219 | 1’456’905’750 | 20’392’056 | 36’941’868 | 13’532’366 | 13’420’484 | 13’386’230 | 94’628’794 | 92’881’630 | 97’102’289 | 104’432’114 | 107’507’824 | 106’298’767 | 102’193’378 | 101’968’166 | 98’206’533 | 94’226’077 | 84’081’637 | 74’976’624 | 58’972’211 | 49’854’849 | 41’162’817 | 27’580’927 | 18’643’643 | 3’594’845 | 917’225 | 374 | 12’935’211 | 1’456’903’728 |
| 65 | 2014 | 210 | 1’495’408’716 | 19’764’194 | 31’905’381 | 15’983’906 | 15’911’051 | 15’907’588 | 96’634’033 | 93’479’114 | 98’141’591 | 106’760’638 | 110’879’096 | 108’954’236 | 104’346’871 | 104’257’290 | 100’648’109 | 97’707’798 | 87’490’347 | 76’778’358 | 62’340’846 | 51’446’456 | 42’529’981 | 28’873’411 | 19’609’284 | 4’067’884 | 990’918 | 334 | 17’576’441 | 1’495’408’715 |
| 66 | 2015 | 195 | 1’414’794’746 | 18’635’129 | 29’215’564 | 15’571’720 | 15’624’126 | 15’538’760 | 92’886’056 | 87’462’708 | 90’790’536 | 98’536’482 | 104’390’228 | 102’697’378 | 99’234’590 | 98’349’651 | 94’633’208 | 92’099’437 | 83’894’618 | 73’015’598 | 63’009’733 | 46’583’931 | 42’492’368 | 26’669’751 | 17’635’062 | 4’684’021 | 1’142’666 | 62 | 15’308’646 | 1’414’793’383 |
| 67 | 2016 | 186 | 1’154’646’681 | 13’869’469 | 22’445’390 | 13’624’679 | 13’828’665 | 13’692’943 | 76’214’348 | 71’709’535 | 74’850’066 | 80’370’187 | 84’267’639 | 83’753’066 | 80’836’021 | 79’394’754 | 78’233’881 | 73’749’343 | 66’577’907 | 58’263’727 | 52’780’451 | 39’021’055 | 33’605’044 | 23’015’429 | 15’261’023 | 4’203’384 | 1’077’525 | 0 | 10’487’664 | 1’154’645’531 |
| 68 | 2017 | 162 | 898’497’976 | 10’995’694 | 14’926’576 | 10’005’969 | 10’120’866 | 9’956’061 | 55’074’523 | 51’712’621 | 53’164’632 | 57’218’310 | 61’327’901 | 62’375’537 | 62’839’093 | 63’024’385 | 62’911’178 | 59’886’914 | 56’021’661 | 49’419’895 | 44’944’584 | 33’534’195 | 29’282’832 | 20’906’039 | 13’223’585 | 4’432’247 | 1’191’393 | 0 | 9’715’840 | 898’496’691 |
| 69 | 2018 | 129 | 744’468’552 | 9’215’750 | 12’108’400 | 8’661’484 | 8’758’256 | 8’521’256 | 45’895’148 | 43’557’057 | 44’156’457 | 47’521’182 | 50’882’204 | 51’707’641 | 51’862’203 | 50’823’404 | 51’280’228 | 48’971’886 | 46’329’067 | 41’342’029 | 37’324’533 | 28’741’222 | 24’077’153 | 17’337’721 | 10’812’055 | 3’583’338 | 999’437 | 0 | 7’959’367 | 744’469’111 |
| 70 | 2019 | 84 | 902’450’654 | 11’976’962 | 14’867’650 | 12’085’921 | 12’182’408 | 12’179’610 | 62’559’638 | 59’127’241 | 58’618’243 | 62’835’752 | 67’229’335 | 70’533’598 | 68’921’125 | 62’844’510 | 59’055’449 | 56’278’182 | 54’801’397 | 47’058’455 | 37’454’670 | 26’099’397 | 20’197’399 | 14’655’286 | 8’692’597 | 1’777’603 | 418’281 | 0 | 8’438’610 | 902’450’709 |
And finally, let’s see the complete list of countries in the dataset:
unique(d$name)
## [1] "Albania"
## [2] "Andorra"
## [3] "Antigua and Barbuda"
## [4] "Argentina"
## [5] "Armenia"
## [6] "Australia"
## [7] "Austria"
## [8] "Azerbaijan"
## [9] "Bahamas"
## [10] "Bahrain"
## [11] "Barbados"
## [12] "Belarus"
## [13] "Belgium"
## [14] "Belize"
## [15] "Bermuda"
## [16] "Bolivia"
## [17] "Bosnia and Herzegovina"
## [18] "Brazil"
## [19] "British Virgin Islands"
## [20] "Brunei Darussalam"
## [21] "Bulgaria"
## [22] "Canada"
## [23] "Cape Verde"
## [24] "Cayman Islands"
## [25] "Chile"
## [26] "China"
## [27] "China: Province of Taiwan only"
## [28] "Colombia"
## [29] "Costa Rica"
## [30] "Croatia"
## [31] "Cuba"
## [32] "Cyprus"
## [33] "Czech Republic"
## [34] "Czechoslovakia, Former"
## [35] "Denmark"
## [36] "Dominica"
## [37] "Dominican Republic"
## [38] "Ecuador"
## [39] "Egypt"
## [40] "El Salvador"
## [41] "Estonia"
## [42] "Falkland Islands (Malvinas)"
## [43] "Fiji"
## [44] "Finland"
## [45] "France"
## [46] "French Guiana"
## [47] "Georgia"
## [48] "Germany"
## [49] "Germany, Former Democratic Republic"
## [50] "Germany, Former Federal Republic"
## [51] "Germany, West Berlin"
## [52] "Greece"
## [53] "Grenada"
## [54] "Guadeloupe"
## [55] "Guatemala"
## [56] "Guyana"
## [57] "Honduras"
## [58] "Hong Kong SAR"
## [59] "Hungary"
## [60] "Iceland"
## [61] "Iran (Islamic Republic of)"
## [62] "Iraq"
## [63] "Ireland"
## [64] "Israel"
## [65] "Italy"
## [66] "Jamaica"
## [67] "Japan"
## [68] "Jordan"
## [69] "Kazakhstan"
## [70] "Kiribati"
## [71] "Kuwait"
## [72] "Kyrgyzstan"
## [73] "Latvia"
## [74] "Lebanon"
## [75] "Libyan Arab Jamahiriya"
## [76] "Lithuania"
## [77] "Luxembourg"
## [78] "Malaysia"
## [79] "Maldives"
## [80] "Malta"
## [81] "Martinique"
## [82] "Mauritius"
## [83] "Mexico"
## [84] "Mongolia"
## [85] "Montenegro"
## [86] "Montserrat"
## [87] "Morocco"
## [88] "Netherlands"
## [89] "Netherlands Antilles"
## [90] "New Zealand"
## [91] "Nicaragua"
## [92] "North Macedonia"
## [93] "Norway"
## [94] "Occupied Palestinian Territory"
## [95] "Oman"
## [96] "Panama"
## [97] "Papua New Guinea"
## [98] "Paraguay"
## [99] "Peru"
## [100] "Philippines"
## [101] "Poland"
## [102] "Portugal"
## [103] "Puerto Rico"
## [104] "Qatar"
## [105] "Republic of Korea"
## [106] "Republic of Moldova"
## [107] "Reunion"
## [108] "Rodrigues"
## [109] "Romania"
## [110] "Russian Federation"
## [111] "Ryu Kyu Islands"
## [112] "Saint Kitts and Nevis"
## [113] "Saint Lucia"
## [114] "Saint Pierre and Miquelon"
## [115] "Saint Vincent and Grenadines"
## [116] "San Marino"
## [117] "Sao Tome and Principe"
## [118] "Serbia"
## [119] "Serbia and Montenegro, Former"
## [120] "Seychelles"
## [121] "Singapore"
## [122] "Slovakia"
## [123] "Slovenia"
## [124] "Solomon Islands"
## [125] "South Africa"
## [126] "Spain"
## [127] "Sri Lanka"
## [128] "Suriname"
## [129] "Sweden"
## [130] "Switzerland"
## [131] "Syrian Arab Republic"
## [132] "Tajikistan"
## [133] "Thailand"
## [134] "Tonga"
## [135] "Trinidad and Tobago"
## [136] "Tunisia"
## [137] "Turkey"
## [138] "Turkmenistan"
## [139] "Turks and Caicos Islands"
## [140] "Ukraine"
## [141] "United Kingdom"
## [142] "United Kingdom, England and Wales"
## [143] "United Kingdom, Northern Ireland"
## [144] "United Kingdom, Scotland"
## [145] "United States of America"
## [146] "Uruguay"
## [147] "USSR, Former"
## [148] "Uzbekistan"
## [149] "Venezuela"
## [150] "Virgin Islands (USA)"
## [151] "Yugoslavia, Former"
In the Pop1 column, you can see that total world population varies inconsistently from year to year, and is always much lower than the actual world population. In fact, several countries are missing (for example, India and a lot of countries in Africa).
