ExercÃcios de Distribuição Normal
library(RcmdrMisc)
## Carregando pacotes exigidos: car
## Carregando pacotes exigidos: carData
## Carregando pacotes exigidos: sandwich
1- P(X<0)= 0,6
.x <- seq(-3.291, 3.291, length.out=1000)
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="z",
ylab="Densidade",regions=list(c(0,4)),
col=c('GREEN'), legend=FALSE)

2- P(0<X<0,11)
P(0<X<0,11) = 0,04380
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="x",
ylab="Densidade",regions=list(c(0, 0.11)),
col=c('pink'), legend=FALSE)

3 - P(-2,2<X<0,12)= 0,53386
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="x",
ylab="Densidade",regions=list(c(-2.2, 0.12)),
col=c('purple'), legend=FALSE)

4- P(-1<X<2,1) = 0,82348
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="z",
ylab="Densidade",regions=list(c(-1,0),c(0,2.1)),
col=c('pink','skyblue'), legend=FALSE)

5- P(0<X<1,83)
P(0<X<1,83) = 0,46638
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="z",
ylab="Densidade",regions=list(c(0,1.83)),
col=c('gold'), legend=FALSE)

6- P(-0,87<X<1,54) = 0,74607
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="z",
ylab="Densidade",regions=list(c(-0.87,0),c(0,1.54)),
col=c('pink','Gray'), legend=FALSE)

7 - P(X=1,54)
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="x",
ylab="Densidade",regions=list(c(1.54,10)),
col=c('yellow'), legend=FALSE)

8 - P(x>2,5)=0,00621
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="x",
ylab="Densidade",regions=list(c(2.5,10)),
col=c('skyblue'), legend=FALSE)

9 - P(x>-2)=0,97725
plotDistr(.x, dnorm(.x, mean=0, sd=1), cdf=FALSE, xlab="z",
ylab="Densidade",regions=list(c(-2,4)),
col=c('pink'), legend=FALSE)
