Project For Design of Experments

For our Design of Experiment Project, we created three different parts which looked at three different design of experiments designs. The three different experiment designs that we preformed were a completely randomized design , a factorial design , and \(2^4\) factorial design.

Completely Randomized Design

## 
##      Balanced one-way analysis of variance power calculation 
## 
##               k = 3
##               n = 12.50714
##               f = 0.5
##       sig.level = 0.05
##           power = 0.75
## 
## NOTE: n is number in each group

For this experiment we required 53 samples for each of the 3 different treatment levels. Which resulted in taking 159 total samples.

Layout of Complete Randomized designs

In this experiment, the 3 different treatments are represented by colors yellow, green and blue. the color blue represents the red ball, the color yellow represents the yellow ball and color green represents the green ball that we used in the actual experiment.

Completely Randomized Design
Plot Replication Color of Ball
101 1 blue
102 2 blue
103 3 blue
104 1 yellow
105 1 green
106 2 green
107 4 blue
108 2 yellow
109 3 yellow
110 3 green
111 5 blue
112 4 green
113 5 green
114 6 green
115 7 green
116 8 green
117 6 blue
118 9 green
119 7 blue
120 4 yellow
121 10 green
122 8 blue
123 5 yellow
124 11 green
125 12 green
126 13 green
127 14 green
128 15 green
129 9 blue
130 6 yellow
131 7 yellow
132 10 blue
133 11 blue
134 16 green
135 12 blue
136 8 yellow
137 17 green
138 9 yellow
139 13 blue
140 18 green
141 10 yellow
142 14 blue
143 11 yellow
144 12 yellow
145 19 green
146 20 green
147 13 yellow
148 14 yellow
149 15 blue
150 16 blue
151 17 blue
152 15 yellow
153 21 green
154 18 blue
155 19 blue
156 20 blue
157 16 yellow
158 22 green
159 21 blue
160 17 yellow
161 18 yellow
162 23 green
163 22 blue
164 19 yellow
165 20 yellow
166 24 green
167 23 blue
168 24 blue
169 25 blue
170 25 green
171 26 green
172 26 blue
173 27 blue
174 28 blue
175 27 green
176 28 green
177 21 yellow
178 29 blue
179 30 blue
180 29 green
181 22 yellow
182 23 yellow
183 30 green
184 24 yellow
185 25 yellow
186 26 yellow
187 31 green
188 27 yellow
189 32 green
190 31 blue
191 28 yellow
192 29 yellow
193 30 yellow
194 33 green
195 34 green
196 31 yellow
197 32 blue
198 35 green
199 32 yellow
200 33 blue
201 33 yellow
202 36 green
203 34 yellow
204 37 green
205 34 blue
206 38 green
207 35 yellow
208 39 green
209 40 green
210 35 blue
211 36 yellow
212 37 yellow
213 38 yellow
214 41 green
215 36 blue
216 37 blue
217 42 green
218 38 blue
219 39 yellow
220 39 blue
221 43 green
222 40 blue
223 40 yellow
224 41 blue
225 44 green
226 45 green
227 42 blue
228 46 green
229 43 blue
230 44 blue
231 41 yellow
232 47 green
233 45 blue
234 46 blue
235 48 green
236 47 blue
237 49 green
238 42 yellow
239 43 yellow
240 44 yellow
241 48 blue
242 50 green
243 49 blue
244 45 yellow
245 46 yellow
246 47 yellow
247 51 green
248 48 yellow
249 49 yellow
250 50 yellow
251 52 green
252 53 green
253 51 yellow
254 52 yellow
255 50 blue
256 51 blue
257 52 blue
258 53 blue
259 53 yellow

Above is a layout of how we collected the samples for each treatment observation. We saved it in a csv file and used github to read the data into R for further analysis.

Hypothesis test

Ho: \(\mu_1 = \mu_2 = \mu_3\) - Null Hypothesis

Ha: At least 1 differs - Alternative Hypothesis

Boxplot of the experiment

The boxplot reveals that the variation between the red ball, green ball and yellow ball are equal.

Testing normality

The data looks normally distributed with little presence of outliers at the high extreme values of the distance The outliers might be due to excessive force that was applied to the launching process, the ball landing twice , and a misreading of landing position.