As world data are highly incomplete, we’ll use only data from Europe (including Russian Federation for consistency with former USSR, see “Managing changes in european political subdivision” section).
eu<-c("Albania", "Andorra", "Austria", "Belarus", "Belgium", "Bosnia and Herzegovina", "Bulgaria", "Czech Republic", "Czechoslovakia, Former", "Croatia", "Denmark", "Estonia", "Finland", "France", "Germany", "Germany, Former Democratic Republic", "Germany, Former Federal Republic",
"Greece", "Hungary", "Iceland", "Ireland", "Italy", "Latvia", "Lithuania", "Luxembourg", "Malta", "Netherlands", "Norway", "North Macedonia", "Poland", "Portugal", "Romania", "Russian Federation", "San Marino", "Serbia","Serbia and Montenegro, Former", "Slovakia", "Slovenia", "Spain", "Sweden", "Switzerland", "Turkey" , "Ukraine", "United Kingdom", "USSR, Former","Yugoslavia, Former" ) #I excluded Cyprus because it has too many missing values
europe<-d %>% filter(name %in% eu)
sort(abs(europe$sum-europe$Pop1), decreasing = T)[1:100]
## [1] 10198500 8153000 167500 165400 163700 163600 163400 162500
## [9] 161800 161500 160200 159100 158300 157300 157300 156300
## [17] 155200 154700 154400 154200 153900 153800 153200 153100
## [25] 152900 152300 152100 151800 151500 151100 150800 150700
## [33] 150000 149900 149100 149000 148300 147500 5000 5000
## [41] 4000 3000 3000 3000 3000 2000 2000 2000
## [49] 2000 2000 1000 1000 1000 1000 1000 1000
## [57] 1000 1000 1000 600 600 600 600 500
## [65] 500 500 500 500 500 500 500 500
## [73] 500 500 500 500 500 500 500 500
## [81] 500 500 500 500 500 500 500 500
## [89] 500 400 400 400 400 400 400 400
## [97] 400 400 400 400
print(xtable(europe[abs(europe$sum-europe$Pop1)>=1000,]), type="html")
| name | Year | Sex | Pop1 | Pop2 | Pop3 | Pop4 | Pop5 | Pop6 | Pop7 | Pop8 | Pop9 | Pop10 | Pop11 | Pop12 | Pop13 | Pop14 | Pop15 | Pop16 | Pop17 | Pop18 | Pop19 | Pop20 | Pop21 | Pop22 | Pop23 | Pop24 | Pop25 | Pop26 | Lb | sum | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Germany, Former Democratic Republic | 1951 | 1 | 8153000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 161117 | 0 |
| 2 | Germany, Former Democratic Republic | 1951 | 2 | 10198500 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 149655 | 0 |
| 3 | Italy | 1950 | 1 | 22951000 | 412000 | 425000 | 430000 | 459000 | 455000 | 1963000 | 2105000 | 2004000 | 2036000 | 1928000 | 1386000 | 1635000 | 1646000 | 1397000 | 1170000 | 940000 | 825000 | 678000 | 508000 | 329000 | 151000 | 64000 | 0 | 0 | 0 | 468860 | 22946000 |
| 4 | Italy | 1950 | 2 | 24153000 | 397000 | 407000 | 413000 | 441000 | 437000 | 1895000 | 2057000 | 1991000 | 2028000 | 2005000 | 1496000 | 1732000 | 1711000 | 1477000 | 1320000 | 1178000 | 1037000 | 839000 | 604000 | 398000 | 194000 | 93000 | 0 | 0 | 0 | 442945 | 24150000 |
| 5 | Luxembourg | 1950 | 1 | 147500 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2069 | 0 |
| 6 | Luxembourg | 1950 | 2 | 149000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2047 | 0 |
| 7 | Luxembourg | 1951 | 1 | 148300 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2187 | 0 |
| 8 | Luxembourg | 1951 | 2 | 150000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1987 | 0 |
| 9 | Luxembourg | 1952 | 1 | 149100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2323 | 0 |
| 10 | Luxembourg | 1952 | 2 | 151100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2212 | 0 |
| 11 | Luxembourg | 1953 | 1 | 149900 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2358 | 0 |
| 12 | Luxembourg | 1953 | 2 | 152100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2207 | 0 |
| 13 | Luxembourg | 1954 | 1 | 150700 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2400 | 0 |
| 14 | Luxembourg | 1954 | 2 | 153200 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2313 | 0 |
| 15 | Luxembourg | 1955 | 1 | 151500 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2406 | 0 |
| 16 | Luxembourg | 1955 | 2 | 154200 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2258 | 0 |
| 17 | Luxembourg | 1956 | 1 | 152300 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2400 | 0 |
| 18 | Luxembourg | 1956 | 2 | 155200 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2433 | 0 |
| 19 | Luxembourg | 1957 | 1 | 153100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2617 | 0 |
| 20 | Luxembourg | 1957 | 2 | 156300 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2337 | 0 |
| 21 | Luxembourg | 1958 | 1 | 153900 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2601 | 0 |
| 22 | Luxembourg | 1958 | 2 | 157300 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2358 | 0 |
| 23 | Luxembourg | 1959 | 1 | 154700 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2618 | 0 |
| 24 | Luxembourg | 1959 | 2 | 158300 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2419 | 0 |
| 25 | Luxembourg | 1961 | 1 | 157300 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2583 | 0 |
| 26 | Luxembourg | 1961 | 2 | 161500 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2529 | 0 |
| 27 | Luxembourg | 1962 | 1 | 159100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2614 | 0 |
| 28 | Luxembourg | 1962 | 2 | 163600 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2523 | 0 |
| 29 | Luxembourg | 1964 | 1 | 162500 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2759 | 0 |
| 30 | Luxembourg | 1964 | 2 | 167500 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2470 | 0 |
| 31 | Malta | 1950 | 1 | 151800 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5273 | 0 |
| 32 | Malta | 1950 | 2 | 160200 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5008 | 0 |
| 33 | Malta | 1951 | 1 | 150800 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4811 | 0 |
| 34 | Malta | 1951 | 2 | 161800 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4700 | 0 |
| 35 | Malta | 1952 | 1 | 152900 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4839 | 0 |
| 36 | Malta | 1952 | 2 | 163700 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4387 | 0 |
| 37 | Malta | 1953 | 1 | 153800 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4661 | 0 |
| 38 | Malta | 1953 | 2 | 163400 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4316 | 0 |
