Flight Trials Winter 2020 Dataset was conducted from 2/17/2020 - 3/10/2020. Soapberry bugs were flight tested twice for multiple hours in the flight mill and observed from 8 AM to (5-8 PM) each day. No morphological covariates were included for thorax width or body length (just looked at sex, host, and sym_dist). For wing length and beak length, sex, host, sym_dist, and thorax width were all included.
Comparing Models:
source_path = paste0(dir,"/Rsrc/")
script_names = c("center_flight_data.R", # 1 function: center_data()
"clean_flight_data.R", # 1 function: clean_flight_data()
"compare_models.R",
"get_Akaike_weights.R",
"regression_output.R")
for (script in script_names) {
path = paste0(source_path, script)
source(path)
}
output_col = FALSE # Recommend changing this to TRUE if working in Base R or RStudio, and FALSE if generating an
data <- read_flight_data("data/all_flight_data-Winter2020.csv")
## Warning: `funs()` was deprecated in dplyr 0.8.0.
## Please use a list of either functions or lambdas:
##
## # Simple named list:
## list(mean = mean, median = median)
##
## # Auto named with `tibble::lst()`:
## tibble::lst(mean, median)
##
## # Using lambdas
## list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
data_all <- data[[1]]
data_tested <- data[[2]]
data_tested <- data_tested[data_tested$trial_type=="T1",] # only the unique values pulled for those tested
data_tested <- center_data(data_tested)
data_all <- data_all %>%
filter(trial_type != "T2")
data_all <- center_data(data_all)
Experimental Set-Up Effects
## lm thorax_c ~ days_from_start_c data_tested
## AIC: 158.4207
## days_from_start_c coeff: -0.0020563 Pr(>|t|): 0.646594
## lm thorax_c ~ min_from_IncStart_c data_tested
## AIC: 158.4888
## min_from_IncStart_c coeff: 4.53e-05 Pr(>|t|): 0.7056367
Thorax
data<-data.frame(R=data_tested$thorax_c,
A=data_tested$host_c,
B=data_tested$sex_c,
C=data_tested$sym_dist)
model_script = paste0(source_path,"generic models-gaussian glmer 3-FF.R")
model_comparisonsAIC(model_script)
## [,1] [,2] [,3] [,4] [,5]
## AICs -44.08733 -43.42215 -42.52471 -41.90339 -41.5654
## models 15 11 17 14 7
## probs 0.3260686 0.2338118 0.1492762 0.1094134 0.09240135
##
## m15 R ~ A * B + B * C
## m11 R ~ A * B + C
## m17 R ~ A * B + A * C + B * C
## m14 R ~ A * B + A * C
## m7 R ~ A + B + C
anova(m7, m11, test="Chisq") # Adding A*B marginally improves fit
## Analysis of Variance Table
##
## Model 1: R ~ A + B + C
## Model 2: R ~ A * B + C
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 328 16.642
## 2 327 16.450 1 0.19221 0.05062 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(m7, m12, test="Chisq") # Adding A*C does not improve fit
## Analysis of Variance Table
##
## Model 1: R ~ A + B + C
## Model 2: R ~ A * C + B
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 328 16.642
## 2 327 16.625 1 0.016788 0.5655
best.fit.thorax <- lm(thorax_c ~ host_c * sex_c + sym_dist, data=data_tested)
tidy_regression(best.fit.thorax, is_color=output_col)
