library(RcmdrMisc)
## Carregando pacotes exigidos: car
## Carregando pacotes exigidos: carData
## Carregando pacotes exigidos: sandwich
.x <- seq(-3.291, 3.291, length.out=1000)
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="z", ylab="Densidade",regions=list(c(0, 4)), col=c('#0080C0', '#BEBEBE'), legend=FALSE)
# P(0<X<0,11)
# P(0 < X < 0,11) = 0,04380
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="z",
ylab="Densidade",regions=list(c(0, 0.11)),
col=c('red'), legend=FALSE)
# P(-2,2<X<0,12)
# P (-2,2 < X < 0,12) = 053386
# P (-2,2 < X < 0,12) = P (-2,2 < X < 0) + P (0 < X < 0,12)
# P (-2,2 < X < 0,12) = P (0 < X < 2,2) + P (0 < X < 0,12)
# 0,48610 + 0,04776 = 0,53386
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="z",
ylab="Densidade",regions=list(c(-2.2,0),c(0,0.12)),
col=c('green','blue'), legend=FALSE)
# P(-1<X<2,1)
# P(-1 < X < 2,1) = 0,82348
# P(-1 < X < 2,1) = P (-1 < X < 0) + P (0 < X < 2,1)
# P (0 < X < 1) + P (0 < X < 2,1)
# = 0,34134 +0,48214 = 0,82348
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="z",
ylab="Densidade",regions=list(c(-1,0),c(0,2.1)),
col=c('green','purple'), legend=FALSE)
# P(0<X<1,83)
# P (0 < X < 1,83) =
# P (0 < X < 1,83) = 0,46638
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="z",
ylab="Densidade",regions=list(c(0, 1.83)),
col=c('orange'), legend=FALSE)
# P(-0,87<X<1,54)
# P (-0,87 < X < 1,54) = 0,74607
# P (-0,87 < X < 1,54) = P (-0,87 < X < 0) + (0 < X < 1,54)
# = P (0 < X < 0,87) + (0 < X < 1,54)
# = 0,30785 + 0,43822 = 0,74607
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="z",
ylab="Densidade",regions=list(c(-0.87,0),c(0,1.54)),
col=c('blue','yellow'), legend=FALSE)
# P(x>2,5)
# P (x > 2,5)= 0,5 - 0,49379 = 0,00621
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="z",
ylab="Densidade",regions=list(c(0,2.5),c(0,0.5)),
col=c('pink','brown'), legend=FALSE)
# P(x>-2)
# P (x > -2)= 0,5 + 0,47725 = 0,97725
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="z",
ylab="Densidade",regions=list(c(0,2),c(0,0.5)),
col=c('blue','brown'), legend=FALSE)
# P(X<0)
# P (x < 0) = 0,5
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="z",
ylab="Densidade",regions=list(c(0,0.5)),
col=c('red'), legend=FALSE)
Não é possível calcular a área de uma linha, portanto em ocasiões onde (X=) o valor é sempre 0.