| 39 | Malta | 1954 | 1 | 154400 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4636 | 0 |
| 40 | Malta | 1954 | 2 | 165400 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4355 | 0 |
| 41 | Spain | 1951 | 2 | 14522000 | 257000 | 1079000 | 0 | 0 | 0 | 1261000 | 1154000 | 1274000 | 1259000 | 1203000 | 1037000 | 976000 | 933000 | 845000 | 769000 | 653000 | 561000 | 433000 | 382000 | 244000 | 130000 | 71000 | 0 | 0 | 0 | 274255 | 14521000 |
| 42 | Spain | 1952 | 2 | 14634000 | 270000 | 1066000 | 0 | 0 | 0 | 1273000 | 1175000 | 1236000 | 1263000 | 1204000 | 1071000 | 977000 | 937000 | 859000 | 776000 | 675000 | 569000 | 448000 | 384000 | 246000 | 131000 | 72000 | 0 | 0 | 0 | 285701 | 14632000 |
| 43 | Spain | 1953 | 1 | 13834000 | 282000 | 1131000 | 0 | 0 | 0 | 1313000 | 1214000 | 1215000 | 1247000 | 1188000 | 1043000 | 889000 | 856000 | 800000 | 714000 | 593000 | 473000 | 364000 | 263000 | 149000 | 70000 | 31000 | 0 | 0 | 0 | 301302 | 13835000 |
| 44 | Spain | 1953 | 2 | 14746000 | 270000 | 1067000 | 0 | 0 | 0 | 1285000 | 1196000 | 1198000 | 1267000 | 1205000 | 1105000 | 978000 | 941000 | 873000 | 783000 | 697000 | 576000 | 463000 | 387000 | 248000 | 132000 | 73000 | 0 | 0 | 0 | 285160 | 14744000 |
| 45 | Spain | 1954 | 1 | 13959000 | 277000 | 1143000 | 0 | 0 | 0 | 1327000 | 1231000 | 1186000 | 1247000 | 1196000 | 1083000 | 887000 | 856000 | 809000 | 727000 | 613000 | 476000 | 378000 | 267000 | 154000 | 72000 | 32000 | 0 | 0 | 0 | 294586 | 13961000 |
| 46 | Spain | 1954 | 2 | 14858000 | 267000 | 1070000 | 0 | 0 | 0 | 1297000 | 1217000 | 1160000 | 1271000 | 1206000 | 1139000 | 979000 | 945000 | 887000 | 790000 | 719000 | 584000 | 478000 | 389000 | 250000 | 134000 | 73000 | 0 | 0 | 0 | 280646 | 14855000 |
| 47 | Spain | 1956 | 1 | 14208000 | 292000 | 1156000 | 0 | 0 | 0 | 1354000 | 1261000 | 1163000 | 1221000 | 1201000 | 1131000 | 922000 | 853000 | 817000 | 746000 | 642000 | 498000 | 396000 | 280000 | 164000 | 76000 | 34000 | 0 | 0 | 0 | 310182 | 14207000 |
| 48 | Spain | 1956 | 2 | 15097000 | 281000 | 1083000 | 0 | 0 | 0 | 1307000 | 1248000 | 1140000 | 1238000 | 1214000 | 1174000 | 1014000 | 951000 | 906000 | 814000 | 746000 | 611000 | 503000 | 398000 | 257000 | 136000 | 75000 | 0 | 0 | 0 | 295026 | 15096000 |
| 49 | Spain | 1957 | 1 | 14332000 | 311000 | 1158000 | 0 | 0 | 0 | 1364000 | 1278000 | 1169000 | 1195000 | 1197000 | 1140000 | 959000 | 850000 | 817000 | 754000 | 653000 | 516000 | 399000 | 287000 | 170000 | 79000 | 35000 | 0 | 0 | 0 | 329837 | 14331000 |
| 50 | Spain | 1957 | 2 | 15222000 | 299000 | 1091000 | 0 | 0 | 0 | 1304000 | 1260000 | 1160000 | 1202000 | 1221000 | 1174000 | 1048000 | 953000 | 910000 | 829000 | 751000 | 628000 | 511000 | 404000 | 261000 | 138000 | 76000 | 0 | 0 | 0 | 313480 | 15220000 |
| 51 | Spain | 1958 | 1 | 14456000 | 315000 | 1175000 | 0 | 0 | 0 | 1374000 | 1295000 | 1175000 | 1169000 | 1193000 | 1149000 | 996000 | 847000 | 816000 | 762000 | 664000 | 534000 | 402000 | 294000 | 175000 | 82000 | 36000 | 0 | 0 | 0 | 332960 | 14453000 |
| 52 | Spain | 1958 | 2 | 15347000 | 303000 | 1113000 | 0 | 0 | 0 | 1301000 | 1272000 | 1180000 | 1166000 | 1228000 | 1174000 | 1082000 | 955000 | 914000 | 844000 | 756000 | 645000 | 519000 | 410000 | 265000 | 140000 | 78000 | 0 | 0 | 0 | 317079 | 15345000 |
| 53 | Spain | 1959 | 1 | 14580000 | 317000 | 1194000 | 0 | 0 | 0 | 1384000 | 1312000 | 1181000 | 1143000 | 1189000 | 1158000 | 1033000 | 843000 | 816000 | 770000 | 675000 | 552000 | 406000 | 301000 | 180000 | 85000 | 37000 | 0 | 0 | 0 | 334373 | 14576000 |
| 54 | Spain | 1959 | 2 | 15472000 | 303000 | 1139000 | 0 | 0 | 0 | 1298000 | 1284000 | 1200000 | 1130000 | 1235000 | 1175000 | 1116000 | 956000 | 918000 | 859000 | 761000 | 662000 | 526000 | 416000 | 269000 | 143000 | 79000 | 0 | 0 | 0 | 316847 | 15469000 |
| 55 | Spain | 1961 | 1 | 14848000 | 318000 | 1237000 | 0 | 0 | 0 | 1406000 | 1348000 | 1196000 | 1092000 | 1182000 | 1178000 | 1109000 | 842000 | 817000 | 787000 | 698000 | 589000 | 413000 | 316000 | 191000 | 89000 | 39000 | 0 | 0 | 0 | 335266 | 14847000 |
| 56 | Spain | 1961 | 2 | 15744000 | 303000 | 1194000 | 0 | 0 | 0 | 1294000 | 1310000 | 1243000 | 1059000 | 1251000 | 1177000 | 1186000 | 959000 | 927000 | 890000 | 772000 | 697000 | 542000 | 431000 | 279000 | 148000 | 81000 | 0 | 0 | 0 | 316292 | 15743000 |
| 57 | Spain | 1962 | 1 | 15009000 | 322000 | 1258000 | 0 | 0 | 0 | 1419000 | 1368000 | 1205000 | 1069000 | 1180000 | 1190000 | 1148000 | 843000 | 818000 | 797000 | 711000 | 608000 | 417000 | 324000 | 197000 | 91000 | 39000 | 0 | 0 | 0 | 337300 | 15004000 |
| 58 | Spain | 1962 | 2 | 15908000 | 307000 | 1220000 | 0 | 0 | 0 | 1294000 | 1325000 | 1266000 | 1026000 | 1261000 | 1179000 | 1223000 | 963000 | 934000 | 907000 | 779000 | 716000 | 551000 | 438000 | 284000 | 152000 | 82000 | 0 | 0 | 0 | 318529 | 15907000 |
| 59 | Yugoslavia, Former | 1962 | 1 | 9224000 | 196000 | 193000 | 191000 | 191000 | 189000 | 1027000 | 953000 | 719000 | 799000 | 861000 | 815000 | 605000 | 413000 | 358000 | 475000 | 416000 | 323000 | 201000 | 134000 | 91000 | 46000 | 27000 | 0 | 0 | 0 | 213179 | 9223000 |
We can see that there are a few measures (59) for which there is a high discrepancy (>=1000 people) between the reported and the calculated total population. All those data points were collected from 1950 to 1964. So, we’ll exclude old and incomplete data and work with data from 1965. Also, we remove data where Sex column has an incorrect value and we change the sex coding to M and F
europe65<-filter(europe, Year>1964)
europe65<-filter(europe65, Sex==1|Sex==2)
europe65$Sex<-ifelse(europe65$Sex==1, "M", "F")
Even after those cleaning steps, there are still some columns with a lot of missing values; this is due to the fact that many countries sometimes used larger age groups:
apply(select(europe65, !c(name, Sex)),2,function(x) sum(as.numeric(x)==0))
## Year Pop1 Pop2 Pop3 Pop4 Pop5 Pop6 Pop7 Pop8 Pop9 Pop10 Pop11 Pop12
## 0 0 0 0 664 664 664 0 0 0 0 0 0
## Pop13 Pop14 Pop15 Pop16 Pop17 Pop18 Pop19 Pop20 Pop21 Pop22 Pop23 Pop24 Pop25
## 0 0 0 0 0 0 0 0 0 0 0 2498 2498
## Pop26 Lb sum
## 3562 56 0
Discarding all those observations would leave us with very few complete observation, so I decided to create larger age groups in my final dataset, as follows:
Other columns:
europe65_pop<- europe65 %>% mutate(Country=name, Year, Sex, Total_pop=sum, Age0=Pop2, "Natality_rate%"=round(Pop2/sum*100,2), "Age1-9"=Pop3+Pop4+Pop5+Pop6+Pop7, "Age10-19"=Pop8+Pop9, "Age20-29"=Pop10+Pop11, "Age30-39"=Pop12+Pop13, "Age40-49"=Pop14+Pop15, "Age50-59"=Pop16+Pop17, "Age60-69"=Pop18+Pop19, "Age70-79"=Pop20+Pop21, "Age80+"=Pop22+Pop23+Pop24+Pop25, Mean_age=round((.5*Pop2+5.5*`Age1-9`+15*`Age10-19`+25*`Age20-29`+35*`Age30-39`+45*`Age40-49`+55*`Age50-59`+65*`Age60-69`+75*`Age70-79`+87*`Age80+`)/sum,2), Age_unknown=Pop26, .keep="none")
print(xtable(head(europe65_pop,20)), type="html")
| Country | Year | Sex | Total_pop | Age0 | Natality_rate% | Age1-9 | Age10-19 | Age20-29 | Age30-39 | Age40-49 | Age50-59 | Age60-69 | Age70-79 | Age80+ | Mean_age | Age_unknown | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Albania | 1985 | M | 1526200 | 40700 | 2.67 | 311300 | 314300 | 288400 | 213600 | 142400 | 111400 | 65200 | 29800 | 9100 | 26.82 | 0 |
| 2 | Albania | 1985 | F | 1431300 | 36700 | 2.56 | 283900 | 288000 | 269100 | 198000 | 128900 | 99600 | 71500 | 39100 | 16500 | 27.84 | 0 |
| 3 | Albania | 1986 | M | 1553300 | 41500 | 2.67 | 316800 | 319800 | 293600 | 217400 | 145000 | 113400 | 66300 | 30300 | 9200 | 26.82 | 0 |
| 4 | Albania | 1986 | F | 1462000 | 37500 | 2.56 | 290000 | 294200 | 274900 | 202200 | 131600 | 101800 | 73000 | 39900 | 16900 | 27.84 | 0 |
| 5 | Albania | 1987 | M | 1584200 | 42300 | 2.67 | 323100 | 326200 | 299500 | 221700 | 147900 | 115600 | 67600 | 30900 | 9400 | 26.82 | 0 |
| 6 | Albania | 1987 | F | 1492000 | 38300 | 2.57 | 296000 | 300300 | 280500 | 206300 | 134300 | 103900 | 74500 | 40700 | 17200 | 27.84 | 0 |
| 7 | Albania | 1988 | M | 1616000 | 43100 | 2.67 | 329600 | 332800 | 305500 | 226200 | 150800 | 117900 | 69000 | 31500 | 9600 | 26.82 | 0 |
| 8 | Albania | 1988 | F | 1522200 | 39100 | 2.57 | 301900 | 306300 | 286200 | 210500 | 137100 | 105900 | 76000 | 41600 | 17600 | 27.84 | 0 |
| 9 | Albania | 1989 | M | 1637800 | 43700 | 2.67 | 334100 | 337300 | 309600 | 229200 | 152900 | 119500 | 69900 | 31900 | 9700 | 26.81 | 0 |
| 10 | Albania | 1989 | F | 1544500 | 39600 | 2.56 | 306400 | 310800 | 290400 | 213600 | 139000 | 107500 | 77100 | 42200 | 17900 | 27.84 | 0 |
| 11 | Albania | 1990 | M | 1685700 | 40800 | 2.42 | 341400 | 337600 | 317200 | 246100 | 160100 | 125900 | 73000 | 34000 | 9600 | 27.15 | 0 |
| 12 | Albania | 1990 | F | 1600500 | 38100 | 2.38 | 315700 | 315800 | 298500 | 230600 | 146300 | 113000 | 79800 | 45100 | 17600 | 28.07 | 0 |
| 13 | Albania | 1991 | M | 1654100 | 40000 | 2.42 | 340200 | 330300 | 288800 | 243400 | 162800 | 128100 | 75600 | 35000 | 9900 | 27.42 | 0 |
| 14 | Albania | 1991 | F | 1605800 | 36800 | 2.29 | 315800 | 315700 | 291700 | 234100 | 149800 | 115700 | 81500 | 46400 | 18300 | 28.30 | 0 |
| 15 | Albania | 1992 | M | 1589500 | 39600 | 2.49 | 338400 | 316700 | 242700 | 234100 | 164100 | 129900 | 78000 | 35800 | 10200 | 27.72 | 0 |
| 16 | Albania | 1992 | F | 1600700 | 34300 | 2.14 | 317100 | 314000 | 280000 | 235300 | 152600 | 118000 | 83100 | 47500 | 18800 | 28.53 | 0 |
| 17 | Albania | 1993 | M | 1565900 | 35400 | 2.26 | 340800 | 310700 | 217800 | 233400 | 167400 | 132400 | 80800 | 36700 | 10500 | 28.03 | 0 |
| 18 | Albania | 1993 | F | 1601400 | 31400 | 1.96 | 318900 | 313000 | 270300 | 237900 | 156100 | 120700 | 84800 | 48900 | 19400 | 28.77 | 0 |
| 19 | Albania | 1994 | M | 1586200 | 37000 | 2.33 | 337900 | 312800 | 215300 | 241700 | 173200 | 135700 | 83900 | 37900 | 10800 | 28.31 | 0 |
| 20 | Albania | 1994 | F | 1615700 | 33300 | 2.06 | 316300 | 313800 | 266100 | 244200 | 161000 | 123800 | 86800 | 50400 | 20000 | 29.01 | 0 |
Here is a table summarising available data for each country and year:
t<-as.data.frame(pivot_wider(as.data.frame(table(europe65_pop$Country, europe65_pop$Year)), names_from = Var2, values_from = Freq))
row.names(t)<-t$Var1
t<-select(t, -Var1)
print(xtable(t), type="html")
| 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Albania | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 |
| Andorra | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Austria | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Belarus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 0 |
| Belgium | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 |
| Bosnia and Herzegovina | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 2 | 0 | 2 | 0 | 0 | 0 |
| Bulgaria | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Croatia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 |
| Czech Republic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Czechoslovakia, Former | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Denmark | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Estonia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 |
| Finland | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 |
| France | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 |
| Germany | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Germany, Former Democratic Republic | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Germany, Former Federal Republic | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Greece | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Hungary | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Iceland | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Ireland | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 |
| Italy | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 |
| Latvia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Lithuania | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Luxembourg | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Malta | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 |
| Netherlands | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| North Macedonia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 |
| Norway | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 |