## lm thorax_c ~ host_c * sex_c + sym_dist data_tested
## AIC: -43.42215
## (Intercept) coeff: -0.0360092 Pr(>|t|): 0.1128104
## host_c coeff: -0.0828395 Pr(>|t|): 1.427492e-05 *
## sex_c coeff: 0.2261295 Pr(>|t|): 7.939274e-41 *
## sym_dist coeff: 0.0741271 Pr(>|t|): 3.528127e-06 *
## host_c:sex_c coeff: 0.0285613 Pr(>|t|): 0.05147139 .
negative effect of host plant where if from GRT then smaller thorax length
strong positive effect of sex where if Female then larger thorax length
positive effect of sym_dist where if farther from Homestead, then longer thorax length
positive marginal effect of host*sex where if Female and from GRT then larger body
Body Length
data<-data.frame(R=data_tested$body_c,
A=data_tested$host_c,
B=data_tested$sex_c,
C=data_tested$sym_dist)
model_script = paste0(source_path,"generic models-gaussian glmer 3-FF.R")
model_comparisonsAIC(model_script)
## [,1] [,2] [,3] [,4]
## AICs 808.1386 808.4805 810.1276 810.4753
## models 15 11 17 14
## probs 0.3665623 0.3089642 0.1355967 0.1139541
##
## m15 R ~ A * B + B * C
## m11 R ~ A * B + C
## m17 R ~ A * B + A * C + B * C
## m14 R ~ A * B + A * C
anova(m11, m15, test="Chisq") # Adding B*C does not improve fit
## Analysis of Variance Table
##
## Model 1: R ~ A * B + C
## Model 2: R ~ A * B + B * C
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 327 214.07
## 2 326 212.56 1 1.5047 0.1287
best.fit.body <- lm(body_c ~ host_c * sex_c + sym_dist, data=data_tested)
tidy_regression(best.fit.body, is_color=output_col)
## lm body_c ~ host_c * sex_c + sym_dist data_tested
## AIC: 808.4805
## (Intercept) coeff: -0.0534409 Pr(>|t|): 0.5134984
## host_c coeff: -0.1850452 Pr(>|t|): 0.006706994 *
## sex_c coeff: 0.7922666 Pr(>|t|): 4.241781e-39 *
## sym_dist coeff: 0.2227673 Pr(>|t|): 0.0001033802 *
## host_c:sex_c coeff: 0.1311645 Pr(>|t|): 0.01332877 *
negative effect of host where if from GRT then smaller body
strong positve effect of sex, where if Female then larger body
positve effect of sym_dist where if farther from Homestead, then larger body
positive host*sex interaction where if Female and from GRT then larger body
Wing Length
data<-data.frame(R=data_tested$wing_c,
A=data_tested$host_c,
B=data_tested$sex_c,
C=data_tested$sym_dist,
D=data_tested$thorax_c)
model_script = paste0(source_path,"generic models-gaussian glmer 4-FF.R")
model_comparisonsAIC(model_script)
## [,1] [,2] [,3] [,4] [,5] [,6]
## AICs 309.4368 309.6572 309.6577 309.7867 309.9198 310.0324
## models 100 109 99 76 96 108
## probs 0.07469386 0.06690132 0.0668838 0.06270781 0.05867053 0.05545884
##
## m100 R ~ A * B + B * C + B * D + C * D
## m109 R ~ A * B + A * C + B * C + B * D + C * D
## m99 R ~ A * B + A * D + B * D + C * D
## m76 R ~ A * B + B * D + C * D
## m96 R ~ A * B + A * C + B * D + C * D
## m108 R ~ A * B + A * C + A * D + B * D + C * D
best.fit.wing <- lm(wing_c ~ host_c * sex_c + host_c * thorax_c + sex_c * thorax_c + sym_dist * thorax_c, data=data_tested)
tidy_regression(best.fit.wing, is_color=output_col)