Analysis of variance

##              Df Sum Sq Mean Sq F value Pr(>F)    
## treatments    2  36210   18105   46.77 <2e-16 ***
## Residuals   156  60392     387                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the result fo is 0.783 with a corresponding p-value of 0.465 is significantly greater than \(\alpha\) = 0.05. Therefore we fail to reject Ho that the means are equal, and conclude that none of the means are different.

Conclusion

There seems to be nothing unusual about the plots except for the few outliers as the spread of the data looks constant across all treatment balls

Facotorial Design

Null and Alternative Hypotheses

Ho: \(\alpha_{i} = 0\) - Null Hypothesis

Ha: \(\alpha_{i} \ne 0\) - Alternative Hypothesis

Ho: \(\beta_{i} = 0\) - Null Hypothesis

Ha: \(\beta_{i} \ne 0\) - Alternative Hypothesis

Ho: \(\alpha \beta_{ij} = 0\) - Null Hypothesis

Ha: \(\alpha \beta_{ij} \ne 0\) - Alternative Hypothesis

Level of Significance

\(\alpha\) = 0.05

Model Equation

\(y_{ijk} = \mu + \alpha_{i} + \beta_j + \alpha \beta_{ij} + \epsilon_{ijk}\)

Proposed Layout with a Randomized Run Order

##    plots r A B
## 1    101 1 1 2
## 2    102 2 1 2
## 3    103 1 2 3
## 4    104 1 2 1
## 5    105 1 1 1
## 6    106 2 2 1
## 7    107 1 1 3
## 8    108 1 2 2
## 9    109 3 2 1
## 10   110 2 1 3
## 11   111 3 1 2
## 12   112 2 2 3
## 13   113 2 2 2
## 14   114 3 2 2
## 15   115 3 2 3
## 16   116 2 1 1
## 17   117 3 1 1
## 18   118 3 1 3

In the layout, factor A(Pin.Location) represents Pin Elevation and it has levels 1 and 2 for settings 1 and 3 respectively. factor B(Angle) represents the Release Angle with levels 1,2 and 3 for corresponding angles 110, 140 and 170 degrees. Number of replications is 3 which gives a total of 18 observations in the experiment

Collected Data on Proposed Layout

##    Replication Pin.Location Angle Distance...Inches.
## 1            1            1   140                 25
## 2            2            1   140                 35
## 3            1            3   170                 55
## 4            1            3   110                 32
## 5            1            1   110                 24
## 6            2            3   110                 23
## 7            1            1   170                 48
## 8            1            3   140                 36
## 9            3            3   110                 24
## 10           2            1   170                 56
## 11           3            1   140                 37
## 12           2            3   170                 61
## 13           2            3   140                 52
## 14           3            3   140                 48
## 15           3            3   170                 72
## 16           2            1   110                 30
## 17           3            1   110                 26
## 18           3            1   170                 33

Testing the Hypotheses

## Analysis of Variance Table
## 
## Response: BungeeEx$Distance...Inches.
##                                      Df  Sum Sq Mean Sq F value    Pr(>F)    
## BungeeEx$Pin.Location                 1  440.06  440.06  3.5616 0.1997555    
## BungeeEx$Angle                        2 2305.33 1152.67 19.4817 0.0001704 ***
## BungeeEx$Pin.Location:BungeeEx$Angle  2  247.11  123.56  2.0883 0.1666387    
## Residual                             12  710.00   59.17                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Firstly, we tested the interaction hypothesis that the pin location and the angle had an effect on the shooting distance. If we failed to reject the interaction null hypothesis, we tested the main effects the pin location and angle effects on the distance.

From the interaction result, interaction effects has fo value is 2.0883 with a corresponding p-value of 0.1666387 >0.05. Since 0.1666387 >0.05, we failed to reject the interaction null hypothesis that the interaction between pin location and the angle have an effect on the shooting distance.

The next section we removed the interaction effect and tested the main effects.