| Poland | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Portugal | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Romania | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Russian Federation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 |
| San Marino | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Serbia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 |
| Serbia and Montenegro, Former | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Slovakia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 |
| Slovenia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Spain | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 |
| Sweden | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Switzerland | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 |
| Turkey | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 |
| Ukraine | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 2 |
| United Kingdom | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 |
| USSR, Former | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Yugoslavia, Former | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
In previous table, “0” means that there are no available data for that country/year, while “2” means there are available data (1 row for males and 1 row for females).
Since 1965, a few countries were founded and other disappeared. Thus, previous table was modified by replacing the 0 data with NA (standing for “Not applicable”) for countries that didn’t exist in a given year (thanks to Wikipedia). This way, we’ll be able to assess the completeness of our dataset for each year and to avoid some double-counted data.
t[c("Bosnia and Herzegovina", "Croatia", "North Macedonia", "Serbia", "Serbia and Montenegro, Former", "Slovenia"),which(t["Yugoslavia, Former",]=="2")]<-NA
t["Yugoslavia, Former",which(t["Yugoslavia, Former",]==0)]<-NA
t[c("Germany, Former Democratic Republic","Germany, Former Federal Republic"),which(t["Germany",]=="2")]<-NA
t["Germany",which(t["Germany",]==0)]<-NA
t[c("Czech Republic","Slovakia"),which(t["Czechoslovakia, Former",]=="2")]<-NA
t["Czechoslovakia, Former",which(t["Czechoslovakia, Former",]==0)]<-NA
t[c("Belarus", "Estonia", "Latvia", "Lithuania", "Ukraine", "Russian Federation"),1:26]<-NA
t["USSR, Former", 27:ncol(t)]<-NA
t["Serbia and Montenegro, Former", 34:ncol(t)]<-NA
av<-t #conversion in longer format to be used in Tableau
av$Countries<-row.names(av)
av<-select(av, c(56,1:55))
av<-pivot_longer(av, 2:56, names_to = "Year", values_to="available")
write_csv(t, "available.csv")
print(xtable(t), type="html", NA.string="NA")
| 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Albania | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 |
| Andorra | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Austria | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Belarus | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 0 |
| Belgium | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 |
| Bosnia and Herzegovina | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 2 | 0 | 2 | 0 | 0 | 0 |
| Bulgaria | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Croatia | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 |
| Czech Republic | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Czechoslovakia, Former | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| Denmark | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Estonia | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 |
| Finland | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 |
| France | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 |
| Germany | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Germany, Former Democratic Republic | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| Germany, Former Federal Republic | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| Greece | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Hungary | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Iceland | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Ireland | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 |
| Italy | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 |
| Latvia | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Lithuania | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Luxembourg | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Malta | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 |
| Netherlands | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| North Macedonia | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 |
| Norway | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 |
| Poland | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Portugal | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Romania | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Russian Federation | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 |
| San Marino | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Serbia | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 |
| Serbia and Montenegro, Former | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 2 | 2 | 2 | 2 | 2 | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| Slovakia | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 |
| Slovenia | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Spain | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 |
| Sweden | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
| Switzerland | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 |
| Turkey | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 |
| Ukraine | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 2 |
| United Kingdom | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 |
| USSR, Former | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| Yugoslavia, Former | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Now, let’s create a vector to check which years have complete records:
apply(t, 2, function(x) all(x!=0, na.rm=T))
## 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
## 2017 2018 2019
## FALSE FALSE FALSE
The only years with complete records are 2011 and 2012, so any time comparison between the aggregate country population is meaningless.