## lm wing_c ~ host_c * sex_c + host_c * thorax_c + sex_c * thorax_c + sym_dist * thorax_c data_tested
## AIC: 309.6577
## (Intercept) coeff: -0.0358793 Pr(>|t|): 0.4554924
## host_c coeff: 0.0907347 Pr(>|t|): 0.008454989 *
## sex_c coeff: -0.0183767 Pr(>|t|): 0.6196153
## thorax_c coeff: 2.5507765 Pr(>|t|): 8.664498e-54 *
## sym_dist coeff: 0.0213647 Pr(>|t|): 0.4890866
## host_c:sex_c coeff: 0.1266983 Pr(>|t|): 0.0006364304 *
## host_c:thorax_c coeff: -0.1776139 Pr(>|t|): 0.150416
## sex_c:thorax_c coeff: 0.1840662 Pr(>|t|): 0.04910075 *
## thorax_c:sym_dist coeff: -0.1751373 Pr(>|t|): 0.03733336 *
positive effect of host where if from GRT then have longer wings
no effect of sex
strong positive effect of thorax where the longer the thorax, the longer the wings
no effect of sym_dist
positive effect of host*sex where if Female and from GRT then have longer wings
no effect of host*thorax
positive effect of sex*thorax where if F and have longer thorax, then have longer wings
negative effect of sex*sym_dist where if F and farther from Homestead, then have shorter wings
Beak Length
data<-data.frame(R=data_tested$beak_c,
A=data_tested$host_c,
B=data_tested$sex_c,
C=data_tested$sym_dist,
D=data_tested$thorax_c)
model_script = paste0(source_path,"generic models-gaussian glmer 4-FF.R")
model_comparisonsAIC(model_script)
## [,1] [,2] [,3] [,4] [,5] [,6]
## AICs 382.0032 382.745 383.0399 383.3387 383.7315 384.1194
## models 80 94 69 104 101 109
## probs 0.145256 0.1002457 0.08650028 0.07449575 0.06121382 0.05042188
##
## m80 R ~ A * C + B * C + B * D
## m94 R ~ A * B + A * C + B * C + B * D
## m69 R ~ A * B + A * C + B * D
## m104 R ~ A * C + B * C + B * D + C * D
## m101 R ~ A * C + A * D + B * C + B * D
## m109 R ~ A * B + A * C + B * C + B * D + C * D
best.fit.beak <- lm(beak_c ~ host_c * sym_dist + sex_c * sym_dist + sex_c * thorax_c, data=data_tested)
tidy_regression(best.fit.beak, is_color=output_col)
## lm beak_c ~ host_c * sym_dist + sex_c * sym_dist + sex_c * thorax_c data_tested
## AIC: 382.0032
## (Intercept) coeff: 0.0831852 Pr(>|t|): 0.2055459
## host_c coeff: -0.3298756 Pr(>|t|): 6.193405e-08 *
## sym_dist coeff: -0.3135557 Pr(>|t|): 0.0144288 *
## sex_c coeff: 0.6204374 Pr(>|t|): 9.224178e-45 *
## thorax_c coeff: 1.3143121 Pr(>|t|): 5.775058e-30 *
## host_c:sym_dist coeff: 0.2612436 Pr(>|t|): 0.04043858 *
## sym_dist:sex_c coeff: -0.0751405 Pr(>|t|): 0.003302975 *
## sex_c:thorax_c coeff: 0.4866395 Pr(>|t|): 3.165965e-06 *
negative effect of host where if from GRT then have shorter beak
negative effect of sym_dist where if farther from Homestead then have shorter beak
positive effect of beak length where if Female then have longer beak
strong positive effect of thorax where the longer the thorax the longer the beak
maringal positive effect of host*sym_dist where if from GRT and farther from Homeasted then have longer beak
negative effect of sym_dist*sex where if farther from Homestead and Female then have shorter beak
positive effect of sex*thorax where if Female and have larger thorax then have longer beak
par(mfrow=c(2,3))
plot(thorax_c ~ host_c, data=data_tested, main="data_tested")
plot(thorax_c ~ sym_dist, data=data_tested, main="data_tested")
plot(thorax_c ~ sex_c, data=data_tested, main="data_tested")
plot(thorax_c ~ host_c, data=data_all, main="data_all")
plot(thorax_c ~ sym_dist, data=data_all, main="data_all")
plot(thorax_c ~ sex_c, data=data_all, main="data_all")
gf_point(thorax_c ~ sym_dist, col=~host_c, alpha=~sex_c, data=data_tested)
gf_point(thorax_c ~ sym_dist, col=~host_c, alpha=~sex_c, data=data_all)
Comparing Models:
data <- read_flight_data("data/all_flight_data-Winter2020.csv")