Model Equation

\(y_{ijk} = \mu + \alpha_{i} + \beta_j + \epsilon_{ijk}\)

model<-aov(BungeeEx$Distance...Inches.~BungeeEx$Pin.Location+BungeeEx$Angle)
gad(model)
## Analysis of Variance Table
## 
## Response: BungeeEx$Distance...Inches.
##                       Df  Sum Sq Mean Sq F value   Pr(>F)    
## BungeeEx$Pin.Location  1  440.06  440.06  6.4368 0.023703 *  
## BungeeEx$Angle         2 2305.33 1152.67 16.8605 0.000187 ***
## Residual              14  957.11   68.37                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the pin location result fo value is 6.4368 which corresponds to a p-value of 0.023703. The angle result fo value is 16.8605 which corresponds to a p-value of 0.000187

We concluded that the pin location and angle have an effect on the shooting distance of the ball

Pin.Location: 0.023703 <0.05

Angle: 0.000187 <0.05

ANOVA Test Plots and Interaction Plot

Conclusion

There seems to be nothing unusaual about the plots. the data seems to follow a straight line on the normal probability plot with 2 extreme outliers on the tail ends of the data distribution. Other than that, everything is fairly normal.

We concluded that the pin location and angle have an effect on the shooting distance of the ball.

2^4 Factorial Design Experiment

Data Collection Layout

For \(2^4\) factorial design, we used design.ab to generate one replication of a run order for our \(2^4\) factorial design

##    plots r A B C D
## 1    101 1 1 1 2 1
## 2    102 1 1 1 2 2
## 3    103 1 1 2 1 2
## 4    104 1 2 2 2 1
## 5    105 1 2 1 2 1
## 6    106 1 2 2 2 2
## 7    107 1 1 2 2 2
## 8    108 1 1 2 2 1
## 9    109 1 1 2 1 1
## 10   110 1 2 2 1 2
## 11   111 1 2 1 1 2
## 12   112 1 2 1 2 2
## 13   113 1 2 2 1 1
## 14   114 1 1 1 1 2
## 15   115 1 1 1 1 1
## 16   116 1 2 1 1 1

Experiment Data and Data Frame

For each of our 4 factors, we had two levels for each factors. They were classified as -1(low) and a +1(high). The different factor levels,and the assigned variables.

Factors and Low and High Levels
Factor Low Level(-1) High Level(+1)
A Pin Location Postion 1 Postion 3
B Bungee Position Position 2 Position 3
C Release Angle 140 degrees 170 degrees
D Ball Type Yellow Red

Here is our data that we collected from the experiment.

##    Pin_Elevation Bungee_Position Release_Angle Ball_Type response
## 1             -1              -1             1        -1       36
## 2             -1              -1             1         1       35
## 3             -1               1            -1         1       34
## 4              1               1             1        -1       60
## 5              1              -1             1        -1       68
## 6              1               1             1         1       60
## 7             -1               1             1         1       37
## 8             -1               1             1        -1       38
## 9             -1               1            -1        -1       33
## 10             1               1            -1         1       41
## 11             1              -1            -1         1       42
## 12             1              -1             1         1       52
## 13             1               1            -1        -1       51
## 14            -1              -1            -1         1       34
## 15            -1              -1            -1        -1       26
## 16             1              -1            -1        -1       47

Null and Alternative Hypothesis Testing

Here are the Hypothesis tests that we used in the experiment. We started at the highest order hypothesis test, which was \(\alpha_i\)*\(\beta_j\) hypothesis test.

Ho: \(\alpha_{i} = 0\) - Null Hypothesis

Ha: \(\alpha_{i} \ne 0\) - Alternative Hypothesis

Ho: \(\beta_{j} = 0\) - Null Hypothesis

Ha: \(\beta_{j} \ne 0\) - Alternative Hypothesis

Ho: \(\alpha \beta_{ij} = 0\) - Null Hypothesis

Ha: \(\alpha \beta_{ij} \ne 0\) - Alternative Hypothesis

Half Normal Plot

## 
## Significant effects (alpha=0.05, Lenth method):
## [1] Pin_Elevation Release_Angle

From the plot, factors Pin Elevation and Release Angle are significant model terms.

Model Equation

\(y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} +\epsilon_{i}\)

\(Distance = {43.37} - 9.25x_{i1} + 4.875x_{i2}\)

ANOVA Model

After running the half normal plot , we concluded that Release Angle and Pin Elevation were significant factors. We run the ANOVA model with those factors and generated the following table.

##               Df Sum Sq Mean Sq F value   Pr(>F)    
## Pin_Elevation  1 1369.0  1369.0   51.96 6.86e-06 ***
## Release_Angle  1  380.2   380.2   14.43  0.00221 ** 
## Residuals     13  342.5    26.3                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\(y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} +\epsilon_{i}\)

\(Distance = {29.25} - 18.50x_{i1} + 9.75x_{i2}\)

These are model equations wth their respective coeffents.