Here is a list of years with the respective number of countries with available, sorted from the one with least data to the one with more data:
sort(apply(t, 2, function(x) sum(x, na.rm=T)/2))
## 2019 2018 1970 1965 1966 1967 1968 1969 1971 1972 1973 1974 1975 1976 1977 1978
## 12 23 25 26 26 26 26 26 26 26 26 26 26 26 26 26
## 1979 1980 1981 1982 1983 1984 1990 2017 1985 1986 1987 1988 1989 2016 1991 2015
## 26 26 27 27 27 27 27 27 28 28 28 28 28 31 35 35
## 1992 1993 1994 2002 2003 2004 2006 2007 1995 1996 1997 1998 1999 2000 2001 2005
## 36 36 36 36 36 36 36 36 37 37 37 37 37 37 37 37
## 2008 2009 2013 2014 2010 2011 2012
## 37 38 38 38 39 40 40
The final cleaning step will be to delete all the 202 rows containing double-counted population data (i.e. regarding countries and years we have set to NA in the summary table).
w<-which(is.na(t), arr.ind = T)
u<-matrix("",nrow(w), ncol(w))
u[,1]<-row.names(t)[w[,1]]
u[,2]<-colnames(t)[w[,2]]
d<-integer()
for(i in 1:nrow(u)) {
d<-c(d, which(europe65_pop$Country==u[i,1] & europe65_pop$Year==u[i,2]))
}
europe65_pop<-europe65_pop[-d,]
Here you can see the most recent data ordered by increasing mean age.
dim(europe65_pop)
[1] 3414 17
print(xtable(head(arrange(europe65_pop, -Year, Mean_age),20)), type="html")
| Country | Year | Sex | Total_pop | Age0 | Natality_rate% | Age1-9 | Age10-19 | Age20-29 | Age30-39 | Age40-49 | Age50-59 | Age60-69 | Age70-79 | Age80+ | Mean_age | Age_unknown | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Turkey | 2019 | M | 41430563 | 607078 | 1.47 | 5974737 | 6548412 | 6585176 | 6533974 | 5706625 | 4497548 | 2996990 | 1421862 | 558161 | 33.28 | 0 |
| 2 | Turkey | 2019 | F | 41148888 | 576613 | 1.40 | 5666615 | 6202816 | 6322318 | 6394569 | 5622215 | 4471970 | 3170765 | 1800481 | 920526 | 34.67 | 0 |
| 3 | Russian Federation | 2019 | M | 68109748 | 791898 | 1.16 | 8459941 | 7669504 | 8589124 | 12250101 | 9822145 | 8907586 | 7381408 | 2837181 | 1400860 | 37.47 | 0 |
| 4 | Iceland | 2019 | M | 184894 | 2256 | 1.22 | 20678 | 23157 | 29411 | 28221 | 24152 | 22186 | 18597 | 10912 | 5324 | 37.77 | 0 |
| 5 | Iceland | 2019 | F | 175679 | 2091 | 1.19 | 19697 | 22238 | 26500 | 24335 | 22136 | 21774 | 18299 | 11392 | 7217 | 38.84 | 0 |
| 6 | Ukraine | 2019 | M | 19399356 | 165710 | 0.85 | 2023742 | 2078170 | 2543279 | 3492509 | 2909622 | 2624355 | 2103252 | 954146 | 504571 | 38.95 | 0 |
| 7 | Lithuania | 2019 | M | 1299973 | 14214 | 1.09 | 135235 | 135700 | 178337 | 184899 | 183627 | 197155 | 145690 | 81305 | 43811 | 40.16 | 0 |
| 8 | Hungary | 2019 | M | 4678311 | 47666 | 1.02 | 427972 | 504927 | 610185 | 656429 | 799937 | 596661 | 576337 | 329500 | 128697 | 40.69 | 0 |
| 9 | Czech Republic | 2019 | M | 5256864 | 57824 | 1.10 | 524092 | 533052 | 591234 | 773385 | 895629 | 672166 | 637748 | 424376 | 147358 | 41.11 | 0 |
| 10 | Switzerland | 2019 | M | 4252998 | 43701 | 1.03 | 403250 | 433922 | 536466 | 617201 | 604108 | 649077 | 461946 | 332329 | 170998 | 41.49 | 0 |
| 11 | Austria | 2019 | M | 4367291 | 42855 | 0.98 | 398856 | 442300 | 577795 | 613181 | 596487 | 696011 | 481896 | 348741 | 169169 | 41.69 | 0 |
| 12 | Slovenia | 2019 | M | 1015910 | 10115 | 1.00 | 98446 | 99363 | 103230 | 143464 | 154759 | 151369 | 138396 | 78856 | 37912 | 42.46 | 0 |
| 13 | Russian Federation | 2019 | F | 78654907 | 745610 | 0.95 | 8005474 | 7321603 | 8236976 | 12294569 | 10613632 | 10652288 | 10944000 | 5716065 | 4124690 | 42.63 | 0 |
| 14 | Germany | 2019 | M | 41002158 | 399821 | 0.98 | 3521593 | 3965564 | 5081714 | 5475392 | 5185525 | 6761029 | 5039670 | 3477404 | 2094446 | 43.25 | 0 |
| 15 | Switzerland | 2019 | F | 4322295 | 41633 | 0.96 | 382032 | 408793 | 512577 | 604986 | 597272 | 638281 | 477797 | 381258 | 277666 | 43.50 | 0 |
| 16 | San Marino | 2019 | M | 16520 | 106 | 0.64 | 1415 | 1787 | 1631 | 1831 | 2716 | 2876 | 1947 | 1380 | 831 | 43.72 | 0 |
| 17 | Czech Republic | 2019 | F | 5412460 | 55139 | 1.02 | 498528 | 505357 | 559353 | 724807 | 847494 | 657350 | 706658 | 568120 | 289654 | 43.92 | 0 |
| 18 | Austria | 2019 | F | 4510346 | 40798 | 0.90 | 375371 | 417640 | 547703 | 597552 | 600473 | 694286 | 520342 | 427596 | 288585 | 44.16 | 0 |
| 19 | Ukraine | 2019 | F | 22458816 | 155032 | 0.69 | 1902484 | 1960901 | 2411803 | 3427957 | 3095660 | 3164294 | 3096672 | 1918002 | 1326011 | 44.26 | 0 |
| 20 | Hungary | 2019 | F | 5092838 | 44981 | 0.88 | 405475 | 477878 | 571411 | 626302 | 782024 | 630078 | 727297 | 520177 | 307215 | 44.86 | 0 |
The final dataset was converted in a longer format and then used to create a Tableau dashboard showing the main insights and trends.