data_all <- data[[1]]
data_tested <- data[[2]]
data_tested <- data_tested[data_tested$trial_type=="T1",] # only the unique values pulled for those tested
data_tested <- center_data(data_tested)
data_all <- data_all %>%
filter(trial_type != "T2")
data_all <- center_data(data_all)
data_fem <- data_tested[data_tested$sex=="F",]
data_fem <- center_data(data_fem)
Thorax
data<-data.frame(R=data_fem$thorax_c,
A=data_fem$host_c,
B=data_fem$sym_dist)
model_script = paste0(source_path,"generic models-gaussian glmer 2-FF.R")
model_comparisonsAIC(model_script)
## [,1] [,2] [,3] [,4] [,5]
## AICs 35.33117 37.05222 37.21371 38.34189 39.43119
## models 5 2 1 3 4
## probs 0.4621622 0.1954669 0.180304 0.102571 0.05949582
##
## m0 R ~ 1
## m2 R ~ B
## m1 R ~ A
## m3 R ~ A + B
## m4 R ~ A * B
anova(m0, m2, test="Chisq") # Adding B does not improve fit
## Analysis of Variance Table
##
## Model 1: R ~ 1
## Model 2: R ~ B
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 118 9.0660
## 2 117 9.0448 1 0.021227 0.6003
anova(m0, m1, test="Chisq") # Adding A does not improve fit
## Analysis of Variance Table
##
## Model 1: R ~ 1
## Model 2: R ~ A
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 118 9.0660
## 2 117 9.0571 1 0.008944 0.7339
best.fem.thorax <- lm(thorax_c ~ 1, data=data_fem)
tidy_regression(best.fem.thorax, is_color=output_col)
## lm thorax_c ~ 1 data_fem
## AIC: 35.33117
Body
data<-data.frame(R=data_fem$body_c,
A=data_fem$host_c,
B=data_fem$sym_dist)
model_script = paste0(source_path,"generic models-gaussian glmer 2-FF.R")
model_comparisonsAIC(model_script)
## [,1] [,2] [,3] [,4]
## AICs 346.0856 347.1209 347.4936 349.0748
## models 5 2 1 3
## probs 0.4120384 0.2455344 0.203792 0.09243577
##
## m0 R ~ 1
## m2 R ~ B
## m1 R ~ A
## m3 R ~ A + B
anova(m0, m2, test="Chisq") # Adding B does not improve fit
## Analysis of Variance Table
##
## Model 1: R ~ 1
## Model 2: R ~ B
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 118 123.46
## 2 117 122.46 1 0.99675 0.3291
anova(m0, m1, test="Chisq") # Adding A does not improve fit
## Analysis of Variance Table
##
## Model 1: R ~ 1
## Model 2: R ~ A
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 118 123.46
## 2 117 122.85 1 0.61263 0.445
best.fem.body <- lm(body_c ~ 1, data=data_fem)
tidy_regression(best.fem.body, is_color=output_col)
## lm body_c ~ 1 data_fem
## AIC: 346.0856
Wing
data<-data.frame(R=data_fem$wing_c,
A=data_fem$host_c,
B=data_fem$sym_dist,
C=data_fem$thorax_c)
model_script = paste0(source_path,"generic models-gaussian glmer 3-FF.R")
model_comparisonsAIC(model_script)
## [,1] [,2] [,3] [,4] [,5] [,6]
## AICs 127.2285 127.7045 128.2853 128.6294 128.7533 130.4651
## models 13 16 15 9 17 12
## probs 0.2694945 0.2124233 0.1588862 0.1337721 0.1257328 0.05342345
##
## m13 R ~ B * C + A
## m16 R ~ A * C + B * C
## m15 R ~ A * B + B * C
## m9 R ~ A * C
## m17 R ~ A * B + A * C + B * C
## m12 R ~ A * C + B
anova(m13, m16, test="Chisq") # Adding A*C does not inprove fit
## Analysis of Variance Table
##
## Model 1: R ~ B * C + A
## Model 2: R ~ A * C + B * C
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 114 18.349
## 2 113 18.115 1 0.2335 0.2275
best.fem.wing <- lm(wing_c ~ sym_dist * thorax_c + host_c, data=data_fem)
tidy_regression(best.fem.wing, is_color=output_col)