Conclusion

From the result, values of “Prob > F” less than 0.0500 indicate model terms are significant. In this case Pin Elevation and Release Angle are significant model terms.

Code

### Part 1

library(pwr)
pwr.anova.test(k=3,n=NULL,f=sqrt((.5)^2),sig.level=0.05,power=.75)
library(agricolae)

treatments<-c("green","yellow","blue")
design<-design.crd(trt=treatments,r=13,seed = 12345)
design$book

library(knitr)

F_levels <- cbind(z$plots,z$r,z$treatments) 
kable(F_levels,caption = "Completely Randomized Design ", col.names = c("Plot","Replication","Color of Ball"))

z <- read.csv("https://raw.githubusercontent.com/Rusty1299/Projects/main/Part%202%20data%20redoe.csv")
z$treatments <- as.factor(z$treatments)

boxplot(z$distance~z$treatments, col= c("Red","Green","Yellow"), main = "Distance of each ball", xlab = "Treatment balls", ylab = "Distance in inches")
qqnorm(z$distance)
a <- aov(data = z , distance~treatments)
summary(a)

## Part 2
trts<-c(2,3)
design<-design.ab(trt=trts, r=3, design="crd",seed=878900)
design$book

BungeeEx<-read.csv("https://raw.githubusercontent.com/Rusty1299/Projects/main/Factorial%20Design%20Project.csv")
library(GAD)
BungeeEx$Pin.Location<-as.fixed(BungeeEx$Pin.Location)
BungeeEx$Angle<-as.random(BungeeEx$Angle)

model<-aov(BungeeEx$Distance...Inches.~BungeeEx$Pin.Location*BungeeEx$Angle)
gad(model)

model<-aov(BungeeEx$Distance...Inches.~BungeeEx$Pin.Location+BungeeEx$Angle)
gad(model)

interaction.plot(BungeeEx$Angle,BungeeEx$Pin.Location,BungeeEx$Distance...Inches., type = "l", col = 5:7 ,main ="Interraction Plot", ylab = "Distance", xlab = "Release Angles", trace.label = "Pin Elevation", lwd = 3, lty = 1)

plot(model)
boxplot(BungeeEx$Distance...Inches.~BungeeEx$Angle, col = 6:9:3, main = "Boxplot for Relaease Angle", xlab = "Release Angle", ylab = "Distance")
boxplot(BungeeEx$Distance...Inches.~BungeeEx$Pin.Location, col = 2:4, main = "Boxplot for Pin Elevation", xlab = "Pin Elevation", ylab = "Distance")

## Part 3

library(agricolae)
#?design.ab
trts<-c(2,2,2,2)
design<-design.ab(trt=trts, r=1, design="crd",seed=878900)

design$book

library(knitr)
A <- c("Pin Location","Postion 1","Postion 3")
B <-c("Bungee Position" ,"Position 2",  "Position 3")
C<-c("Release Angle",   "140 degrees",  "170 degrees")
D<-c("Ball Type",   "Yellow",   "Red")
F_levels <- rbind(A,B,C,D)
colnames(F_levels)<- c("Factor","Low Level(-1)","High Level(+1)")
kable(F_levels,caption = "Factors and Low and High Levels")

library(DoE.base)
Pin_Elevation<-c(-1,-1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,-1,1)
Bungee_Position<-c(-1,-1,1,1,-1,1,1,1,1,1,-1,-1,1,-1,-1,-1)
Release_Angle<-c(1,1,-1,1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1)
Ball_Type<-c(-1,1,1,-1,-1,1,1,-1,-1,1,1,1,-1,1,-1,-1)
response<-c(36,35,34,60,68,60,37,38,33,41,42,52,51,34,26,47)
dat<-data.frame(Pin_Elevation,Bungee_Position,Release_Angle,Ball_Type,response)
dat

model<-lm(response~Pin_Elevation*Bungee_Position*Release_Angle*Ball_Type, data = dat)
#summary(model)
coef(model)

halfnormal(model)
Pin_Elevation<-as.factor(Pin_Elevation)
Bungee_Position<-as.factor(Bungee_Position)
Release_Angle<-as.factor(Release_Angle)
Ball_Type<-as.factor(Ball_Type)

model1<-aov(response~Pin_Elevation+Release_Angle)
summary(model1)
coef(model1)