We also set up a small dataframe (following table) that will be useful for our analysis in Tableau, containing for each country the oldest and the latest summarized data, including the percentage of females:
europe65_pop_long<-pivot_longer(europe65_pop[,-4], c(4,6:14, 16), names_to = "age", values_to = "Total_pop")
percF<-europe65_pop_long %>% group_by(Country, Year,Sex) %>% summarise(tot_by_sex=sum(Total_pop)) %>% summarize(percF=tot_by_sex[1]/sum(tot_by_sex))
europe65_pop_long<- inner_join(europe65_pop_long, percF)
old<-europe65_pop_long %>% group_by(Country) %>% filter(Year==min(Year)) %>%
summarise(Natality=mean(`Natality_rate%`), Mean_age=mean(Mean_age),
population=sum(Total_pop), year=mean(Year), percF=mean(percF), time="old")
latest<-europe65_pop_long %>% group_by(Country) %>% filter(Year==max(Year)) %>%
summarise(Natality=mean(`Natality_rate%`), Mean_age=mean(Mean_age),
population=sum(Total_pop), year=mean(Year), percF=mean(percF), time="recent")
variation<-rbind(old, latest)
variation<-variation %>% group_by(Country) %>% summarize(Natality=Natality, Mean_age=Mean_age,
population=population, year=year,
time=time, percF=percF, diff=max(year)-min(year))
write.csv(variation, "variation.csv")
print(xtable(variation), type="html")
| Country | Natality | Mean_age | population | year | time | percF | diff | |
|---|---|---|---|---|---|---|---|---|
| 1 | Albania | 2.62 | 27.33 | 2957500 | 1985.00 | old | 0.48 | 30.00 |
| 2 | Albania | 1.16 | 37.78 | 2889173 | 2015.00 | recent | 0.49 | 30.00 |
| 3 | Andorra | 0.75 | 40.61 | 85015 | 2010.00 | old | 0.48 | 8.00 |
| 4 | Andorra | 0.47 | 42.11 | 80253 | 2018.00 | recent | 0.49 | 8.00 |
| 5 | Austria | 1.78 | 36.35 | 7254800 | 1965.00 | old | 0.53 | 54.00 |
| 6 | Austria | 0.94 | 42.92 | 8877637 | 2019.00 | recent | 0.51 | 54.00 |
| 7 | Belarus | 1.29 | 35.39 | 10232800 | 1991.00 | old | 0.53 | 27.00 |
| 8 | Belarus | 1.05 | 40.31 | 9483499 | 2018.00 | recent | 0.53 | 27.00 |
| 9 | Belgium | 1.66 | 36.04 | 9448000 | 1965.00 | old | 0.51 | 51.00 |
| 10 | Belgium | 1.08 | 41.47 | 11352259 | 2016.00 | recent | 0.51 | 51.00 |
| 11 | Bosnia and Herzegovina | 1.41 | 32.10 | 4518400 | 1991.00 | old | 0.50 | 25.00 |
| 12 | Bosnia and Herzegovina | 0.94 | 40.08 | 3511372 | 2016.00 | recent | 0.51 | 25.00 |
| 13 | Bulgaria | 1.58 | 33.76 | 8201500 | 1965.00 | old | 0.50 | 53.00 |
| 14 | Bulgaria | 0.90 | 43.82 | 7025048 | 2018.00 | recent | 0.51 | 53.00 |
| 15 | Croatia | 1.14 | 37.22 | 4786000 | 1991.00 | old | 0.52 | 26.00 |
| 16 | Croatia | 0.90 | 43.15 | 4124531 | 2017.00 | recent | 0.52 | 26.00 |
| 17 | Czech Republic | 1.21 | 36.59 | 10317900 | 1992.00 | old | 0.51 | 27.00 |
| 18 | Czech Republic | 1.06 | 42.52 | 10669324 | 2019.00 | recent | 0.51 | 27.00 |
| 19 | Czechoslovakia, Former | 1.64 | 34.10 | 14158700 | 1965.00 | old | 0.51 | 26.00 |
| 20 | Czechoslovakia, Former | 1.32 | 35.51 | 15592000 | 1991.00 | recent | 0.51 | 26.00 |
| 21 | Denmark | 1.75 | 35.05 | 4758100 | 1965.00 | old | 0.50 | 53.00 |
| 22 | Denmark | 1.08 | 41.69 | 5788917 | 2018.00 | recent | 0.50 | 53.00 |
| 23 | Estonia | 1.32 | 36.14 | 1561314 | 1991.00 | old | 0.53 | 25.00 |
| 24 | Estonia | 1.07 | 41.92 | 1315776 | 2016.00 | recent | 0.53 | 25.00 |
| 25 | Finland | 1.70 | 32.01 | 4563700 | 1965.00 | old | 0.52 | 53.00 |
| 26 | Finland | 0.89 | 42.89 | 5515536 | 2018.00 | recent | 0.51 | 53.00 |
| 27 | France | 1.77 | 34.89 | 48757800 | 1965.00 | old | 0.51 | 49.00 |
| 28 | France | 1.18 | 41.05 | 64129491 | 2014.00 | recent | 0.52 | 49.00 |
| 29 | Germany | 1.11 | 39.37 | 79364400 | 1990.00 | old | 0.52 | 29.00 |
| 30 | Germany | 0.94 | 44.57 | 83092974 | 2019.00 | recent | 0.51 | 29.00 |
| 31 | Germany, Former Democratic Republic | 1.66 | 37.03 | 17019600 | 1965.00 | old | 0.54 | 24.00 |
| 32 | Germany, Former Democratic Republic | 1.25 | 37.25 | 16629800 | 1989.00 | recent | 0.52 | 24.00 |
| 33 | Germany, Former Federal Republic | 1.75 | 36.06 | 59011700 | 1965.00 | old | 0.52 | 24.00 |
| 34 | Germany, Former Federal Republic | 1.10 | 39.73 | 62062600 | 1989.00 | recent | 0.52 | 24.00 |
| 35 | Greece | 1.79 | 33.04 | 8550200 | 1965.00 | old | 0.51 | 53.00 |
| 36 | Greece | 0.82 | 44.28 | 10732898 | 2018.00 | recent | 0.51 | 53.00 |
| 37 | Hungary | 1.27 | 35.13 | 10147900 | 1965.00 | old | 0.52 | 54.00 |
| 38 | Hungary | 0.95 | 42.77 | 9771149 | 2019.00 | recent | 0.52 | 54.00 |
| 39 | Iceland | 2.45 | 29.54 | 192200 | 1965.00 | old | 0.49 | 54.00 |
| 40 | Iceland | 1.21 | 38.31 | 360573 | 2019.00 | recent | 0.49 | 54.00 |
| 41 | Ireland | 2.16 | 32.66 | 2875800 | 1965.00 | old | 0.50 | 50.00 |
| 42 | Ireland | 1.37 | 37.19 | 4687787 | 2015.00 | recent | 0.51 | 50.00 |
| 43 | Italy | 1.90 | 34.09 | 51987200 | 1965.00 | old | 0.51 | 52.00 |
| 44 | Italy | 0.76 | 45.08 | 60536721 | 2017.00 | recent | 0.51 | 52.00 |
| 45 | Latvia | 1.35 | 36.52 | 2662500 | 1991.00 | old | 0.53 | 27.00 |
| 46 | Latvia | 1.04 | 42.81 | 1927185 | 2018.00 | recent | 0.54 | 27.00 |
| 47 | Lithuania | 1.52 | 35.28 | 3704146 | 1991.00 | old | 0.53 | 28.00 |
| 48 | Lithuania | 1.00 | 43.05 | 2794137 | 2019.00 | recent | 0.53 | 28.00 |
| 49 | Luxembourg | 1.50 | 36.34 | 333900 | 1965.00 | old | 0.50 | 53.00 |