## lm wing_c ~ sym_dist * thorax_c + host_c data_fem
## AIC: 127.2285
## (Intercept) coeff: 0.073353 Pr(>|t|): 0.2572449
## sym_dist coeff: 0.0072964 Pr(>|t|): 0.8910373
## thorax_c coeff: 3.0209157 Pr(>|t|): 1.732006e-37 *
## host_c coeff: 0.1622927 Pr(>|t|): 0.002314201 *
## sym_dist:thorax_c coeff: -0.5055494 Pr(>|t|): 0.0009967779 *
Beak
data<-data.frame(R=data_fem$beak_c,
A=data_fem$host_c,
B=data_fem$sym_dist,
C=data_fem$thorax_c)
model_script = paste0(source_path,"generic models-gaussian glmer 3-FF.R")
model_comparisonsAIC(model_script)
## [,1] [,2] [,3] [,4] [,5] [,6]
## AICs 218.6601 218.6755 219.896 220.1993 220.4824 220.5986
## models 7 5 11 9 12 13
## probs 0.2258078 0.22408 0.1217213 0.1045918 0.09078985 0.0856643
##
## m7 R ~ A + B + C
## m5 R ~ A + C
## m11 R ~ A * B + C
## m9 R ~ A * C
## m12 R ~ A * C + B
## m13 R ~ B * C + A
anova(m5, m7, test="Chisq") # Adding B marginally improves fit
## Analysis of Variance Table
##
## Model 1: R ~ A + C
## Model 2: R ~ A + B + C
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 116 40.920
## 2 115 40.233 1 0.68718 0.1611
anova(m7, m11, test="Chisq") # Adding A*B does not improve fit
## Analysis of Variance Table
##
## Model 1: R ~ A + B + C
## Model 2: R ~ A * B + C
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 115 40.233
## 2 114 39.976 1 0.25751 0.3915
best.fem.beak <- lm(beak_c ~ host_c + sym_dist + thorax_c, data=data_fem)
tidy_regression(best.fem.beak, is_color=output_col)
## lm beak_c ~ host_c + sym_dist + thorax_c data_fem
## AIC: 218.6601
## (Intercept) coeff: -0.0520728 Pr(>|t|): 0.5845457
## host_c coeff: -0.2810951 Pr(>|t|): 0.0003787158 *
## sym_dist coeff: -0.1093528 Pr(>|t|): 0.1637574
## thorax_c coeff: 1.8074116 Pr(>|t|): 2.317886e-15 *
plot(thorax ~ host_c, data=data_fem)
plot(thorax ~ sym_dist, data=data_fem)
gf_point(thorax_c ~ sym_dist, col=~host_c, data=data_fem)
Comparing Models:
output_col = FALSE #
data <- read_flight_data("data/all_flight_data-Winter2020.csv")
data_all <- data[[1]]
data_tested <- data[[2]]
data_tested <- data_tested[data_tested$trial_type=="T1",] # only the unique values pulled for those tested
data_tested <- center_data(data_tested)
data_all <- data_all %>%
filter(trial_type != "T2")
data_all <- center_data(data_all)
data_male <- data_tested[data_tested$sex=="M",]
data_male <- center_data(data_male)
Thorax
data<-data.frame(R=data_male$thorax_c,
A=data_male$host_c,
B=data_male$sym_dist)
model_script = paste0(source_path,"generic models-gaussian glmer 2-FF.R")
model_comparisonsAIC(model_script)
## [,1] [,2]
## AICs -105.2699 -103.276
## models 3 4
## probs 0.7304615 0.2695383
##
## m3 R ~ A + B
## m4 R ~ A * B
anova(m3, m4, test="Chisq") # Adding A*B does not improve fit
## Analysis of Variance Table
##
## Model 1: R ~ A + B
## Model 2: R ~ A * B
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 210 7.3275
## 2 209 7.3273 1 0.00020874 0.9385
best.male.thorax <- lm(thorax_c ~ host_c + sym_dist, data=data_male)
tidy_regression(best.male.thorax, is_color=output_col)
## lm thorax_c ~ host_c + sym_dist data_male
## AIC: -105.2699
## (Intercept) coeff: -0.1354022 Pr(>|t|): 1.098378e-07 *
## host_c coeff: -0.1264809 Pr(>|t|): 3.313508e-09 *
## sym_dist coeff: 0.0901263 Pr(>|t|): 2.083607e-08 *
Body
data<-data.frame(R=data_male$body_c,
A=data_male$host_c,
B=data_male$sym_dist)