| 50 | Luxembourg | 1.03 | 40.02 | 607938 | 2018.00 | recent | 0.50 | 53.00 |
| 51 | Malta | 1.82 | 29.54 | 318800 | 1965.00 | old | 0.52 | 52.00 |
| 52 | Malta | 0.97 | 41.89 | 468056 | 2017.00 | recent | 0.50 | 52.00 |
| 53 | Netherlands | 1.99 | 32.25 | 12294600 | 1965.00 | old | 0.50 | 53.00 |
| 54 | Netherlands | 0.98 | 42.27 | 17316419 | 2018.00 | recent | 0.50 | 53.00 |
| 55 | North Macedonia | 1.67 | 32.39 | 1915500 | 1991.00 | old | 0.50 | 23.00 |
| 56 | North Macedonia | 1.12 | 38.34 | 2067471 | 2014.00 | recent | 0.50 | 23.00 |
| 57 | Norway | 1.75 | 35.39 | 3722900 | 1965.00 | old | 0.50 | 51.00 |
| 58 | Norway | 1.14 | 39.88 | 5236138 | 2016.00 | recent | 0.50 | 51.00 |
| 59 | Poland | 1.75 | 30.52 | 31495900 | 1965.00 | old | 0.51 | 53.00 |
| 60 | Poland | 0.98 | 41.83 | 37948140 | 2018.00 | recent | 0.52 | 53.00 |
| 61 | Portugal | 2.17 | 31.48 | 9116200 | 1965.00 | old | 0.52 | 53.00 |
| 62 | Portugal | 0.84 | 44.33 | 10283810 | 2018.00 | recent | 0.53 | 53.00 |
| 63 | Romania | 1.45 | 32.41 | 19027400 | 1965.00 | old | 0.51 | 53.00 |
| 64 | Romania | 1.03 | 42.06 | 19476713 | 2018.00 | recent | 0.51 | 53.00 |
| 65 | Russian Federation | 1.27 | 35.30 | 148244900 | 1991.00 | old | 0.53 | 28.00 |
| 66 | Russian Federation | 1.05 | 40.05 | 146764655 | 2019.00 | recent | 0.54 | 28.00 |
| 67 | San Marino | 0.97 | 39.50 | 25058 | 1995.00 | old | 0.51 | 24.00 |
| 68 | San Marino | 0.64 | 44.63 | 33477 | 2019.00 | recent | 0.51 | 24.00 |
| 69 | Serbia | 0.98 | 39.47 | 7567745 | 1998.00 | old | 0.51 | 19.00 |
| 70 | Serbia | 0.92 | 43.11 | 7020858 | 2017.00 | recent | 0.51 | 19.00 |
| 71 | Serbia and Montenegro, Former | 1.36 | 35.63 | 10448018 | 1992.00 | old | 0.50 | 5.00 |
| 72 | Serbia and Montenegro, Former | 1.27 | 36.50 | 10600067 | 1997.00 | recent | 0.50 | 5.00 |
| 73 | Slovakia | 1.46 | 34.56 | 5306539 | 1992.00 | old | 0.51 | 22.00 |
| 74 | Slovakia | 1.02 | 39.81 | 5418636 | 2014.00 | recent | 0.51 | 22.00 |
| 75 | Slovenia | 1.07 | 36.25 | 1999100 | 1991.00 | old | 0.51 | 28.00 |
| 76 | Slovenia | 0.95 | 43.87 | 2055166 | 2019.00 | recent | 0.51 | 28.00 |
| 77 | Spain | 2.04 | 32.41 | 31948100 | 1965.00 | old | 0.52 | 52.00 |
| 78 | Spain | 0.85 | 43.15 | 46532870 | 2017.00 | recent | 0.51 | 52.00 |
| 79 | Sweden | 1.57 | 36.97 | 7733900 | 1965.00 | old | 0.50 | 53.00 |
| 80 | Sweden | 1.14 | 41.31 | 10175201 | 2018.00 | recent | 0.50 | 53.00 |
| 81 | Switzerland | 1.88 | 34.24 | 5857300 | 1965.00 | old | 0.51 | 54.00 |
| 82 | Switzerland | 0.99 | 42.50 | 8575293 | 2019.00 | recent | 0.50 | 54.00 |
| 83 | Turkey | 1.64 | 31.29 | 72039196 | 2009.00 | old | 0.50 | 10.00 |
| 84 | Turkey | 1.44 | 33.98 | 82579451 | 2019.00 | recent | 0.50 | 10.00 |
| 85 | Ukraine | 1.25 | 36.75 | 51745600 | 1991.00 | old | 0.54 | 28.00 |
| 86 | Ukraine | 0.77 | 41.61 | 41858172 | 2019.00 | recent | 0.54 | 28.00 |
| 87 | United Kingdom | 1.81 | 36.00 | 54441700 | 1965.00 | old | 0.51 | 51.00 |
| 88 | United Kingdom | 1.19 | 40.55 | 65648054 | 2016.00 | recent | 0.51 | 51.00 |
| 89 | USSR, Former | 1.82 | 32.95 | 267110600 | 1981.00 | old | 0.53 | 9.00 |
| 90 | USSR, Former | 1.70 | 33.44 | 288265800 | 1990.00 | recent | 0.53 | 9.00 |
| 91 | Yugoslavia, Former | 1.96 | 30.45 | 19484700 | 1965.00 | old | 0.51 | 25.00 |
| 92 | Yugoslavia, Former | 1.38 | 34.73 | 23817900 | 1990.00 | recent | 0.51 | 25.00 |
Finally, average variation rates for mean age and natality were calculated and added to the dataframe:
slope_age<-variation %>% group_by(Country) %>% arrange(year) %>% summarize(slope_age=(Mean_age[2]-Mean_age[1])/mean(diff))
slope_natality<-variation %>% group_by(Country) %>% arrange(year) %>% summarize(slope_natality=(Natality[2]-Natality[1])/mean(diff))
europe65_pop_long<-europe65_pop_long %>% inner_join(slope_age) %>% inner_join(slope_natality)
write.csv(europe65_pop_long, "europe65_population_long.csv")
sessionInfo()
## R version 4.0.2 (2020-06-22)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19042)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] xtable_1.8-4 forcats_0.5.1 stringr_1.4.0 dplyr_1.0.7
## [5] purrr_0.3.4 readr_1.4.0 tidyr_1.1.4 tibble_3.1.0
## [9] ggplot2_3.3.3 tidyverse_1.3.1
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.1.0 xfun_0.23 bslib_0.2.4 haven_2.3.1
## [5] colorspace_2.0-0 vctrs_0.3.8 generics_0.1.0 htmltools_0.5.1.1
## [9] yaml_2.2.1 utf8_1.2.1 rlang_0.4.12 jquerylib_0.1.3
## [13] pillar_1.6.4 glue_1.4.2 withr_2.4.1 DBI_1.1.1
## [17] dbplyr_2.1.1 modelr_0.1.8 readxl_1.3.1 lifecycle_1.0.0
## [21] munsell_0.5.0 gtable_0.3.0 cellranger_1.1.0 rvest_1.0.0
## [25] evaluate_0.14 knitr_1.31 fansi_0.4.2 broom_0.7.11
## [29] Rcpp_1.0.6 backports_1.2.1 scales_1.1.1 jsonlite_1.7.2
## [33] fs_1.5.0 hms_1.0.0 digest_0.6.29 stringi_1.5.3
## [37] grid_4.0.2 cli_3.1.0 tools_4.0.2 magrittr_2.0.1
## [41] sass_0.3.1 crayon_1.4.2 pkgconfig_2.0.3 ellipsis_0.3.2
## [45] xml2_1.3.2 reprex_2.0.1 lubridate_1.8.0 rstudioapi_0.13
## [49] assertthat_0.2.1 rmarkdown_2.7 httr_1.4.2 R6_2.5.0
## [53] compiler_4.0.2
Data from Cyprus were discarded because incomplete
Data from Liechtenstein, Vatican City, Monaco and Moldova were not present in the original dataset