model_script = paste0(source_path,"generic models-gaussian glmer 2-FF.R")
model_comparisonsAIC(model_script)
## [,1] [,2]
## AICs 429.3224 430.1409
## models 3 4
## probs 0.6008938 0.3990914
##
## m3 R ~ A + B
## m4 R ~ A * B
anova(m3, m4, test="Chisq") # Adding A*B does not improve fit
## Analysis of Variance Table
##
## Model 1: R ~ A + B
## Model 2: R ~ A * B
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 210 90.148
## 2 209 89.649 1 0.49868 0.2809
best.male.body <- lm(body_c ~ host_c + sym_dist, data=data_male)
tidy_regression(best.male.body, is_color=output_col)
## lm body_c ~ host_c + sym_dist data_male
## AIC: 429.3224
## (Intercept) coeff: -0.4062525 Pr(>|t|): 4.609688e-06 *
## host_c coeff: -0.3672157 Pr(>|t|): 7.089933e-07 *
## sym_dist coeff: 0.2768821 Pr(>|t|): 7.394263e-07 *
Wing
data<-data.frame(R=data_male$wing_c,
A=data_male$host_c,
B=data_male$sym_dist,
C=data_male$thorax_c)
model_script = paste0(source_path,"generic models-gaussian glmer 3-FF.R")
model_comparisonsAIC(model_script)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## AICs 178.3127 179.1819 179.6539 179.7537 180.9264 181.1406 181.1816
## models 3 5 6 10 9 13 7
## probs 0.2498088 0.1617578 0.1277499 0.1215338 0.06761449 0.06074911 0.05951477
##
## m3 R ~ C
## m5 R ~ A + C
## m6 R ~ B + C
## m10 R ~ B * C
## m9 R ~ A * C
## m13 R ~ B * C + A
## m7 R ~ A + B + C
anova(m3, m5, test="Chisq") # Adding A does not improve fit
## Analysis of Variance Table
##
## Model 1: R ~ C
## Model 2: R ~ A + C
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 211 28.005
## 2 210 27.857 1 0.14829 0.2904
anova(m3, m6, test="Chisq") # Adding B does not improve fit
## Analysis of Variance Table
##
## Model 1: R ~ C
## Model 2: R ~ B + C
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 211 28.005
## 2 210 27.919 1 0.08648 0.4199
best.male.wing <- lm(wing_c ~ thorax_c, data=data_male)
tidy_regression(best.male.wing, is_color=output_col)
## lm wing_c ~ thorax_c data_male
## AIC: 178.3127
## thorax_c coeff: 2.3197584 Pr(>|t|): 2.956336e-47 *
Beak
data<-data.frame(R=data_male$beak_c,
A=data_male$host_c,
B=data_male$sym_dist,
C=data_male$thorax_c)
model_script = paste0(source_path,"generic models-gaussian glmer 3-FF.R")
model_comparisonsAIC(model_script)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## AICs 88.69349 89.96892 90.04939 90.41733 91.72476 91.99779 92.25941
## models 15 14 11 17 5 9 13
## probs 0.3008093 0.1589773 0.1527075 0.127047 0.06607811 0.0576462 0.05057785
##
## m15 R ~ A * B + B * C
## m14 R ~ A * B + A * C
## m11 R ~ A * B + C
## m17 R ~ A * B + A * C + B * C
## m5 R ~ A + C
## m9 R ~ A * C
## m13 R ~ B * C + A
anova(m5, m9, test="Chisq") # adding A*C does not improve fit
## Analysis of Variance Table
##
## Model 1: R ~ A + C
## Model 2: R ~ A * C
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 210 18.476
## 2 209 18.327 1 0.1492 0.1921
best.male.beak <- lm(wing_c ~ host_c + thorax_c, data=data_male)
tidy_regression(best.male.beak, is_color=output_col)
## lm wing_c ~ host_c + thorax_c data_male
## AIC: 179.1819
## (Intercept) coeff: 0.0137254 Pr(>|t|): 0.6261128
## host_c coeff: 0.0301393 Pr(>|t|): 0.2915975
## thorax_c coeff: 2.3437619 Pr(>|t|): 8.107543e-47 *
plot(thorax ~ host_c, data=data_male)
plot(thorax ~ sym_dist, data=data_male)
gf_point(thorax_c ~ sym_dist, col=~host_c, data=data_male)